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Abstract: Flurbiprofen (FBP), a nonsteroidal anti-inflammatory drug (NSAID), is commonly used to treat
the pain of rheumatoid arthritis, but in prolonged use it causes gastric irritation and ulcer. To avoid these
adverse events of NSAIDs, the simultaneous administration of H2 receptor antagonists such as ranitidine
hydrochloride (RHCl) is obligatory. Here, we developed composite oral fast-disintegrating films (ODFs)
containing FBP along with RHCl to provide a gastroprotective effect as well as to enhance the solubility
and bioavailability of FBP. The ternary solid dispersion (TSD) of FBP was fabricated with Syloid® 244FP
and poloxamer® 188 using the solvent evaporation technique. The synthesized FBP-TSD (coded as
TSD) was loaded alone (S1) and in combination with plain RHCl (S2) in the composite ODFs based on
hydroxypropyl methyl cellulose E5 (HPMC E5). The synthesized composite ODFs were evaluated by
in vitro (thickness, folding endurance, tensile strength, disintegration, SEM, FTIR, XRD and release study)
and in vivo (analgesic, anti-inflammatory activity, pro-inflammatory cytokines and gastroprotective
assay) studies. The in vitro characterization revealed that TSD preserved its integrity and was effectively
loaded in S1 and S2 with optimal compatibility. The films were durable and flexible with a disintegration
time ≈15 s. The release profile at pH 6.8 showed that the solid dispersion of FBP improved the drug
solubility and release when compared with pure FBP. After in vitro studies, it was observed that the
analgesic and anti-inflammatory activity of S2 was higher than that of pure FBP and other synthesized
formulations (TSD and S1). Similarly, the level of cytokines (TNF-α and IL-6) was also markedly reduced
by S2. Furthermore, a gastroprotective assay confirmed that S2 has a higher safety profile in comparison
to pure FBP and other synthesized formulations (TSD and S1). Thus, composite ODF (S2) can effectively
enhance the FBP solubility and its therapeutic efficacy, along with its gastroprotective effect.

Keywords: HPMC E5; Syloid® 244FP; poloxamer® 188; solid dispersion; composite films; flurbiprofen;
ranitidine hydrochloride

Pharmaceutics 2024, 16, 164. https://doi.org/10.3390/pharmaceutics16020164 https://www.mdpi.com/journal/pharmaceutics

https://doi.org/10.3390/pharmaceutics16020164
https://doi.org/10.3390/pharmaceutics16020164
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/pharmaceutics
https://www.mdpi.com
https://orcid.org/0000-0001-9353-7752
https://orcid.org/0000-0002-9888-9826
https://orcid.org/0000-0002-8200-0180
https://doi.org/10.3390/pharmaceutics16020164
https://www.mdpi.com/journal/pharmaceutics
https://www.mdpi.com/article/10.3390/pharmaceutics16020164?type=check_update&version=1


Pharmaceutics 2024, 16, 164 2 of 22

1. Introduction

Rheumatoid arthritis (RA) is a complex autoimmune and inflammatory disease. It
mainly attacks the joints, and usually many joints at once. The signs and symptoms
of RA include inflammation, stiffness, severe pain, muscle weakness and reduced joint
motion. Long term consequences can include the destruction of the synovial joint and
physical disability [1]. According to the literature, RA affects 0.5 to 1% of the worldwide
population [2]. It affects both genders at any age, but data revealed that females are
three times more prone to RA than males [3]. The first line treatment to manage RA
symptoms is NSAIDs. However, the prolonged use of these drugs cause gastrointestinal
(GI) bleeding or stomach ulcer [1]. Therefore, due to the higher incidence of NSAID-related
adverse reactions, H2 receptor antagonist drugs are a promising supportive treatment in
such situations [4]. The H2 receptor antagonist reduces the stomach acid and ultimately
lowers the risk of GI irritation and bleeding in patients taking NSAIDs. Therefore, their
combination in a single formulation might prove more economical and convenient for
geriatric patients.

FBP is a potent NSAID which is frequently used to treat pain and inflammation associ-
ated with arthritis. However, when taken orally, it presents unwanted effects such as GI
irritation, GI bleeding, ulcer, and other systemic effects. Moreover, it exhibits poor aqueous
solubility as it belongs to BCS class II [5]. All these factors limit its therapeutic efficacy. On
the other hand, RHCl is a H2 receptor antagonist that inhibits gastric acid secretions [6].
It has short half-life, i.e., 2.2 h, and shows low absorption on oral administration as it
belongs to BCS class III. Moreover, it also undergoes hepatic metabolism [7]. Therefore,
both drugs exhibit low bioavailability. Composite ODFs are usually developed at stamp
size from hydrophilic polymers, which offers several advantages when compared to other
oral solid dosage forms: they are easy to swallow, rapidly disintegrate without water intake,
have a rapid onset of action, give tolerable mouthfeel, show improved patient compliance,
especially for geriatric and pediatric patients, avoid the degradation of active pharmaceuti-
cal ingredients susceptible to degradation in the stomach or intestine, and lastly are cost
effective as well. Moreover, the size and thickness of the ODF can be adjusted to meet the
individual dosage requirements of geriatric patients [8]. Visser, Dohmen [9] and Alhayali,
Vuddanda [8] reported that hydroxypropyl methyl cellulose (HPMC) forms good films and
has optimal physicomechanical properties compared to other tested excipients. Łyszczarz,
Hofmanová [10] successfully developed ODFs containing a poloxamer® 407-based solid
dispersion of aripiprazole. In another study, Senta-Loys, Bourgeois [11] fabricated an
ODF based on the solid dispersion of tetrabenazine. The solid dispersion (SD) method
is the oldest and most widely used solubilization technique. SD production has different
approaches, such as solvent evaporation and melt cooling, which were later updated to be
better suited for commercialization. Solvent evaporation methods include freeze-drying,
supercritical fluids, nitrogen steam and rotary evaporation. Melting methods include
traditional methods (solution and suspension methods) and optimized methods (hot-stage
extrusion, metrex™ and melt agglomeration) [12,13]. In this study, the traditional solvent
evaporation approach was used as it is easy to perform, provides the maximum yield of
final product and has been reported to have high drug entrapment efficiency. A sublingual
bioadhesive film containing a solid dispersion of furosemide was fabricated to enhance the
bioavailability of the encapsulated drug [14]. Syloid® 244FP is a non-order mesoporous
silica which is frequently used as a carrier for solubility enhancement. It is reported that
the large pore volume and surface area offers an efficient adsorption of drugs. Moreover,
the large number of silicon hydroxyl groups on its surface develop hydrogen bonding with
drugs, which subsequently improves the drug release profile [15–17]. Poloxamer® 188 is a
nonionic, linear, amphiphilic block copolymer composed of hydrophilic polyoxyethylene
and hydrophobic polyoxypropylene, with excellent solubilizing capacity. Furthermore,
the presence or coating of poloxamer® 188 also provides a gastroprotective effect [18] and
significantly improves the intestinal absorption of the drug [19]. As per the literature,
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poloxamer® 188 is frequently used as a hydrophilic carrier along other carriers for the
development of TSD [20–24].

