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Abstract: Serotoninergic signaling is identified as a crucial player in psychiatric disorders (notably
depression), presenting it as a significant therapeutic target for treating such conditions. Inhibitors
of serotoninergic signaling (especially selective serotonin reuptake inhibitors (SSRI) or serotonin
and norepinephrine reuptake inhibitors (SNRI)) are prominently selected as first-line therapy for
the treatment of depression, which benefits via increasing low serotonin levels and norepinephrine
by blocking serotonin/norepinephrine reuptake and thereby increasing activity. While developing
newer heterocyclic scaffolds to target/modulate the serotonergic systems, imidazole-bearing phar-
macophores have emerged. The imidazole-derived pharmacophore already demonstrated unique
structural characteristics and an electron-rich environment, ultimately resulting in a diverse range of
bioactivities. Therefore, the current manuscript discloses such a specific modification and structural
activity relationship (SAR) of attempted derivatization in terms of the serotonergic efficacy of the
resultant inhibitor. We also featured a landscape of imidazole-based development, focusing on
SAR studies against the serotoninergic system to target depression. This study covers the recent
advancements in synthetic methodologies for imidazole derivatives and the development of new
molecules having antidepressant activity via modulating serotonergic systems, along with their SAR
studies. The focus of the study is to provide structural insights into imidazole-based derivatives as
serotonergic system modulators for the treatment of depression.

Keywords: imidazole; drug discovery; antidepressants; serotonin reuptake inhibitors; 5-HT6;
structure–activity relationship; patent analysis

1. Introduction

The discovery of serotonin dates back to the mid-19th century, when scientists explored
the physiological implications of numerous chemical messengers in the body [1]. Serotonin
was first isolated from the blood serum in 1937 by Vialli and Erspamer, Italian scientists.
The group identified the highest reservoir of serotonin in the enterochromaffin cells of
the gut system. Two other scientists, Rapport and Page, further crystallized the chemical
and coined the name ‘serotonin’ in 1945. They and the former scientists found that this
very chemical was capable of causing smooth muscle contraction. Owing to this, they
named this chemical “serotonin,” derived from two words, ‘sero’ meaning presence in
blood serum, and ‘tonin,’ meaning the ability to induce contraction in smooth muscles [2,3].

Additional research revealed that serotonin high-concentration reservoirs are also
located in platelets and the central nervous system, in addition to the enterochromaffin
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cells of the gut [4]. This chemical was also discovered to modulate numerous physiological
processes other than smooth muscle contraction and was found to be involved in regu-
lating mood, sleep, appetite, and pain perception [5]. Later, as the research progressed,
scientists were keen to discover the specific receptors through which serotonin exerts its
physiological effects. It was in the 1970s that scientists discovered two significant classes
of serotonin receptors, viz., 5-HT1 and 5-HT2, that were further divided into numerous
subtypes [6]. The discovery of these receptors and their subtypes led to advancements
in understanding their molecular biology, unraveling numerous physiological questions
associated with their signaling [7]. The research also facilitated the scientist’s ability to
explore the impact of serotonin in various pathological and physiological conditions and
accordingly develop specific serotonin modulators. These modulators include but are
not limited to selective agonists and antagonists, selective serotonin reuptake inhibitors
(SSRIs), for treating associated conditions that include mental health conditions, including
depression and anxiety disorders [8].

With the advancement in molecular neuroscience in the last 60 years, there has been
a paradigm shift in developing antidepressant-based therapies [9]. Numerous studies
are underway that attempt to recognize the other orchestrating partners with serotonin
in combination with or independently associated with depression. Besides paving the
way for new research in depression, the studies also expressed their concerns over the
serious fears among the patients prescribed serotonin modulators and overmedicalized
for years [10]. The US FDA approves numerous modulators for treating any imbalance in
serotonin physiology, including (a) Selective serotonin reuptake inhibitors (SSRIs): Citalo-
pram, Escitalopram, Fluoxetine, Fluvoxamine, Paroxetine, Sertraline, Vilazodone, and
other drugs; (b) Serotonin and norepinephrine reuptake inhibitors (SNRIs): Venlafaxine,
Duloxetine, Desvenlafaxine, and other drugs; (c) Tricyclic and tetracyclic antidepressants:
Amitriptyline, Imipramine, Nortriptyline, Doxepin. Notably, more than 90% of these drugs
belong to the nitrogen heterocyclic categories, which mainly include indole rings (Fluox-
etine, Sertraline, Vilazodone, Vortioxetine); Benzimidazole (Vortioxetine); Benzazepine
(Tianeptine); Benzothiazepine (Esmirtazapine); and other drugs [11].

Among the known nitrogen-containing heterocycles, imidazole is an essential hete-
rocycle moiety explored for its biological and medicinal attributes. Imidazole is a widely
explored five-membered aromatic heterocyclic compound found in synthetic and natural
compounds [12]. Imidazole-containing molecules attach to a wide range of therapeutic
targets thanks to their unique structural characteristics and electron-rich environment,
resulting in a wide range of bioactivities [13–15].

The imidazole ring, as a heterocycle, is part of essential amino acids, including his-
tidine (a histamine precursor). It is widely used in drugs such as antifungal agents (ke-
toconazole, clotrimazole) [16], antihistamines (cimetidine) [15], COX-inhibitors [17], as
well as in other diseases (for example, anticancer [18], antibacterial, antitubercular [19],
anti-inflammatory [20], antineuropathic [21], anti-Alzheimer [22,23], antihypertensive [24],
antiviral [25], anti-obesity [26], and antiparasitic activity [27]). Significantly, due to facile
structural substituting availability on the imidazole ring, various derived molecules were
exploited for gaining potent anticancer activities, for example, topoisomerase inhibitors (as
imine-amide imidazole conjugates targeting liver and lung cancer cells) [28]. Additionally,
they have been employed in naturally derived compounds, such as MIM1 [29], Meiogy-
nins [30–32], and synthetically designed Mcl-1 inhibitors (as in the form of imidazolidine-
2,4-dione for chronic myelogenous leukemia cells, prostatic cancer cells, and breast cancer
cells [33,34]). Furthermore, these compounds have been investigated for their poten-
tial in targeting insulin-linked cancer cells (insulin receptor-A and IGF-1R and their het-
erodimers [35,36]). They have also been explored for hormonal-based targeting of cancer
cells (estrogen-based drugs targeting breast cancer [37–41]).