The novelty and uniqueness of the current research lies in the co-loading of plain
RHCl and solid dispersion of FBP in ODF for the very first time. Later, their efficacy
was evaluated by various in vitro and in vivo tests. Therefore, the aim was to prepare a
combinative product of FBP and RHCl to enhance bioavailability and gastro protection and
possibly improve compliance in geriatric patients.

2. Material and Methods
2.1. Material

In a composite ODF film, hydroxypropyl methyl cellulose E5 (HPMC E5, Alfa Aesra,
Karlsruhe, Germany) was used as a film matrix, and propylene glycol (PG, Daejung Chemicals
and Metals Co., Ltd., Siheung, Republic of Korea) was used as a plasticizer. Superdisintegrant
pearlitol flash® was received as a gift from Roquette (Lestrem, France). Flurbiprofen (FBP) and
ranitidine HCl (RHCl) were kindly provided by Axis Pharmaceuticals (Faisalabad, Pakistan).
The ternary solid dispersion (TSD) of FBP was prepared with Syloid® 244FP EU (Grace GmbH,
Worms, Germany) and poloxamer® 188 (Sigma-Aldrich, Darmstadt, Germany), whereas
dichloromethane (DCM, Icon Chemical, Schlüchtern, Germany) was used as the solvent. All
other excipients used were of analytical grade.

2.2. Methods
2.2.1. Development of Solid Dispersion

Binary and ternary solid dispersions were prepared by the solvent evaporation method [25].
For BSD, FBP (0.5 g) was dissolved in DCM (50 mL). This solution was taken in a glass mortar,
and then Syloid® 244FP was added in parts to this solution while stirring was continued
for 30 min at 300 rpm. After that, the DCM was evaporated in an oven at 40 ◦C for 3 h.
The solid product was triturated and sieved through 40 mesh. The sieved powder was
stored in airtight glass vials and placed in a desiccator until further analysis. Similarly, TSD
was prepared with a little modification (Figure 1a). After dissolving FBP (0.5 g) in DCM
(50 mL), poloxamer® 188 (0.25 g) was added to it with constant stirring at 300 rpm. When
poloxamer® 188 was completely dissolved, then specific amount of Syloid® 244FP (0.5 g) was
added in parts to this solution and stirred for 30 min at 300 rpm. Finally, the dried product was
sieved and stored, until further analysis.

Pharmaceutics 2024, 16, x FOR PEER REVIEW 4 of 25 
 

 

 
Figure 1. Synthesis of ternary solid dispersions (a); synthesis of composite ODFs (b). 

2.2.2. Development of Composite ODFs 
The composite film (S1) was prepared by solvent casting method [26], as follows. In-

itially, 0.3 g HPMC E5 was dissolved in 5 mL distilled water, then 0.15 g of prepared TSD 
was added (Table 1). PG (10% w/w of polymer) and Pearlitol Flash® (10% w/w of polymer) 
were dissolved in 5 mL distilled water. This solution was blended with HPMC E5 solution 
and cast in a Petri dish and dried over night at room temperature. The dried film was 
wrapped in aluminum foil and stored in a desiccator until further analysis. Likewise, 
dual-drug-loaded composite film (S2) was prepared with little modification; i.e., first, 
RHCl (0.075 g) was dissolved in polymer solution, and after that, a designated amount of 
TSD was added to the solution (Figure 1b). A blank film (S0) was also prepared in a similar 
way but without drugs. 

Table 1. Composition of composite ODFs. 

Code HPMC E5 PG Pearlitol 
Flash® 

FBP TSD RHCl Dis. Water 

S0 0.3 g 0.03 g 0.03 g   10 mL 
S1 0.3 g 0.03 g 0.03 g 0.15 g  10 mL 
S2 0.3 g 0.03 g 0.03 g 0.15 g 0.075 g 10 mL 

2.3. Characterization of TSD and Composite ODFs 
2.3.1. Micromeritic Properties of TSD 
Powder Density 

Powder density is used to evaluate the packing properties of powder into capsules 
but may also affect several pharmaceutical processes like flow, mixing and tableting. Bulk 
density was measured by introducing an accurate amount of solid dispersion into a 10 mL 
graduated cylinder, and the powder was carefully leveled without compacting it. The ap-
parent untapped volume was noted. After that, the cylinder was tapped carefully and the 

Figure 1. Synthesis of ternary solid dispersions (a); synthesis of composite ODFs (b).



Pharmaceutics 2024, 16, 164 4 of 22

2.2.2. Development of Composite ODFs

The composite film (S1) was prepared by solvent casting method [26], as follows.
Initially, 0.3 g HPMC E5 was dissolved in 5 mL distilled water, then 0.15 g of prepared
TSD was added (Table 1). PG (10% w/w of polymer) and Pearlitol Flash® (10% w/w of
polymer) were dissolved in 5 mL distilled water. This solution was blended with HPMC E5
solution and cast in a Petri dish and dried over night at room temperature. The dried film
was wrapped in aluminum foil and stored in a desiccator until further analysis. Likewise,
dual-drug-loaded composite film (S2) was prepared with little modification; i.e., first, RHCl
(0.075 g) was dissolved in polymer solution, and after that, a designated amount of TSD
was added to the solution (Figure 1b). A blank film (S0) was also prepared in a similar way
but without drugs.

Table 1. Composition of composite ODFs.

Code HPMC E5 PG Pearlitol
Flash® FBP TSD RHCl Dis. Water

S0 0.3 g 0.03 g 0.03 g 10 mL
S1 0.3 g 0.03 g 0.03 g 0.15 g 10 mL
S2 0.3 g 0.03 g 0.03 g 0.15 g 0.075 g 10 mL

2.3. Characterization of TSD and Composite ODFs
2.3.1. Micromeritic Properties of TSD
Powder Density

Powder density is used to evaluate the packing properties of powder into capsules
but may also affect several pharmaceutical processes like flow, mixing and tableting. Bulk
density was measured by introducing an accurate amount of solid dispersion into a 10 mL
graduated cylinder, and the powder was carefully leveled without compacting it. The
apparent untapped volume was noted. After that, the cylinder was tapped carefully and
the volume was noted. Tapping was stopped when no change in volume was observed.
The bulk density and tapped bulk density were calculated by the following equations [15].

Bulk Density =
Weight of powder
Volume of powder

Tapped Bulk Density =
Weight of powder

Volume of powder after 100 tapings

Compressibility Index (Ci)

This is an indirect measurement of bulk density, surface area, size, shape, moisture
content, and the cohesiveness of materials since all of them can influence the compressibility
index or Carr’s Index. It was calculated as follows [15]:

Ci(%) =
Tapped density − bulk density

tapped density
× 100

whereas a Ci value 0–10% shows excellent flow characteristics and above 25% reflects poor
flow characteristics.

Hausner’s Ratio

Hausner’s ratio is another index for calculating the flowability of powder and was
calculated as follows [15]:

Hausner′s Ratio =
Tapped density

Bulk density

A value less than 1.2 is preferable for free flow. However, a Hausner’s ratio between
1 and 1.1 specifies excellent flow properties.
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Angle of Repose

The angle of repose was calculated by passing powder through the funnel on a
horizontal surface. The height (h) of the heap of powder and radius (r) of the cone base
were measured. The angle of repose (θ) was calculated by the following equation [15]:

Tanθ =
h
r

An angle less than 40◦ reflects free flow properties, while an angle between 25 and 30◦

specifies excellent flow properties.

2.3.2. Solubility Study of TSD

The solubilities of FBP and TSD were determined in distilled water, a USP phosphate
buffer of pH 6.8 and a USP hydrochloric acid buffer of pH 1.2. The excess amount of drug
or solid dispersion was added in a falcon tube containing 3 mL of respective solvent. It was
placed in a thermostatic shaking water bath at 37 ◦C and agitated at 100 rpm for 72 h. Then,
the samples were centrifuged for 30 min at 6000 rpm. The obtained clear supernatant was
passed through a 0.45 µm nylon syringe filter (HyDocs, London, UK), diluted and assayed
using a UV–Visible Spectrophotometer (CECIL CE7400S, Cambridge, UK) at λ = 247 nm to
determine the drug dissolved per mL [10].

2.3.3. Drug Content in TSD

Briefly, 30 mg of drug-loaded TSD was first dispersed in 10 mL of DCM and later
diluted with phosphate buffer (pH 6.8). DCM was removed by the vigorous agitation of the
solution for 1 h and passed through a 0.45µm nylon syringe filter (HyDocs, London, UK).
After filtration, the absorbance of FBP was measured spectrophotometrically at 247 nm.
The results were expressed in % drug content [27]:

% drug content =
Actual amount of drug in TSD

Theoratical amount of drug in TSD
× 100

2.3.4. Physical Parameters of Composite ODFs
Thickness

The thickness of the film was measured by using an electronic digital micrometer
(5202-100, SHAHE, Liushi, China) with an accuracy of 0.001 mm. Thickness was measured
from the center and edges of the film, and the mean thickness was reported [10].

In Vitro Disintegration Time

The in vitro disintegration time of the film was measured by adopting a visual method.
The 6 cm2 film strip was placed in a Petri dish with 10 mL phosphate-buffered solution
(PBS) of 6.8 pH. Disintegration time was considered when the film completely disintegrated
into components, and the mean was reported [28].

2.3.5. Mechanical Parameters of Composite ODFs
Folding Endurance

Folding endurance was measured by repeatedly folding the film at the same place
until the film breaks. The number of the times the film folded without breaking was taken
as the folding endurance value [29]. The mean value of triplicate observation was reported.

Tensile Strength

Tensile strength was measured by using a universal testing machine (INSTRON 3366-
10 KN, Instron® GmbH, Darmstadt, Germany) equipped with a 10 KN loaded cell. The
film strip (5 × 2 cm2) was clipped with a clamp with one side fixed and the other side
moveable. Both clamps were positioned at a distance of 3 mm. The film was pulled by the
upper clamp at the rate of 5 mm min−1 until it broke, to determine the tensile strength [10].
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2.3.6. Drug Content of Composite ODFs

ODF of 6 cm2 was completely dissolved in ethanol and diluted with phosphate buffer
(pH 6.8). The contents of FBP and RHCl were determined by using a UV/Vis Spectropho-
tometer (CECIL CE7400S, Cambridge, UK) at 247 nm and 315 nm, respectively [29].

2.3.7. Solid State Characterization of TSD and Composite ODFs
Scanning Electron Microscopy (SEM)

Microstructural analyses of the surface of pure drug (FBP and RHCl), TSD, and the
films (S0, S1 and S2) were carried out by using SEM (Cube series, EMCRAFTS, Sungdong-
gu, Seoul, Republic of Korea). The sample was placed on an aluminum stub using double-
sided adhesive tape and coated with gold under vacuum before observation [30].

Fourier Transform Infrared Spectroscopy (FTIR)

To evaluate the drug–polymer compatibility, FTIR spectra were obtained using Nicolet
6700 FTIR spectrometers (Thermo Electron, Waltham, MA, USA) in the spectral region of
4000–500 cm−1 [30].

X-ray Diffractometry (XRD)

XRD was carried out to investigate the effect of TSD and the ODF formulation on
the crystallinity of the drug. The sample was irradiated with an X-Ray diffractometer (D8
ADVANCE, Bruker, Karlsruhe, Germany) with monochromatized X-rays (Cu-kα), which
was operated at 30 mA and 30 kV. The data were analyzed at a scanning rate of 2◦ min−1,
over the 5–60◦ diffraction angle (2θ) range at a step size of 0.02◦. The XRD patterns of
polymers, drug powder, TSD, and the films were recorded [31].

2.4. In Vitro Drug Release Profile of TSD and Composite ODFs

The in vitro drug release of each formulation, TSD, S1 and S2, was evaluated using the
dialysis membrane method [32]. For FBP release study, each formulation was added to a
pre-activated cellulose acetate membrane pouch (Spectra/Por® dialysis membrane, MWCO
10,000 Da) separately. Then, 10 mL of dissolution media was added to the membrane pouch
and sealed. The pouch was exposed to two different dissolution media with pH 6.8 and
pH 1.2 in a beaker (receptor compartment) placed in a thermostatic shaking water bath
at 37 ± 2 ◦C under continuous shaking (50 rpm) for 120 min. The receptor compartment
contained 200 mL of dissolution media to maintain sink conditions. Then, 5 mL of aliquot
was drawn out at predetermined intervals and the same volume was replaced. The concen-
tration of FBP was calculated by using a previously constructed calibration curve, while
the release of RHCl from S2 was evaluated in 6.8 pH buffer using the above-mentioned
dialysis membrane method. All the experiments were performed in triplicate, and the
average values were reported.

2.5. In Vivo Study Protocols

In vivo studies were conducted on Wistar rats (150–250 g) and were obtained from
an in-house animal facility. The Institutional Review Committee, Government College
University Faisalabad, Pakistan, approved all the protocols (Ref. No., GCUF/ERC/17,
dated: 3 December 2021). Rats were housed in a controlled environment, i.e., 25 ± 1 ◦C,
relative humidity of 60% ± 10% and appropriate light and dark cycles. All the animals
were given standard food and water ad libitum. The amount of S1 and S2 administered
were equivalent to 5 mg/kg of FBP. The pure FBP was also administered at 5 mg/kg for
comparison [33].