The application of imidazole rings is not limited to small molecule-based medici-
nal chemistry; aspects of coordination chemistry and targeted synthesis (with chemical
biology applications) were explored as well. For example, medicinal coordination chem-
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istry utilizing elements of supramolecular chemistry has recently gained interest [42]. In
coordination chemistry, the imidazole ring presented broad applications with its superla-
tive chemical feasibility, such as lone pairs of nitrogen in imidazole being available to
facilitate making coordinate bonds with central metals, as observed in nature (in some
of the essential biomolecules, hemoglobin, and hemocyanin), encouraging researchers to
develop metal-containing medicinal compounds. The imidazole derivatized coordinate
compounds additionally exhibit more advantages, such as lower incidences of cellular
resistance, increased therapeutic efficacy, selective cellular targeting [13], and probing, as
broadly summarized: (A) Imidazole-based supermolecules as anticancer agents (alkylating
agents [43], noble metal complexes with anticancer activities [44,45], light-activated cytotox-
icity of ruthenium-metal complexes [46]). (B) Imidazole-based coordinate compounds for
organelles and cellular detection: (a) Boron pyridyl imidazole complex with a characteristic
of twisted intra-molecular charge transfer (TICT) does specific detection of BSA levels
(identifying denatured BSA versus native BSA) [47]; (b) Imidazole containing dinuclear Ru
(II) complex is a lysosome-specific probe, accumulating (specifically) in the lysosomes and
therefore assisting in identifying the HeLa cells from healthy HEK293 cells [48]; (c) Gram-
negative bacteria differentiated from Gram-positive bacteria using imidazole containing
dibenzimidazole-substituted pyridine [49]. (C) Cellular biomolecular and metal detec-
tion and probing: (a) Imidazole containing diphenyl derivatives [50] and anthraquinones
detected the biological mercaptans (cysteine, homocysteine, and glutathione) levels [51].
(b) Imidazole containing fluorescent sensors detected approximately 4.70 × 10−7 mol/L
adenine levels [52]. (c) Fluorescent probe-conjugated imidazole–pyridine pharmacophore
structures demonstrated high sensitivity at a molar concentration of 3.38 µM for Ag (I),
applicable to liver cellular imaging [53]. (d) Thiophene-derivatized imidazoles as on–off
fluorescent reversible chemosensors detecting intracellular Pd (II) ions in living cells (to
a level of 20 µg/mL) [54]. (e) Fluorescent probe-based peptide receptors detected intra-
cellular Cu (I) ions in the Golgi apparatus (even in living A549 cells) [55]. (f) Tripyridyl
imidazole molecule as a dual sensing probe of Hg (II) (pH 6–8) and Cu (II) (pH 3–11) ions
detecting at 0.77 and 1.58 µM, respectively [56]. (g) Ruthenium (II) complexes containing
imidazole as 1O2-responsive fluorescent probes as an “on–off”-type fluorescent pH sensor
(pKa1 = 1.12 ± 0.15, pKa2 = 6.90 ± 0.24, pKa1* = 1.09, and pKa2* = 6.92) [57]. (h) Fluorescein
dye containing imidazole as a colorimetric and fluorescent chemical sensor for fluoride
detection with an application in live cells [58]. (i) Cu (II) complexed Bipyridyl imidazole
derivative selectively detected the HS− ions and was used to develop a fluorescence mi-
croplate assay [59]. (j) Fluorescent zinc complexes presented a high-potential HS−/H2S
fluorescence sensor and detection probes at cellular levels [60]. (k) Ir (III) containing a
methylene-bridged benzimidazole-substituted complex displayed a high selectivity for
pyrophosphate ions (H2P2O7

2−) with lower cellular HeLA cell toxicity [61]. (l) Fluorescent-
active benzimidazole derivatives have high selectivity toward aqueous solubilized Ag
(I) within (<30 s) [62]. (m) A reversible naphthalimide-based probe detected Hg (II) ions
in a phosphate buffer over a wide pH range (7.0–10.0), which is highly applicable in
biological experiments [63]. (n) Imidazolyl Schiff bases exhibit Zn (II) detection as low
as 6.78 × 10−9 M compared to the recommended sensitivity detection according to the
World Health Organization’s drinking water guidelines (7.6 × 10−5 M) [64]. (o) Imidazole-
based anthracene structure detection limit of Zn (II): 1.0 × 10−9 M [65]. (p) Tridentate
dibenzimidazole–pyridines have a detection limit of 3.09 × 10−7 M toward Zn (II) ions [66].
(q) Imidazole-based supermolecules as probes for Cu (II) detection (allyl-substituted imida-
zole derivative with a detection limit for cupric ion (Cu2+) of 1.01 nM [67]; dibenzimidazole
derivative with a detection limit of 0.094 µM within a 1 s time period [68]; tetraphenyl
ethylene-functionalized aryl imidazole-derivative detection limit of aqueous solubilized
Cu (II) at 34.8 nM [69]). (r) Imidazole-based iron chemosensors (fluorescence “on–off”
aniline-derived imidazole probe demonstrated high selectivity and sensitivity for ferric
ions Fe (III) with a detection limit of 0.72 µM/L at 30 min) [70].
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Several imidazole-based medicines have been widely employed in clinical trials to
treat various disorders with significant therapeutic promise. Imidazole-containing drug
research and development is becoming a more active and appealing issue in medicinal
chemistry due to its substantial therapeutic usefulness. Therefore, this article is kept
forth to illuminate the landscape of imidazole-based drug discovery and development,
focusing on structure–activity relationship aspects (SAR) against serotonin receptors to
target depression. The insights covered will compel medicinal chemists, synthetic chemists,
biologists, and pharmacologists to explore and unravel this exciting area for the drug
discovery of serotonin modulators.

Etiology of Depression, Structural and Mechanistic Insights

According to the World Health Organization, depression is a severe condition affect-
ing millions of people worldwide and is one of the primary causes of disability [71,72].
Monoamine neurotransmitters like norepinephrine and serotonin (5-hydroxytryptamine,
5-HT) have been used as significant indicators of psychiatric disorders, such as anxiety and
depression, for several decades [73,74]. Serotonin exists in both the CNS and PNS systems,
which describe its nature as both an autacoid and a neurotransmitter [75,76]. It is released
by serotonergic neurons. The serotonergic system is linked to the regulation of mood,
emotion, and sleep, as well as a variety of behavioral and physiological activities [77]. It is
one of the most studied and multifunctional biogenic amines among neurotransmitters.
Depending on the physiological action, occurrence, agonist, and antagonist, it is categorized
into various classes, among whom 5-HT1 (5-HT1A, 5-HT1B, 5-HT1D, 5-HT1E, and 5-HT1F),
5-HT2 (5-HT2A, 5-HT2B, and 5-HT2C), 5-HT3, 5-HT4, 5-HT5 (5-HT5A, 5-HT5B), 5-HT6, and
5-HT7 have been widely reported in the literature [78]. Serotonin is primarily found in
three cell types: (a) serotonergic neurons in the central nervous system and the intestinal
myenteric plexus [79], (b) enterochromaffin cells in the gastrointestinal tract mucosa, and
(c) blood platelets [80].

Serotonin receptors are categorized as G protein-coupled receptors (GPCRs), which
orchestrate the signaling mechanism of serotonin. Serotonin binds to its chief receptors
(5-HT1 and 5-HT2 subtypes) within the transmembrane region of the receptor. This region
comprises transmembrane helices classified as TM1–TM7 [81]. These transmembranes are
further connected via intracellular and extracellular loops, forming a binding pocket that
facilitates the formation of serotonin and its competitive modulators. These transmembrane
domains are further surrounded by cholesterol molecules that, besides contributing to
the receptor’s shape, are also contributing factors for receptor stability and proper recep-
tor folding. The cholesterol composition within the cell membrane directly modulates
receptor activity.