2.5.1. In Vivo Analgesic Activity

The in vivo analgesic effect of pure FBP and synthesized formulations (TSD, S1 and S2)
was measured by the hot plate method, originally developed by MacDonald, Woolfe [34].
Animals were divided into 5 groups; each animal was placed on a hot plate at 52 ± 1 ◦C,
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and latency time was noted at “0” h. Afterward, the first group served as the control group
and was given oral 0.5% carboxy methyl cellulose (CMC) solution; the second and third
groups received oral suspension of pure FBP and TSD in 0.5% CMC solution, respectively,
whereas the fourth and fifth groups received composite ODFs S1 and S2, respectively. The
latency time was measured in seconds after every 30 min interval until 5.5 h. The time to
withdraw a hind paw from the surface of hot plate, licking of hind paw or jumping off to
avoid heat nociception is called latency time or reaction time. The cut off latency was set to
15 s to prevent tissue damage. The percentage maximum possible analgesia (MPA %) of
each group was calculated as follows [35]:

MPA% =
Test latency − Control latency
Cut off time − Control latency

× 100

2.5.2. In Vivo Anti-Inflammatory Activity

The paw edema model was employed to investigate the in vivo anti-inflammatory
activity of synthesized formulations. Acute edema was induced by injecting 0.1 mL of
freshly prepared 1% solution of carrageenan in sub-planter tissues of the left hind paw.
Before 30 min of induction, the control group was given 0.5% CMC solution orally; the 2nd
and 3rd groups were administered a dose of pure FBP and TSD, respectively. The dose
of FBP was 5 mg/kg for pure and TSD, while the 4th and 5th groups were administered
composite ODFs, i.e., F1 and F2, respectively. The paw diameter was measured with digital
Vernier caliper at 0, 1, 2, 3, 4, 5 and 6 h. The percentage inhibition of edema was calculated
using the following equation [33].

%inhibition of paw edema =
(Ct − C0) control − (Ct − C0) treated

(Ct − C0) control
× 100

where Ct = left hind paw thickness (mm) at time t, C0 = left hind paw thickness (mm) before
carrageenan injection, (Ct – C0) control = increase in paw size after carrageenan injection to
control rats at time t and (Ct – C0) treated = increase in paw size after carrageenan injection
to treated rats at time t.

Detection of Pro-Inflammatory Cytokines

For the quantification of TNF-α and IL-6 in rat serum, the blood samples were collected
by cardiac puncture from anesthetized rat. Enzyme-linked immunosorbent assay (ELISA)
was performed by using commercial kits (Elabscience®, Wuhan, China) according to the
manufacturer’s instructions [36].

2.5.3. Assessment of Gastroprotective Effect

Wistar rats weighing 160–220 g of either sex were divided into 5 groups (n = 3) to
compare the ulcerogenic potential of pure FBP and synthesized formulations TSD, S1 and
S2. All animals were fasted over night with free supply of water. Rats received 5 mg/kg
of pure drug or formulation containing an equivalent quantity of drugs. Treatment was
continued for five days, and animals were sacrificed on the 5th day after dosing.

Gastric Lesion Index (GLI)

The isolated stomachs of rats were incised through great curvature and washed with
normal saline. After the macroscopic examination of gastric tissues, ulcerative lesions were
measured by Vernier caliper. An arbitrary score (AS) was given to ulcers: “0” was given to
no ulcer/lesion, “0.5” was given to one or more ulcers of length <1 mm, “1” was given to
ulcers/lesions of length 1–2 mm and “2” was given to ulcers/lesions with length >2 mm.
This arbitrary score was multiplied with the number of lesions to find the GLI [37].

Gastric lesion index (GLI) = AS × No. of lesion/ulcers
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After that, the stomachs were then preserved in 10% formalin solution for histopatho-
logical analysis.

Histopathology

The histopathology of stomach tissues was observed by hematoxylin and eosin (H & E)
staining. The stomachs of animals from each group were fixed with 4% paraformaldehyde
and embedded in paraffin. Thin sections of 5µm were sliced, stained by H & E staining and
observed under an accu-scope 3000-LED microscope [37].

3. Results and Discussion

Here, we have attempted to develop composites (ODFs) co-loaded with plain RHCl
and TSD of FBP so as to overcome the limitations of FBP and RHCl. We believe that the
developed system is a promising contender for multiple reasons: First, the co-loading
of RHCl (H2 receptor antagonist) with FBP can provide therapeutic effects (treating FBP-
induced GI effects). Second, it will bypass GI and the hepatic metabolism of RHCl. Third,
solid drug dispersion as well as ODF itself enhances drug FBP solubility and permeability
and ultimately improves bioavailability. Fourth, the TSD of FBP provides intestinal drug
release. Fifth, from a manufacturing perspective, it is easy to prepare and economical to
develop composite ODFs. Sixth, there was an ease of compliance for geriatric patients
suffering from rheumatoid arthritis (due to lower administration frequency) and patients
having swallowing issues.

3.1. Evaluation of Binary and Ternary Solid Dispersions

The solubility of pure FBP, the synthesized binary solid dispersion of FBP (FBP-BSD,
coded as BSD) and the ternary solid dispersion of FBP (FBP-TSD, coded as TSD) were
determined in water, pH 1.2 and pH 6.8 buffer. Figure 2 shows that at pH 1.2 FBP had
slightly lower solubility than pH 6.8, which is due to its acidic nature. At low pH, FBP
remained in nonionized form, showing slightly lower solubility. However, at a higher
pH when the pH became greater than pKa, i.e., 4.22, FBP ionized to show slightly higher
solubility. However, the difference is not that prominent as reported in the literature.
This could be due to possibly be due to the use of USP hydrochloric acid buffer, which
contains kosmotropic salt, i.e., potassium chloride, that helps in solubility enhancement, as
reported in the literature [38,39]. Moreover, Figure 2 also clearly indicates that the solid
dispersions augmented the solubility of pure FBP in water and at pH 6.8. Furthermore,
the TSD showed more solubility (aqueous and at pH 6.8) as compared to BSD and pure
FBP. TSD showed 24-times-increased solubility in water and 34 times at pH 6.8, while
BSD showed 14-times-increased solubility in water and 15 times at pH 6.8 as compared to
pure FBP. This significant improvement in TSD solubility could be due to the presence of
Syloid® 244FP in combination with poloxamer® 188 as Syloid® 244FP has a large surface
area due to the presence of nano size pores, which enhances adsorption and inhibits drug
crystallization, whereas poloxamer® 188 improves the wettability of the hydrophobic drugs
and also provides a synergistic effect with Syloid® 244FP to augment the solubility of the
drug [24]. At acidic pH, BSD showed slightly decreased solubility as compared to pure FBP.
But at pH 1.2, with the addition of poloxamer® 188 in TSD, a decrease in solubility was
observed, with solubility levels of 1.78 mg/mL, 1.51 mg/mL and 0.21 mg/mL for pure FBP,
BSD and TSD, respectively. These results gave us a clue that the addition of poloxamer®