The essential amino acids that play a critical role in serotonin and ligand are embedded
within the binding pocket. Considering the 5-HT1 subtype receptor, the key amino acid is
aspartate (ASP), located in TM3 (ASP116). This amino acid mediates serotonin affinity via
the formation of a salt bridge with the amine functionality of serotonin, thus stabilizing
the ligand-receptor complex. Considering the 5-HT2 subtype, the key amino acid that
is involved in stabilizing the ligand affinity is asparagine (ASN), located in TM7. This
specific amino acid is known to interact with the carboxyl group of serotonins via the
formation of the H-bond. Apart from these vital amino acids, Arginine (ARG) residues
present in TM3 (ARG 134) and TM6 are also found to interact with carboxyl groups via
H-bonding and electrostatic interactions. Glutamate (GLU), present in TM2 and TM7,
is involved as a proton acceptor or donor required during protein interactions, besides
participating in H-bonding and electrostatic interactions with ligands. Another amino
acid, histidine (HIS), present in TM3 and TM5, is also associated with receptor activation
and participates in ligand stability via the formation of an H-bond, a salt bridge, or by
acting as a proton donor or acceptor. In addition to this, cysteine (CYS) residues present
in TM2 and TM7 are involved in the stability of the receptor protein via the formation
of disulfide bridges. They are vital for ligand recognition and receptor activation. The
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tryptophan (TRP) residues (particularly TRP 358) available at TM6 and TM7 also contribute
to receptor activation along with receptor conformational stability and ligand binding
primarily via hydrophobic interactions. Apart from amino acids, three water molecules
(W1–W3) within the active domains are also vital in maintaining the stability and activation
of the receptor. These water molecules interact with 5-HT (apoprotein), where W1 interacts
with the hydroxy group and W2 with the indole ring, followed by the interaction of the
primary amine with W3. W3 also interacts with ASP116 by forming an H-bond that is
conserved in GPCRs (aminergic), whereas W2 is found to toggle the amino acid residue
TRP358, which determines receptor activation [82].

Mechanistically, serotonin and norepinephrine are released in the synaptic cleft, where
they activate the postsynaptic cleft and some reuptakes through the pump, where MAO
breaks them and moves them back to the presynaptic neuron [83]. In the case of depression
treatment using SSRIs/SNRIs as per the monoamine hypothesis, the therapeutic benefits
are based on increasing low serotonin levels and norepinephrine (Figure 1) [84,85]. As
the name indicates, SSRIs/SNRIs function by preventing serotonin/norepinephrine re-
uptake and thereby increasing activity. SSRIs block the serotonin transporter (SERT) at
the presynaptic axon terminal [86], whereas SNRIs block the norepinephrine reuptake
transporter [87]. The information-sending presynaptic cell in the brain releases neurotrans-
mitters into the gap [88]. The neurotransmitters are subsequently identified by receptors
on the recipient postsynaptic cell’s surface, which then relay the signal in response to the
stimulus. More serotonin (5-hydroxytryptamine, or 5HT) remains in the synaptic cleft when
SERT is blocked, which can stimulate postsynaptic receptors for extended periods [89].
Further, SNRIs and SSRIs boost serotonin and norepinephrine levels in the brain. Neuro-
transmitters, such as serotonin and norepinephrine, are chemical messengers that transfer
messages from one region of the body to another. Following the transmission of a signal
by neurotransmitters, cells in the brain typically take up these substances and store them
for later use. SNRIs and SSRIs block serotonin and norepinephrine reuptake, resulting in
higher levels of serotonin and norepinephrine in the synaptic cleft [90].
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2. Modern Synthetic Methods for Substituted Imidazole Derivatives

Imidazole is reported to exhibit a broad range of applications in pharmaceutical
and industrial applications [14]. For example, this organic framework is sought in many
drug pharmacophores, such as angiotensin II inhibitors, anti-inflammatory agents [91],
anticancer agents, and building blocks of naturally occurring products [13,92]. The imida-
zole ring is a well-observed ligand in metalloenzymes, and its imidazolium salts are also
well-exploited to serve as excellent precursors of stable carbene ligands in various metal
complexes [93,94]. The application of imidazolium salts to environmentally friendly ionic
solvents is another example [95]. Thenrajan and coworkers explored the role of imidazolate-
based bimetallic nickel-iron zeolitic fibers as sensors for serotonin neurotransmitters [96].
Various advancements reported in the synthesis of new imidazole derivatives with various
bioactivities using different catalytic systems are described in Figure 2.
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The use of metallic catalysts for imidazole synthesis has increased in recent years.
This can be attributed to the improved percentage yields, lessening the time required for
reaction, and ease of removal from a reaction mixture that make the technique appeal-
ing [93,97]. Because of their nontoxic, affordable, reusable, and eco-friendly properties,
zinc (Zn)-based heterogeneous catalysts were well-exploited in a range of multicomponent
reactions for synthesizing this organic framework. Marzouk et al. [98] developed a one-pot
multicomponent synthesis of 1,2,4,5-tetrasubstituted imidazoles via reacting aromatic alde-
hydes, benzil, 1-amine-2-propanol, and ammonium acetate in the presence of nanoparticles
of ZnFe2O4 catalyst. After 30–50 min, the condensation process with a metal catalyst
yielded 87–96% multi-substituted imidazoles. For the production of substituted imidazole,
Nejatianfar et al. [99] proposed a magnetically separable nanocatalyst based on copper (II)



Pharmaceutics 2023, 15, 2208 7 of 29

immobilized on guanidine epibromohydrin-functionalized c-Fe2O3@TiO2 (c-Fe2O3@TiO2-
EGCu(II)) with a core–shell structure. Eidi et al. [100] used benzil, substituted aldehydes,
and ammonium acetate in a condensation procedure to produce 2,4,5-trisubstituted imida-
zole conjugates. The best reaction conditions were discovered using 10 mg of catalyst and a
60 percent rate power of ultrasonic irradiation at 40 ◦C in ethanol. The method’s advantages
include recovering the catalyst using an external magnetic field and reusing it for up to
five runs without losing activity. Maleki et al. [101] developed a greener synthetic strat-
egy for the formation of 2,4,5-trisubstituted imidazoles via condensation of 1,2-diketone,
aromatic aldehydes, and ammonium acetate in the presence of mixed oxide (Fe3O4/SiO2)
nanocatalyst, yielding up to 95%. Compared to traditional catalysts such as Fe3O4, the
reaction utilizing Fe3O4/SiO2/urea nanoparticles took 50 min and yielded 95% trisubsti-
tuted imidazoles. However, designing and synthesizing trisubstituted scaffolds remain
of keen interest among researchers [102,103]. These scaffolds provide a highly functional
multitargeting scaffold [104,105], including dendrimers [106,107]. Girish et al. [108] used
ZrO2-supported b-cyclodextrin as a reusable solid catalyst to synthesize 2,4,5-trisubstituted
imidazoles and 1,2-disubstituted benzimidazoles under solvent-free conditions. Using a
40 mol% ZrO2-b-Cyclodextrin catalyst, the reaction was screened with various solvents,
including water, DMF, ethanol, and solventless systems. The reaction went off without
a hitch in a solvent-free environment, and the product was produced with good yields.
Using ZrO2 nanoparticles as a reusable catalyst, Bajpai et al. [109] investigated the one-pot
synthesis of multi-substituted imidazoles. The authors used isatin, aromatic aldehydes,
and ammonium acetate as reactants in the presence of 15 mol% ZrO2 nanoparticles in a
solvent-free environment to create new imidazoles.

Fang et al. [110] described a new method for cyclizing amido-nitriles to produce
disubstituted imidazoles. The reaction conditions were moderate enough to include aryl
halides, aromatic and saturated heterocycles, and other functional groups. The necessary
2,4-disubstituted NH-imidazoles were obtained by nickel-catalyzed addition to nitrile,
followed by proto-demetallation, tautomerization, and dehydrative cyclization. Combining
a C2–N3 fragment with an N1–C4–C5 unit has recently been examined as a two-bond
disconnection for synthesizing imidazoles. For example, Shi et al. [111] employed this
disconnection to make trisubstituted NH-imidazoles in the presence of zinc(II) chloride
by reacting benzimidates with 2H-azirines. For the synthesis of 2-aminoimidazoles, Man
et al. [112] utilized an approach where vinylazides were transformed in situ into 2H-
azirines, which then interacted with cyanamide to create the required 2-aminoimidazoles
in moderate to good yields under a range of conditions. Nitriles have also been employed
as reagents in metal-free processes to synthesize substituted imidazoles with two bonds.
Harisha et al. [113], for example, recently reported the formation of tri-substituted NH-
imidazoles by reacting -azidoenones with substituted nitriles. In the absence of a metal
catalyst, imidamides can be employed as starting materials for synthesizing imidazoles. In
the presence of trifluoroacetic acid, Tian et al. [114] reported the synthesis of substituted
imidazole by reacting imidamides with sulphoxonium ylides. At the first, second, and
fourth positions, the resulting imidazoles were replaced.

3. SAR of Various Imidazole Derivatives

As a new generation of selective 5-HT7 receptor agonists, Hogendorf et al. developed
and synthesized a series of 27 fluorinated 3-(1-alkyl-1H-imidazol-5-yl)-1H-indoles. By
optimizing the halogen bond formation with Ser5.42 as the expected partner, a powerful
and drug-like agonist, compound 1, 3-(1-ethyl-1H-imidazol-5-yl)-5-iodo-4-fluoro-1H-indole
(Ki 5-HT7R = 4 nM), was discovered. Excellent water solubility, good selectivity over related
CNS targets, high metabolic stability, oral bioavailability, and minimal cytotoxicity were all
attributes of the molecule. After i.p. (2.5 mg/kg) treatment in mice, rapid absorption into
the blood, a medium half-life, and a high peak concentration in the brain (Cmax = 1069 ng/g)
were discovered. The antinociceptive effect reported in a mouse model of neuropathic
pain suggests that 1 might be a long-sought tool chemical in the research of 5-HT7 receptor
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function, as well as a potential analgesic [115]. The detailed SAR analysis of this series of
compounds is discussed in Figure 3.

Pharmaceutics 2023, 15, x FOR PEER REVIEW 9 of 29 
 

 

N
H

N
NR1R2

R3

R4
R5

At position R1 only ethyl or
methyl group are responsible 
for good activity.

Substitution of -H, -F or -OMe at
position R2 are necessary for
activity. Among all these groups,
flouride provides highest potency to 
the compound.

At this position,
electronegatives group
increases the activity of
compound. Order of affinity is I 
> Br > CONH2 > OMe > Cl > H
> F.

Any kind of modifications 
are not tolerable at this
position.

Substitution of only -H or -F possess
good activity. Any other group than these 
two decreases the activity of the
compound.

It is basic promising scaffold for anti-
depressant activity.

Any modification in this moiety leads
to decrease in the activity of the
compound.

1 R1 = CH2CH3
R2 = F
R3 = I
R4 = R5 = H

 
Figure 3. SAR studies of fluorinated 3-(1-alkyl-1H-imidazol-5-yl)-1H-indoles. 

As non-sulfonamide 5-HT6 receptor ligands, a new series of 3H-imidazo[4,5-b]pyri-
dine and 3H-imidazo[4,5-c] pyridine derivatives were reported by Vanda et al. Compound 
2 (2-ethyl-3-(3-fluorobenzyl)-7-(piperazin-1-yl)-3H-imidazo[4,5-b]pyridine) was identi-
fied as a strong 5-HT6 receptor partial inverse agonist in Gs signaling (Ki = 6 nM, IC50 = 17.6 
nM) after in vitro testing. Compound 2 had good metabolic stability, a favorable cyto-
chrome P450 isoenzyme profile (2D6, 3A4), did not impact PgP-protein binding, and had 
no mutagenesis effects. The bioavailability and blood-brain barrier (BBB) permeability of 
this compound further favors its candidature as an investigative molecule in clinical stud-
ies. Along with non-neurotoxicity, the use of a synergistic combination of inactive doses 
of compound 2 (0.1 mg/kg) and donepezil (0.3 mg/kg) to reverse scopolamine-induced 
memory deficits produced a synergistic effect. In the binding pocket of ligands for 5-HT6R, 
various small or bulky alkyl/aryl substituents were employed at the C2-position of the 
imidazo[4,5-b]pyridine moiety, and SAR studies were developed as discussed in Figure 4 
[116]. 

Zagorska et al. developed and performed pharmacological screening of 2-fluoro and 
3-trifluoromethylphenylpiperazinylalkyl derivatives of 1H-imidazo[2,1-f]purine-
2,4(3H,8H)-dione (3a–u) for their antidepressant activity targeting serotonin (5-HT1A/5-
HT7) receptors as well as phosphodiesterase (PDE4B and PDE10A). Although the results 
from in vitro studies revealed the synthesized compounds as potent 5-HT1A, 5-HT7, or dual 
5-HT1A/5-HT7 receptor ligands, they had lower inhibitory potencies for PDE4B and 
PDE10A. Most of the compounds displayed selective 5-HT1A receptor affinity, which en-
couraged further preclinical investigation. Target compounds 3a–u was investigated for 
their metabolic stability and lipophilicity properties utilizing micellar electrokinetic chro-
matography (MEKC) technology and a human liver microsomes (HLM) model, which 
presented the target compounds as having moderate pharmacophoric features. During 
FST, compound 3i, 8-(5-(4-(2-fluorophenyl)piperazin-1-yl)pentyl)-1,3,7-trimethyl-1H-im-
idazo[2,1-f]purine-2,4(3H,8H)-dione, was found to possess the most prominent antide-
pressant activity at dosages of 2.5 mg/kg and 5 mg/kg. At a dosage of 2.5 mg/kg, it also 
showed an anxiolytic effect in the four-plate method. Molecular docking studies also re-
vealed that fluorinated arylpiperazinylalkyl derivatives of 1H-imidazo[2,1-f]purine-

Figure 3. SAR studies of fluorinated 3-(1-alkyl-1H-imidazol-5-yl)-1H-indoles.