188 in TSD can impart a gastroprotective effect. Based on solubility, TSD was selected
over BSD for further analysis and loading in composite ODFs. The powder density and
compressibility values (i.e., bulk density 0.2098 g/mL, tapped density 0.221 g/mL, Carr’s
index 5.06%, Hausner’s ratio 1.05 and angle of repose 20.3◦) demonstrated that TSD powder
had excellent flow and compressibility properties. It is reported that lower compressibility
values are associated with high amorphous morphology [15]. In the SEM image, TSD
appeared as aggregates of irregular shaped particles. Further, it revealed that FBP was
loaded in amorphous form, as the drug crystals were not observed (Figure 3c), contrary
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to pure FBP (Figure 3a). The percentage drug content of FBP in TSD was 99.06% ± 1.65%,
which is within the range according to USP27 (85–115%).
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3.2. Composite ODF Properties

Composite ODFs were developed through solvent casting to produce the ternary
solid dispersion of FBP (TSD) alone (S1) and in combination with plain RHCl (S2)-
loaded ODFs with high reproducibility. The method is very simple, economical and
does not require an organic solvent [14]. The composition of the film matrix was
selected on the basis of our previous study [40]. The reproducibility of composite
ODFs (S1 and S2) was assessed by measuring the percentage drug content and physical
and mechanical parameters. The percentage drug content of FBP in S1 and S2 was
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95.37 ± 2.22% and 95.22 ± 3.93%, respectively, while the percentage drug content of
RHCl in S2 was 98.29 ± 1.05%.

3.3. Physical Parameters of Composite ODFs
3.3.1. Thickness

Thickness is a physical parameter of the film that indicates the uniformity of the film.
The film should be of optimum thickness as very thin films may easily rupture when
they are peeled from the casting Petri dish, while thick films are reported to disintegrate
slowly [22]. The thicknesses of various developed formulations are mentioned in Table 2.
The thickness of formulations was within permissible limits, i.e., 50–200 µm as described
by Lai, Fang [41].

Table 2. Physical and mechanical properties of composite ODFs.

Code Thickness
(µm)

Disintegration
Time (s)

Folding
Endurance

Tensile Strength
(N/mm2)

S0 35 ± 0.58 19.51 ± 0.21 >300 8.3 ± 1.4
S1 62 ± 0.61 15.78 ± 0.94 >300 6.17 ± 0.31
S2 66.4 ± 0.67 15.02 ± 0.9 >300 5.3 ± 0.4

3.3.2. In Vitro Disintegration Time (DT)

In vitro disintegration testing demonstrated that both formulations, S1 and S2, dis-
integrated quickly, i.e., within 15 s, as stated in Table 2, which is suitable for an oral
fast-disintegrating delivery system. The recommended DT of fast disintegrating tablets
is 30 s or less, as per CDER guidelines, and is equally applicable for fast-disintegrating
oral films [42]. The decrease in the DT of S1 and S2 films as compared to the S0 film is
possibly due to the incorporation of solid dispersion in the HPMC matrix of the ODF, which
causes discontinuation within the polymer lattice [43,44]. Similar results were stated by
Łyszczarz, Hofmanová [10], who also showed a favorable impact of solid dispersion on
the DT of the ODF. They reported that ODF containing aripiprazole–poloxamer® 407 solid
dispersion disintegrated faster (DT < 30 s) than the blank film. Furthermore, the DT of S2
was slightly lower than S1, after the encapsulation of RHCl. This is possibly due to the
presence of freely water-soluble RHCl, which further enhances the contact of the film with
media and thus it disintegrates faster. For ODFs produced with two different grades of
HPMC, Panraksa, Udomsom [45] achieved an average DT of 6 s. In a study conducted by
Bodini, Guimarães [46], an HPMC-based film showed a DT of 33.4 s and starch-based film
showed a DT of 43.7 s.

3.4. Mechanical Parameters of Composite ODFs
3.4.1. Folding Endurance

Folding endurance gives an idea about the flexibility and brittleness of the films. The
synthesized formulations (S0, S1, and S2) had folding endurance values greater than 300,
as stated in Table 2. According to the literature, a film with a folding endurance of 300 or
>300 exhibited excellent flexibility [47]. Here, the film-forming polymer, i.e., HPMC E5,
imparts strength to the film, while the plasticizer, i.e., PG, provides flexibility to the ODF,
as observed previously [48]. The optimum flexibility of films ensures their integrity until
they reach the hands of patients.

3.4.2. Tensile Strength

An optimal film should have optimal tensile strength to endure the force or stress
during packaging and transportation without any damages [45]. Moreover, too rigid a
film gives a bad mouthfeel [49]. The results demonstrated that the tensile strength of
developed films were in accordance with the quality standard of ODF mentioned by Brniak,
Maślak [48], i.e., below 10 N/mm2 (Table 2). The decrease in the tensile strength of S1 and
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S2 films as compared to the S0 film was possibly due to the presence of solid dispersion. It
is assumed that the incorporation of ternary solid dispersion increases the discontinuations
in the film matrix. These results are concordant with the previous findings [50], where
increasing the concentration of micropellets in films reduced the mechanical properties by
influencing the continuity of the polymer lattice. Łyszczarz, Hofmanová [10] showed that
ODF containing solid dispersion had a somewhat decreased tensile strength as compared
to the blank film. In another study, ODF containing prednisolone MPs presented similar
results. The presence of MPs in ODF slightly lowered the tensile strength as compared to
that of the blank film [48].

3.5. Solid State Characterization of TSD and Composite ODF
3.5.1. SEM

The surface morphology of the pure drug and formulations were observed by SEM.
Figure 3 illustrates the surface morphology of the pure drug (FBP and RHCl) and formu-
lations (TSD, S0, S1, and S2). The SEM micrographs show crystals of FBP and RHCl that
depict their crystalline nature (Figure 3a,b). SEM micrographs of TSD, S1 and S2 reflect
amorphous characteristics due to the absence of drug crystals. Pradhan, Tran [5] reported
that in developed FBP solid dispersion, FBP crystals were transformed into an amorphous
state. SEM micrographs also revealed that solid dispersions are successfully embedded
and well dispersed in composite films (S1 and S2). The surface of the blank was smoother
but became rough upon incorporation of solid dispersion (S1). Furthermore, after RHCl
loading, film (S2) became smoother, which indicates the successful incorporation of RHCl.