As non-sulfonamide 5-HT6 receptor ligands, a new series of 3H-imidazo[4,5-b]pyridine
and 3H-imidazo[4,5-c] pyridine derivatives were reported by Vanda et al. Compound 2
(2-ethyl-3-(3-fluorobenzyl)-7-(piperazin-1-yl)-3H-imidazo[4,5-b]pyridine) was identified as
a strong 5-HT6 receptor partial inverse agonist in Gs signaling (Ki = 6 nM, IC50 = 17.6 nM)
after in vitro testing. Compound 2 had good metabolic stability, a favorable cytochrome
P450 isoenzyme profile (2D6, 3A4), did not impact PgP-protein binding, and had no
mutagenesis effects. The bioavailability and blood-brain barrier (BBB) permeability of this
compound further favors its candidature as an investigative molecule in clinical studies.
Along with non-neurotoxicity, the use of a synergistic combination of inactive doses of
compound 2 (0.1 mg/kg) and donepezil (0.3 mg/kg) to reverse scopolamine-induced
memory deficits produced a synergistic effect. In the binding pocket of ligands for 5-
HT6R, various small or bulky alkyl/aryl substituents were employed at the C2-position
of the imidazo[4,5-b]pyridine moiety, and SAR studies were developed as discussed in
Figure 4 [116].

Zagorska et al. developed and performed pharmacological screening of 2-fluoro and 3-
trifluoromethylphenylpiperazinylalkyl derivatives of 1H-imidazo[2,1-f ]purine-2,4(3H,8H)-
dione (3a–u) for their antidepressant activity targeting serotonin (5-HT1A/5-HT7) receptors
as well as phosphodiesterase (PDE4B and PDE10A). Although the results from in vitro
studies revealed the synthesized compounds as potent 5-HT1A, 5-HT7, or dual 5-HT1A/5-
HT7 receptor ligands, they had lower inhibitory potencies for PDE4B and PDE10A. Most
of the compounds displayed selective 5-HT1A receptor affinity, which encouraged further
preclinical investigation. Target compounds 3a–u was investigated for their metabolic
stability and lipophilicity properties utilizing micellar electrokinetic chromatography
(MEKC) technology and a human liver microsomes (HLM) model, which presented the
target compounds as having moderate pharmacophoric features. During FST, compound
3i, 8-(5-(4-(2-fluorophenyl)piperazin-1-yl)pentyl)-1,3,7-trimethyl-1H-imidazo[2,1-f ]purine-
2,4(3H,8H)-dione, was found to possess the most prominent antidepressant activity at
dosages of 2.5 mg/kg and 5 mg/kg. At a dosage of 2.5 mg/kg, it also showed an anxiolytic
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effect in the four-plate method. Molecular docking studies also revealed that fluorinated
arylpiperazinylalkyl derivatives of 1H-imidazo[2,1-f ]purine-2,4(3H,8H)-dione have ma-
jor pharmacophoric features for the development of the antidepressant and anxiolytic
compound. The SAR studies of this series of compounds are discussed in Figure 5 [117].
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Arylpiperazine-substituted imidazole derivatives are one of the major classes explored
in various neurological disorders [118–120]. Zagórska et al. synthesized a novel series of
arylpiperazinylalkyl purine-2,4-diones (4a–u) and purine-2,4,8-triones (5a–h) and screened
them in vitro for their serotonergic and dopaminergic receptor affinity. Compounds con-
taining an imidazole ring with purine-2,4-diones in their structure have a high affinity for
serotonin receptors (5-HT1A and 5-HT7) as well as dopamine receptors (D2) as compared to
compounds with purine-2,4,8-trione. The resultant compounds displayed various CNS ac-
tivities. During in vivo evaluation, it was discovered that compounds 4h and 4o operate as
potential antidepressants, while compounds 4r and 4u act as both potential antidepressants
and anxiolytic agents. It has been demonstrated by molecular docking studies that the
presence of 1,3-dimethyl-(1H,8H)-imidazo[2,1-f ]purine-2,4-dione at position C7 is required
for receptor affinity and selectivity, particularly for 5-HT1A and 5-HT7. The SAR studies
are discussed below in Figure 6 [121].
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The same research group reported two new series of N-8-arylpiperazinylpropyl deriva-
tives of 1,3-dimethyl-(1H,8H)-imidazo[2,1-f ]purine-2,4-dione (6a–i) and amide derivatives
of 1,3-dimethyl-6,7-dihydroimidazo[2,1-f ]purine-2,4-(1H,3H)-dione-7-carboxylic acid (7a–c)
and evaluated for their antidepressant potential using the FST model. During in vitro stud-
ies, compound 6h displayed the highest affinity for 5-HT1A receptors and a Ki value of
5.6 nM with high selectivity over 5-HT2A receptors. Further, in vivo evaluation of antide-
pressant activity revealed that compounds 6a, 8-[3-(N4-phenyl)-piperazin-N1-yl-propyl]-
1,3-dimethyl-(1H,8H)-imidazo[2,1-f ]purine-2,4-dione and 6b, 8-[3-(N4-20-metoxyphenyl)-
piperazin-N1-yl-propyl]-1,3-dimethyl-(1H,8H)-imidazo[2,1-f ]purine-2,4-dione possesses
the most significant activity and reduces the immobility time in FST, similar to the drug
imipramine. These long-chain arylpiperazine derivatives with a tricyclic moiety can be
further explored for the development of new antidepressant compounds with minimal
to no side effects. The SAR studies of these imidazole-based compounds are discussed in
Figure 7 [122].