3.5.2. FTIR

FTIR analysis was used to confirm the chemical structure of polymers and to recognize
any potential intermolecular interactions between functional groups of active ingredients
and polymeric carriers. Figure 4 shows the FTIR spectrum of pure drugs (FBP and RHCl),
polymers (HPMC E5, poloxamer® 188 and Syloid® 244FP) and developed formulations
(TSD, S1 and S2). The spectrum of pure FBP presented a characteristic band between
3500 and 2500 cm−1, which was assigned to the stretching of the –OH of the hydroxyl
group (3500–3000 cm−1) and –CH of the methyl group (3000–2500 cm−1). The distinct
peaks at 1216 cm−1, 1325 cm−1, 1415 cm−1 and 1697 cm−1 were attributed to C–F stretch-
ing, –CH of the methyl group, –OH bending and the carbonyl group (C=O), respectively
(Figure 4a). Kawadkar and Chauhan [51] and Liw, Teoh [52] reported similar peaks of
FBP. The pure RHCl spectrum (Figure 4b) displayed characteristics peaks of C=N (nitronic
acid) at 1619 cm−1, NO2 (nitro group) at 1224 cm−1, NH (CH3)2 (dimethylamine group) at
2468 cm−1 and two distinct peaks of primary amide group (NH) at 3192 and 3261 cm−1.
A strong peak was observed at 1046 cm−1, which depicts the crystalline form II of RHCl.
Gaitano, Calvo [53] and Chieng, Aaltonen [54] reported similar RHCl spectral vibrations.
Poloxamer® 188 demonstrated absorption peaks of C–O (ether) stretching at 1097 cm−1,
C–O–C stretching at 1243 cm−1 and 1288 cm−1, –OH bending at 1343 cm−1 and 1464 cm−1

and aliphatic –CH stretching at 2886 cm−1 (Figure 4c) and are in agreement with previous
results [21,55]. Principle absorption peaks of HPMC E5 were found at the wavenumber of
1055 cm−1 due to C–O stretching; 1375 cm−1 represented –OH group vibration, 1457 cm−1

presented a –CH2 group, and 2908.6 cm−1 indicated the stretching of –CH and 3449.5 cm−1

of –OH stretching (Figure 4d) [56], whereas Syloid® 244FP showed its distinctive IR peaks
at the wavenumbers of 1079 cm−1 and 1418 cm−1, which are attributed to Si–OH (silanol
group) stretching and –OH bending, respectively (Figure 4e) [57]. In the IR spectrum of
TSD, S1 and S2 (Figure 4f–h), the characteristics peaks of FBP and RHCl were weaker
and hardly observed in their respective formulations due to the formation of hydrogen
bonding between drug and carrier polymers. The other reason is the overlapping of peaks
of drug and carrier polymers. For instance, the peak 1415 cm−1 of FBP was shifted to
1418 cm−1, 1421 cm−1 and 1417 cm−1 in TSD, S1 and S2, respectively, and it was attributed
to overlapping with the silanol group peak of Syloid® 244FP, and thus these peaks were
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less intense. Moreover, the peak at 1046 cm−1 of RHCl in S2 was shifted to a higher IR
band, i.e., 1061 cm−1, due to overlapping with peak 1055 cm−1 of the C–O group of HPMC
E5 [40]. The other reason could be the formation of strong –H bonding with film-forming
polymer HPMC E5 [58]. The IR results confirmed that the pure drugs with reference to
their formulations showed no obvious drug–polymer interactions. All formulations (TSD,
S1 and S2) showed characteristic peaks of FBP and RHCl without any major shifting in
their respective formulations, but these were weaker as compared to the pure drug. Similar
results are reported for albedazole–PEG6000–poloxamer® 188 solid dispersions (ABZ-SD),
where the characteristic peak of albendazole was hardly observed in the IR spectrum of
ABZ-SD, while the characteristic peaks of carriers were clear [23].
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3.5.3. XRD

The crystallinity or amorphicity of drugs, polymers and synthesized formulations
were assessed by XRD. The XRD pattern of pure FBP exhibited several intense peaks
between 20.7◦ and 30.1◦, confirming its crystalline nature (Figure 5a) as reported in the
literature [59,60]. The pure RHCl also depicted the typical crystalline diffraction peaks
between 15.3◦ and 26◦ (Figure 5b), which were in agreement with previously published
data by Yamamoto, Takeda [61]. Poloxamer® 188 showed diffraction peaks at 19.1◦ and
23◦ (Figure 5c) [29,62], while HPMC E5 and Syloid® 244FP (Figure 5d,e) did not exhibit
characteristics peaks. TSD, S1 and S2 showed halo amorphous patterns (Figure 5f,h,i) that
revealed the dispersion of drugs (FBP and RHCl) at the molecular level in their respective
formulations. Zhang, Sun [24] developed a solid dispersion of cilostazol with Syloid®

244FP and Kolliphor® 188 and their XRD diffraction patterns revealed an amorphous
nature. Similarly, XRD studies reported by Yeo, An [15] suggested that aprepitant was
amorphously dispersed in Syloid® 244FP-based dispersion.
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3.6. In Vitro Drug Release of TSD and Composite ODFs

The in vitro release profile of FBP at pH 6.8 and pH 1.2 and RHCl at pH 6.8 are
graphically presented in Figures 6–8, respectively. The results showed that the percentages
of FBP released at pH 6.8 during the first 30 min from TSD, S1 and S2 were 45.53%,
54.22% and 65.66%, respectively (Figure 6). In contrast, almost negligible FBP was released
at pH 1.2 from TSD, S1 and S2 (Figure 7). The results reveal that solid dispersion has
improved the release profile of FBP at pH 6.8 owing to a large pore volume and large
pore diameter of Syloid® 244FP. Here, the nano-sized pore structure of Syloid® 244FP
inhibits drug nucleation. Furthermore, due to the presence of a large number of silyl
hydroxyl groups on the surface of Syloid® 244FP, it develops hydrogen bonding with
the drug and inhibits crystallization to confine the drug in amorphous form in silica
particles, while poloxamer® 188 with Syloid® 244FP imparts synergistic effects as described
by Zhang, Sun [24] due to its surface active nature and micellar solubilization power.
Moreover, poloxamer® 188 coating also inhibits the release of the drug at pH 1.2 (Figure 7)
and significantly improves intestinal absorption [19]. Thus, it ultimately prevents FBP-
induced gastric irritation [18]. Composite ODFs (S1 and S2) exhibited a relatively faster
release rate as compared to TSD. This was attributed to (1) the availability of higher
surface area for wetting of TSD in ODF, (2) the presence of HPMC, superdisintegrant and
plasticizer in composite ODF can act as a dissolution enhancer. Furthermore, S2 ODF
showed a significantly more rapid release of FBP as compared to S1 that may be due to
the presence of hydrophilic RHCl, as it was reported that RHCl enhanced the solubility
and bioavailability of the hydrophobic diclofenac [53]. Similar results were observed by
Kasai, Shiono [63], where the solubility and bioavailability of the hydrophobic diclofenac
was enhanced by the ion-paired complex formation with hydrophilic cimetidine.
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In the dual drug-loaded composite ODF (S2), the cumulative % release of RHCl at pH
6.8 was 96.66% within 5 min (Figure 8). Previously, a fast-disintegrating oral film reported
by Satyanarayana and Keshavarao [64] showed a 90% release of anastrozole within 4 min
from HPMC E5-based ODF, while another study showed 100% drug release within 6 min
from HPMC-based ODF-containing donepezil [26].
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3.7. In Vivo Study
3.7.1. Assay of Analgesic Activity

The ability of developed formulations (TSD, S1 and S2) to enhance the analgesic
effect was assessed and compared with controlled (non-treated) and pure FBP (Figure 9).
The in vivo analgesia effect was checked from 0.5 to 5.5 h by the hot plate method. The
latency time to the thermal stimuli of the controlled group gradually decreased as it was
more vulnerable to heat. The pure FBP showed the maximum latency time at the 4th h
(11.025 ± 0.092 s); afterwards, the time gradually decreased (9.8 ± 1.01 s at 5.5 h). This
short analgesic effect was attributed to the short half-life and poor solubility profile of FBP,
whereas the latency time of the synthesized formulations TSD, S1 and S2 was significantly
prolonged when compared to pure FBP. The maximum latency times for TSD, S1 and S2
were 13 ± 1.4, 14.07 ± 0.71 and 14.45 ± 0.707 s at 5.5 h, respectively. These results suggest
that the analgesic activity of the FBP was increased after incorporation in solid dispersions
and composite ODFs. The improvement in analgesic effect was attributed to mesoporous
silica and poloxamer® 188 carriers that enhanced the solubility and bioavailability of the
FBP [15,55].
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3.7.2. In Vivo Anti-Inflammatory Activity

The carrageenan-induced rat paw edema model was used to assess and compare the
in vivo anti-inflammatory efficacy of the developed formulations (TSD, S1 and S2) with the
control (non-treated) and pure FBP treated groups. In the control group, after carrageenan
injection, the paw edema showed zero inhibition (Figure 10). The pure FBP inhibited the
development of edema up to 4 h (74.766% ± 1.32); afterwards, the percentage of inhibition
decreased. In the case of TSD, S1 and S2, the percentage inhibition of the edema increased
gradually up to 6 h, as shown in Figure 10. Moreover, the percentage inhibition was higher
at all time points with all formulations when compared with pure FBP. Thus, these findings
manifested that the loading of FBP in TSD and composite ODFs did not alter the release
pattern of FBP but improved the therapeutic efficacy. Among the synthesized formulations,
S2 showed the maximum percentage inhibition (94.996% ± 5.12) of paw edema, and it
was attributed to the presence of hydrophilic RHCl, which improves the solubility as well
as bioavailability of FBP. Secondly, RHCl inhibits histamine release, which provides the
antiedematous effect [65]. Hence, this indicates the synergistic anti-inflammatory effect of
RHCl in S2 formulation with FBP.

Pharmaceutics 2024, 16, x FOR PEER REVIEW 18 of 25 
 

 

 
Figure 10. Percentage inhibition of paw edema after the administration of pure FBP and synthesized 
formulations (TSD, S1 and S2). Error bar represents mean ± SD (n = 3). 

Detection of Pro-Inflammatory Cytokines 
TNF-α and IL-6 are pro-inflammatory cytokines, which play fundamental roles in the 

initiating, maintaining and resolving of inflammation [66]. Therefore, levels of TNF-α and 
IL-6 were assessed in the blood serum of animals with paw edema induced by carragee-
nan. After 24 h of treatment with pure FBP and optimized formulations (TSD, S1, and S2), 
serum levels of pro-inflammatory cytokines were quantified by ELISA. The levels of TNF-
α and IL-6 were noticeably increased in the diseased (control) group (41.607 ± 8.9 pg/mL, 
14.96 ± 7.05 pg/mL, respectively) as compared to treated groups (pure FBP: 15.565 ± 4.2 
pg/mL, 12.002 ± 6.51 pg/mL; TSD: 14.76 ± 4.82 pg/mL, 10.24 ± 9.2; S1: 10.459 ± 9.6 pg/mL, 
9.91 ± 9.4 pg/mL; and S2: 7.855 ± 8.2 pg/mL, 8.73 ± 4 pg/mL, respectively) (Figure 11). 
Özdoğan, Akca [18] reported that the gel formulation of atorvastatin solid dispersion pre-
pared with Pluronic F-68 significantly decreased the IL-6 level as compared to PEG 6000-
based solid dispersion formulation. The animals treated with S2 displayed remarkably 
reduced TNF-α and IL-6 levels in contrast to the other treated groups. This might be due 
to the presence of H2 receptor antagonist (hydrophilic RHCl). Our results are supported 
by a previous study by Li, Huang [67] where cimetidine (H2 receptor antagonist)-treated 
group showed a significantly decreased level of TNF-α and IL-6 when compared to the 
diseased (ulcer) group. So, our findings suggest that S2 formulation exhibited superior 
efficacy to that of pure FBP and other formulations (TSD and S1). Li, Hu [68] reported that 
the hydrophilic drug (oxymatrine) enhanced the solubility and bioavailability of the hy-
drophobic compound (apigenin) in their co-amorphous mixture when compared to pure 
apigenin. Moreover, the level of inflammatory factors (TNF-α, IL-6, MCP-1 and COX-2) 
was significantly reduced by the presence of the hydrophilic drug in the co-amorphous 
mixture of apigenin. These results are in agreement with our results. 

-1 0 1 2 3 4 5 6 7

0

20

40

60

80

100

%
 in

hi
bi

at
io

n 
of

 p
aw

 e
de

m
a

Time (Hours)

 Control
 FBP
 TSD
 S1
 S2

Figure 10. Percentage inhibition of paw edema after the administration of pure FBP and synthesized
formulations (TSD, S1 and S2). Error bar represents mean ± SD (n = 3).

Detection of Pro-Inflammatory Cytokines

TNF-α and IL-6 are pro-inflammatory cytokines, which play fundamental roles
in the initiating, maintaining and resolving of inflammation [66]. Therefore, levels
of TNF-α and IL-6 were assessed in the blood serum of animals with paw edema in-
duced by carrageenan. After 24 h of treatment with pure FBP and optimized formula-
tions (TSD, S1, and S2), serum levels of pro-inflammatory cytokines were quantified by
ELISA. The levels of TNF-α and IL-6 were noticeably increased in the diseased (control)
group (41.607 ± 8.9 pg/mL, 14.96 ± 7.05 pg/mL, respectively) as compared to treated
groups (pure FBP: 15.565 ± 4.2 pg/mL, 12.002 ± 6.51 pg/mL; TSD: 14.76 ± 4.82 pg/mL,
10.24 ± 9.2; S1: 10.459 ± 9.6 pg/mL, 9.91 ± 9.4 pg/mL; and S2: 7.855 ± 8.2 pg/mL,
8.73 ± 4 pg/mL, respectively) (Figure 11). Özdoğan, Akca [18] reported that the gel
formulation of atorvastatin solid dispersion prepared with Pluronic F-68 significantly
decreased the IL-6 level as compared to PEG 6000-based solid dispersion formulation.
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The animals treated with S2 displayed remarkably reduced TNF-α and IL-6 levels in
contrast to the other treated groups. This might be due to the presence of H2 receptor
antagonist (hydrophilic RHCl). Our results are supported by a previous study by Li,
Huang [67] where cimetidine (H2 receptor antagonist)-treated group showed a signifi-
cantly decreased level of TNF-α and IL-6 when compared to the diseased (ulcer) group.
So, our findings suggest that S2 formulation exhibited superior efficacy to that of pure
FBP and other formulations (TSD and S1). Li, Hu [68] reported that the hydrophilic drug
(oxymatrine) enhanced the solubility and bioavailability of the hydrophobic compound
(apigenin) in their co-amorphous mixture when compared to pure apigenin. Moreover,
the level of inflammatory factors (TNF-α, IL-6, MCP-1 and COX-2) was significantly re-
duced by the presence of the hydrophilic drug in the co-amorphous mixture of apigenin.
These results are in agreement with our results.