Tokgoz et al. reported a series of benzazole derivatives (8a–h) and evaluated them for
their antidepressant-like activities. Novel benzazole subordinate mixtures were synthe-
sized by the reaction of respective 2-(benzazol-2-ylthio)acetohydrazide and 4-substituted
benzaldehydes. The antidepressant-like activity of these compounds was assessed by TST
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and modified constrained swimming tests (MFST). During in vivo studies, at a dosage of
50 mg/kg, compounds 8a, 8b, 8e, and 8f (Figure 8) significantly reduced the immobility
time in both TST and MFST. There was no change observed in the climbing duration, which
demonstrates the selective antidepressant-like action of these compounds. Further, when
pre-treated with serotonin synthesis inhibitors, i.e., p-chloro-phenylalanine methyl ester,
NAN-190 (a 5-HT1A antagonist), ketanserin (a 5-HT2A/2C antagonist), and ondansetron
(a 5-HT3 antagonist), these compounds showed opposite effects in mice, which shows
that these compounds act via the serotonergic system for antidepressant-like activity. In
addition, the locomotor exercises of the creatures were surveyed by an action confinement
contraption [123].
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Czopek et al. designed imidazolidine-2,4-dione derivatives using a computational
ligand design approach for finding new dual-targeting (5HT1A receptor and serotonin trans-
porter (SERT)) agents. Structural optimization of the initial 5HT1AR ligands gives a series
of Mannich bases (9a–h) with an aryl substituent at the 5-position of the imidazolidine-
2,4-dione as lead molecules, having the best match with the SERT binding site too. However,
the in vitro results were found to be contrary to the expected results for this newly synthe-
sized series. Only compounds with the substituent 3-chlorophenylpiperazine (9c and 9g)
showed significant affinities for both 5HT1AR and SERT, with Ki values of 80 nM and 166
nM (9c) and 76 nM and 278 nM (9g), respectively. The results demonstrated the high im-
portance of imidazole substituted with an arylpiperazine moiety. The selected compounds
9c and 9g further showed partial agonist and antagonist properties at the 5HT1A and 5HT2A
receptor sites, respectively, and had low affinity for α1 receptors. Such encouraging results
further motivated the evaluation of the compounds for their antidepressant and anxiolytic
properties. The studies demonstrated that compounds 9c and 9g significantly reduced
the immobility time in mice in FST, and the antidepressant effect of 9c was found to be
comparable to the reference drug imipramine. The compounds at the doses administered
did not affect locomotor activity. The detailed SAR study of these compounds is discussed
in Figure 9 [124].
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Seo et al. investigated a series of imidazole cores containing arylpiperazine
-4-carboxamide derivatives targeting 5-HT2A receptors and 5-HT transporters for the treat-
ment of depressive disorders. Aa imidazole moiety provides good pharmacokinetic proper-
ties in drug development. The research group focused on developing core molecules around
this moiety. The current series of compounds displayed potential IC50 values against 5-
HT2A/2C and serotonin reuptake inhibition. Further, these compounds showed significant
in vivo antidepressant-like effects in the FST. Based on the evaluation, compounds 10, 11,
12, 13, and 14 (Figure 10) were found to be more promising for antidepressant activity,
and it was concluded that this imidazole series could be used as a promising tool for the
development of new antidepressants [125].

One of the imidazole-based novel neuronal nitric oxide synthase (nNOS) inhibitors,
i.e., 1-(2-trifluoromethylphenyl)-imidazole (15, Figure 10), is sought to synergize the action
of other antidepressants via the serotonergic system. Ulak and colleagues reported that FST
models augment the antidepressant activity of TCAs like imipramine, SSRIs like citalopram
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and fluoxetine, and the selective serotonin reuptake enhancer tianeptine. Unfortunately,
the same results were not observed with the noradrenaline reuptake inhibitor reboxetine,
which confirms the action of 15 via the serotonergic system [126]. Sherwin et al. further con-
firmed the effect and regional-specific modulation of 1-(2-trifluoromethylphenyl)-imidazole
(15) [127].
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4. Other Imidazole-Based Serotonin-Modulating Agents

In continuation of efforts to develop new serotonin reuptake inhibitors, Lauro and
coworkers recently (2022) reported strychnidin-oxiran-napthalenol derivatives 16 and
17 (Figure 11), which were found to possess dual noradrenaline and serotonin reuptake
inhibitory activity in docking models [128]. Although these results were only based on
computational docking studies, there is no further proof regarding their clinical efficiency.

Czopek et al. synthesized a new series of compounds derived from 4-methoxy-1H-
isoindole-1,3(2H)-dione as dual targeting ligands having affinity for serotonin receptors
along phosphodiesterase 10A (18a–t). To understand the structure–activity relationship of
compounds, 4-methoxy-1H-isoindole-1,3(2H)-dione derivatives (18a–t) conjugated with a
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variety of amine moieties, including imidazole and benzimidazole, were screened against
both targets. In this study, compounds having a benzimidazole moiety conjugated (18g)
(2-[4-(1H-benzimidazol-2-yl)butyl]-4-methoxy-1H-isoindole-1,3(2H)-dione) were found
to possess the most balanced profile with affinity toward both targets based on in vitro
experiments. The lead compound 18g was investigated for its safety profile and subjected
to computational studies, where it should have good affinity and bind at the active site,
with such interactions responsible for the inhibition of the PDE10A enzyme. The SAR
studies of the current series of compounds against serotonin receptors are described in
Figure 12 [129].
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Zmudzki et al. investigated the influence of the modifications of the fused imidazole
nucleus (xanthine) and the effect of the substituent in position eight on the affinity for
serotonin 5-HT1A, 5-HT2A, 5-HT6, 5-HT7, and dopamine D2 receptors. For this purpose,
this group reported different series of arylpiperazynylalkyl derivatives of 8-amino-3,7-
dimethyl-1H-purine-2,6(3H,7H)-dione (total 26 compounds). They performed screening
of these compounds in vitro against 5-HT1A, 5-HT2A, 5-HT6, 5-HT7, and dopamine D2
receptors. This study aimed to create a thorough structure–activity relationship profile via
various substitutions at position eight with eight different amino moieties. In preliminary
evaluation parameters, compounds 19–23 (Figure 13) were selected as promising leads,
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which were further subjected to functional assays for the 5-HT1A and D2 receptors. The
results demonstrated that these arylpiperazynylalkyl derivatives of 8-amino-3,7-dimethyl-
1H-purine-2,6(3H,7H)-dione act as potential antagonists of 5-HT1A receptors while having
agonistic, partial agonistic, or antagonistic activity for D2 receptors. The SAR analysis
revealed that the lipophilic substituent at the 8th position plays a crucial role in affinity
toward various serotonin receptors (especially 5-HT1A, 5-HT6, and 5-HT7). The removal
of the lipophilic moiety caused a complete loss of affinity toward these receptors. Further,
the compounds with lipophilic substituents, such as propoxy or N-ethylbenzylamino
substituents, possess the most optimal affinity, which was further joined by dipropyloamino
and piperidine-1-yl substituents due to their occupancy of similar volumes and similar
lipophilic behavior [130].
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Hogendorf et al. utilized aromatic basic groups like imidazoles or thiazoles as aminer-
gic receptor ligands and designed compounds from the N-(1H imidazol-2-yl)acylamide
chemotype (24a–t and 25a–d). The synthesized compounds displayed high affinity for
5-HT6R and high selectivity over 5-HT1A, 5-HT2A, 5-HT7, and D2 receptors. In this series,
compound 4-methyl-5-[1-(naphthalene-1-sulfonyl)-1H-indol-3-yl]-1H-imidazol-2-amine
(24i) showed the reversal of scopolamine-induced cognitive impairment in rats. The re-
placement of the amine group of the 5-HT6 receptor with 2-aminoimidazole, which is
its bioisostere, resulted in highly potent compounds with variable physicochemical be-
havior. Several studies were performed to analyze the basic character of compounds,
demonstrating that lowering the basicity below par level compromised 5-HT6R affinity
very slightly, although it enhanced the selectivity. The X-ray structure analysis with 5-
HT6R homology of 24i and 25b (Figure 14) revealed the binding mode, which further
evidenced the in vitro experiment results. The results from these experiments concluded
that 2-amidoimidazole-based moieties incorporated with other pharmacophoric features
could provide new insights and lead to the development of new ligands of aminergic
receptors as potential drug molecules [131].
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Bromidge et al. reported novel tricyclic benzoxazine derivatives (26a–z), which were
designed via bioisosteric replacement of the metabolically prone N-methyl amide group
with comparatively smaller heterocyclic moieties to give these new tricyclic benzoxazines.
These novel compounds were also found to be potent 5-HT1A/B/D receptor antagonists
with some 5-HT transporter activity. In this study, compound 26d (Figure 15) emerged as
a prominent lead molecule, having 5-HT1A/B/D receptor antagonists with zero intrinsic
activity and Ki values of 9.5, 8.8, and 9.8, respectively, with 7.5 against hSerT. This lead
compound, 26d, displayed high selectivity over hERG potassium channels and a favorable
pharmacokinetic profile during in vivo studies in the PD model. With a potentially balanced
profile and encouraging results, compound 26d was used by this research group as a
clinical candidate for further investigations as a quick-acting antidepressant/anxiolytic
with minimal to no chances of adverse/side effects [132].
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5. Imidazole-Based Drugs under Clinical Trials against Depression