Pharmaceutics 2024, 16, x FOR PEER REVIEW 19 of 25 
 

 

 
Figure 11. Rat blood serum level of (a) TNF-α and (b) IL-6 in carrageenan-induced paw edema 
model. Error bar represents mean ± SD (n = 3). 

3.7.3. Evaluation of Gastroprotective Activity 

Gastric Lesion Index (GLI) 
The stomach morphology of rats was observed to examine the gastroprotective effect 

of developed formulations (TSD, S1, and S2). The macroscopic stomach morphology and 
gastric lesion index (GLI) of each group are shown in Figure 12. The stomach morphology 
of the FBP-treated group (Figure 12b) revealed a higher ulcer index, 9.166 ± 1.258 (Figure 
12f). For rats in the control group, the macroscopic morphology remained normal (Figure 
12a). The average score of gastric lesions was in order of pure FBP (9.166 ± 1.258) ˃ TSD 
(4.166 ± 0.764) ˃  S1 (1 ± 0.5) ˃  S2 (0 ± 0) and control (0). The findings suggest that developed 
solid dispersion-based formulations were less toxic than pure FBP, as the presence of 
poloxamer® 188 provides a gastroprotective effect [62]. Moreover, the macroscopic mor-
phology as shown in Figure 12 clearly demonstrated that composite oral films (S1 and S2) 
markedly reduced the ulcer indices. Furthermore, rats receiving S2 formulation loaded 
with FBP-TSD and RHCl presented normal macroscopic morphology (Figure 12e). Here, 
RHCl along with poloxamer® 188 could have acted synergistically to provide gastric mu-
cosal protection. 

Figure 11. Rat blood serum level of (a) TNF-α and (b) IL-6 in carrageenan-induced paw edema model.
Error bar represents mean ± SD (n = 3).

3.7.3. Evaluation of Gastroprotective Activity
Gastric Lesion Index (GLI)

The stomach morphology of rats was observed to examine the gastroprotective effect
of developed formulations (TSD, S1, and S2). The macroscopic stomach morphology and
gastric lesion index (GLI) of each group are shown in Figure 12. The stomach morphol-
ogy of the FBP-treated group (Figure 12b) revealed a higher ulcer index, 9.166 ± 1.258
(Figure 12f). For rats in the control group, the macroscopic morphology remained normal
(Figure 12a). The average score of gastric lesions was in order of pure FBP (9.166 ± 1.258)
> TSD (4.166 ± 0.764) > S1 (1 ± 0.5) > S2 (0 ± 0) and control (0). The findings suggest
that developed solid dispersion-based formulations were less toxic than pure FBP, as the
presence of poloxamer® 188 provides a gastroprotective effect [62]. Moreover, the macro-
scopic morphology as shown in Figure 12 clearly demonstrated that composite oral films
(S1 and S2) markedly reduced the ulcer indices. Furthermore, rats receiving S2 formulation
loaded with FBP-TSD and RHCl presented normal macroscopic morphology (Figure 12e).
Here, RHCl along with poloxamer® 188 could have acted synergistically to provide gastric
mucosal protection.
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treated group, (d) S1 treated group, (e) S2 treated group and (f) gastric lesion index. Error bar
represents mean ± SD (n = 3). Black circles indicate ulcers.

Histopathological Analysis

The histopathological examination of the gastric mucosa of the control group showed
unchanged gastric architecture (Figure 13a). However, the FBP-exposed stomach showed
an extensive disruption of mucosal layers with necrotic lesions, as evident from the inflam-
matory infiltration into the deeper layer of the mucosa and submucosa (Figure 13b). The
TSD-treated group showed mild mucosal disruption and necrotic lesions with inflammatory
infiltration into the deep mucosal layer (Figure 13c). The gastric mucosa of the S1-treated
group showed almost normal architecture, without any significant pathology (Figure 13d)
but with a 0.5 GLI score. Likewise, the S2-treated group (Figure 13e) showed a healthy
mucosal lining, free from any significant pathology and degenerative changes, with no
difference in the GLI score (0) from the control (Figure 12f). Here, S2 protected the stomach
from FBP-induced ulcers. Thus, S2 is deemed to be non-toxic, safe and biocompatible
following oral administration.
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Figure 13. Histological images of stomach taken at various resolution in different groups. (a) Control
group, (b) pure FBP-treated group, (c) TSD-treated group, (d) S1-treated group, and (e) S2-treated
group. “M” is mucosa, “SM” is submucosa and “ME” is muscularis externa. Green arrows show
intact mucosa. Red arrow shows degeneration of epithelium. Yellow arrows show edema. Black
arrows show inflammatory infiltration. Bracket shows normal mucosal folds.
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4. Conclusions

The co-administration of NSAID and the H2 receptor antagonist was successfully achieved
by composite ODFs (S1 and S2) prepared by the casting method with HPMC E5 as the polymer
and PG as plasticizer. All formulations were comprehensively characterized. The BSD of FBP
was formulated with Syloid® 244FP, which enhanced the solubility of FBP at pH 6.8, i.e., by
about 15 folds, while the TSD of FBP was formulated with Syloid® 244FP and poloxamer® 188
that markedly enhanced FBP solubility over 34 folds. Based on solubility, the TSD was further
characterized and loaded in composite films alone (S1) and in combination with RHCl (S2).
The SEM and XRD analyses indicated that the drug was entrapped in amorphous form in TSD,
which inhibited drug crystallization. Likewise, SEM and XRD analyses of ODFs confirmed
that the drug remains in an amorphous state. The in vitro studies revealed the maximum
release of drug at pH 6.8. Moreover, the in vivo studies revealed that formulation S2 had higher
therapeutic efficacy as compared to FBP and other formulations (TSD and S1). Overall, the
results evidentially demonstrated that composite ODF could be an effective carrier system for
co-loading to enhance bioavailability, and to bypass the gastrointestinal and hepatic metabolic
system. Moreover, it is suitable for combination therapy along with a gastroprotective effect in
geriatric patients suffering from RA.
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