There are various imidazole-based drug candidates in different clinical trials for
depression. These are listed in Table 1, with clinical trial numbers per data available
at clinicaltrials.gov. EVT101 is an orally active NMDR antagonist that entered a phase
II clinical trial but was terminated in the initial phase, and the FDA put this drug on
hold for further development [133]. Pentoxifylline is a PDE inhibitor that has completed
various phase I/II trials as an adjuvant in major depressive disorders [134]. In preclinical
studies, it has shown promising results, and pretreatment of pentoxifylline itself showed
antidepressant-like activity in animal models [135,136]. Etomidate is well explored for its
effects on major depressive disorders in electroconvulsive therapies [137]. It completed
a study on its role as a neurorestorative agent (NCT02667353), and one clinical phase
IV study status is unknown (NCT02924090), in which it was being explored for major
depression. Leuprolide acetate is known for its diverse pharmacological activities [138]. It
has completed phase II (NCT04051320) and phase IV (NCT01116401) clinical trials against
perinatal depression and menopause depression, respectively.

Table 1. Imidazole-based drugs under clinical trials against depression.

S. No. Compound Structure Clinical Trial Status Clinical Trial Number

1 EVT101
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Table 1. Cont.

S. No. Compound Structure Clinical Trial Status Clinical Trial Number

6 Candesartan
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Phase 1
Terminated NCT04082858

Phase 4
Recruiting NCT05026203

Phase 2
Completed NCT02360280

Phase 2
Recruiting NCT05383313

Not yet recruiting NCT05528718

Phase 4
Completed NCT01700829

Phase 3
Active, not recruiting NCT03889756

Phase 4
Recruiting NCT04220125

Phase 3
Recruiting NCT04939649

RO4917523, also known as basimglurant (2-chloro-4-[1-(4-fluoro-phenyl)-2,5-dimethyl-
1H-imidazol-4-ylethynyl]-pyridine), is a negative allosteric modulator of the mGlu5 recep-
tor under clinical trials for development against depression [139]. It has completed phase
II trials (NCT00809562, NCT01437657) and is under further investigation by Hoffmann-
La Roche for treatment-resistant and major depressive disorders. Candesartan is an an-
giotensin receptor blocker mainly used for hypertension treatment but has also been found
to reverse depression-like symptoms in preclinical studies in the initial phase [140,141]. But,
in clinical trials, it was withdrawn from phase I in the early phase (NCT04430959), and phase
IV studies were terminated due to the adverse effects in treated patients (NCT01794455).
Its further development as an antidepressant is still questionable. Cimicoxib, one of the
NSAIDs used for pain relief and inflammation in dogs, has completed a phase II trial in
major depressive disorder patients (NCT00510822) conducted by Affectis Pharmaceuticals
AG [142]. The study was based on the hypothesis that adjuvant COX-2 inhibition can help
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reverse major depressive symptoms in patients. Valganciclovir, one of the antiviral com-
pounds, is under phase I/II clinical trial for the antiviral treatment of cytomegalovirus in
depression (NCT04724447). However, various severe side effects associated with this drug
are major hurdles in further development [143]. Another imidazole derivative, Midazolam,
a known benzodiazepine medicine, is under various trials for comparison in depressive
patients (NCT05026203, NCT02360280, NCT05383313, NCT05528718, NCT01700829), al-
though its role in treatment is still under question [144]. Thus, it is mostly being used as a
control group for comparison of other medicines and their effects [145,146].

6. Recently Granted Patents on Imidazole-Based Compounds

Due to their unique structural characteristics and electron-rich environment, imidazole-
containing molecules have attracted the attention of several research groups. It led to
the development of various fused/unfused molecules with a wide range of bioactivities.
Because of its wide variety of actions, many patents have been granted in the last few years.
The patents for imidazole derivatives with antidepressant activity are listed in Table 2.

Table 2. Recently granted patents on imidazole-based compounds with antidepressant activities.

Patentee Name/Inventors Title Patent No. Year Ref.

Albert K, Bin L, Ray MD, Michael SJ,
and Deyi Z Imidazole carboxamides Indian patent

No. 271995 2016 [147]

Lee J, Seo HJ, Kang SY, Park EJ, Kim
MJ, Lee SH, Kim JY, Kim J, Jung ME,
Kim HJ, and Kim MS

Arylpiperazine-containing imidazole
4-carboxamide derivatives and a
pharmaceutical composition comprising
the same

US 8,835,436 2014 [148]

Ceccarelli SM, Jagasia R, Jakob-roetne
R, and Wichmann J Benzimidazoles as CNS active agents. US 20,150,203,472A 2014 [149]

Schwartz JC and Lecomte JM

Combination product comprising an
antagonist or inverse agonist of histamine
receptor H3 and an antipsychotic and
antidepressant agent, and use thereof for the
preparation of a medicament that prevents
the adverse effects of psychotropic drugs.

US 8,106,041 2012 [150]

Thurkauf A, Horvath RF, Yuan J, and
Peterson JM

Certain 4-aminomethyl-2-substituted
imidazole derivatives and
2-aminomethyl-4-substituted imidazole
derivatives; new classes of dopamine receptor
subtype-specific ligands.

US 6,797,824 2004 [151]

After reviewing the patents related to imidazole-based compounds, it is clear that in
the last two decades, very few patents have been granted related to imidazole-based com-
pounds for their potential against depression. Thus, comprehensive options are available to
be explored in the upcoming time to explore this moiety for developing new antidepressant
molecules with more significant potential and better efficacy.

7. Conclusions and Future Perspective

One key issue that has been unaddressed for a long time is finding a rational design
with high preferential selectivity for serotonergic isoforms. Researchers attempted to gain
preferential selectivity by bringing specific fused heterocyclic structures, monosaccharides,
macrocycles, glycopeptides, and dendrimer-based scaffolds [152–157]. However, similar
scaffolds with similar modifications exhibit multitarget activities, severely limiting their
direct clinical implications [158–163]. Therefore, there is considerable demand for iden-
tifying newer chemical modalities with enough structural features to incorporate into
pharmacophores to bring about selective serotonergic activities.
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Due to its various pharmacological properties, the imidazole moiety has emerged as a
significant pharmacophoric characteristic in medicinal chemistry. In this review, we aim to
discuss the SAR analyses of several imidazole derivatives as antidepressants that target
serotonin (5-HT) receptors. We compiled some studies and summarized the structure–
activity relationship of the fundamental nucleus in all of them. We have developed a
pharmacophore from existing selective serotonin reuptake inhibitors (SSRIs) on the open
web server Pharmit. The pharmacophore obtained from the server contains five features:
two aromatic rings in the violet color sphere, two hydrogen bond acceptors in an orange
sphere, and hydrophobic in the green sphere (Figure 16).
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Talking about imidazole acceptability in other chemical biology-oriented approaches, it
has shown tremendous potential. These include serving as pH-responsive potent antimicro-
bials [164], improving the photophysical characteristics of azo dyes [165–167], decreasing
side toxicities [13,168–170], and successful chemical integration in polymeric materials as
theragnostic applications (such as in zeolitic imidazolate framework applications in drug
delivery) [171–180].

After reviewing the data, it was evident that the imidazole moiety plays a critical role
in treating depression by acting on serotonin receptors. The literature survey revealed that
imidazole is a less explored moiety in developing 5-HT receptors that modulate chemical
entities for treating depressive disorders. The molecules being explored against 5-HT-bearing
imidazole are still in their initial states. This chemical feature, along with encouraging
pharmacokinetic features, can provide broad scope for further exploration. Computer-based
drug design can further speed up the imidazole-based drug development process with
target specificity and efficiency. The electron-rich feature of this five-membered chemical
moiety can help it bind with serotonin receptors and transporters very quickly. This can
be beneficial for improving the efficacy of molecules [181]. The development of imidazole-
based molecules against various disease states has become a hot topic [22,42,182–184].
This moiety can further enter into the development of antidepressants with its enriched
structural features. This review may be used to draw key conclusions regarding the
imidazole nucleus and appropriate substitutes for it, which will aid in developing novel
antidepressant medications based on the imidazole nucleus.
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Abbreviations

5-HT 5-Hydroxytryptamine
α1R Alpha-1 Receptors
σ2R Sigma-2 Receptors
ADMET Absorption, Distribution, Metabolism, Excretion, Toxicity
BBB Blood Brain Barrier
BBP Blood Brain Permeability
CDK Cyclin-dependent Kinase
CNS Central Nervous System
D receptor Dopamine Receptor
EAAT3 Excitatory amino acid transporter 3
FST Force swim test
hERG human Ether-à-go-go-Related Gene
HLM Human Liver Microsomes
hSerT Human Serotonin Transporter
IC50 Half Maximal Inhibitory Concentration
I.P. Indian Pharmacopoeia
IL-17 Interleukin-17
Ki Inhibition constant
MAO Mono Amine Oxidase
MDCK Madin-Darby Canine Kidney Cells
MDR Multidrug Resistance Gene
MFST Modified Force Swim Test
MEKC Micellar Electrokinetic Chromatography
PD Parkinson’s disease
Pgp P-glycoprotein
PK Pharmacokinetic
pKa Acid Dissociation Constant
PNS Peripheral Nervous System
PTZ Pentylenetetrazole
SAR Structure–Activity Relationship
SERT Serotonin reuptake transporter
SSRI Selective Serotonin Reuptake Inhibitors
TGF Transforming growth factor
TNF Tumor necrosis factor
TST Tail Suspension Test
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Jaromin, A. Impact of N-Alkylamino Substituents on Serotonin Receptor (5-HTR) Affinity and Phosphodiesterase 10A (PDE10A)
Inhibition of Isoindole-1, 3-dione Derivatives. Molecules 2020, 25, 3868. [CrossRef]
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131. Hogendorf, A.S.; Hogendorf, A.; Kurczab, R.; Kalinowska-Tłuścik, J.; Popik, P.; Nikiforuk, A.; Krawczyk, M.; Satała, G.; Lenda, T.;
Knutelska, J. 2-Aminoimidazole-based antagonists of the 5-HT6 receptor–A new concept in aminergic GPCR ligand design. Eur.
J. Med. Chem. 2019, 179, 1–15. [CrossRef]

132. Bromidge, S.M.; Arban, R.; Bertani, B.; Bison, S.; Borriello, M.; Cavanni, P.; Dal Forno, G.; Di-Fabio, R.; Donati, D.; Fontana, S.
Design and Synthesis of Novel Tricyclic Benzoxazines as Potent 5-HT1A/B/D Receptor Antagonists Leading to the Discovery of
6-{2-[4-(2-methyl-5-quinolinyl)-1-piperazinyl] ethyl}-4 H-imidazo [5, 1-c][1, 4] benzoxazine-3-carboxamide (GSK588045). J. Med.
Chem. 2010, 53, 5827–5843. [CrossRef]

https://doi.org/10.1039/C9OB01100E
https://doi.org/10.1002/slct.201801543
https://doi.org/10.1016/j.tet.2019.04.004
https://doi.org/10.1016/j.ejmech.2019.03.017
https://doi.org/10.1016/j.ejmech.2017.12.053
https://www.ncbi.nlm.nih.gov/pubmed/29291439
https://doi.org/10.1080/14756366.2016.1198902
https://www.ncbi.nlm.nih.gov/pubmed/27353547
https://doi.org/10.2174/1389450123666220117104038
https://www.ncbi.nlm.nih.gov/pubmed/35306994
https://doi.org/10.1002/cmdc.202100045
https://doi.org/10.1002/slct.202103568
https://doi.org/10.1016/j.ejmech.2015.04.046
https://doi.org/10.1016/j.ejmech.2009.07.014
https://doi.org/10.3390/molecules23112881
https://doi.org/10.1002/ardp.201200378
https://doi.org/10.1021/jm200682b
https://www.ncbi.nlm.nih.gov/pubmed/21823597
https://doi.org/10.1016/j.pbb.2008.04.016
https://doi.org/10.1016/j.bbr.2016.08.049
https://www.ncbi.nlm.nih.gov/pubmed/27569181
https://doi.org/10.3390/molecules25173868
https://doi.org/10.1002/ardp.201600162
https://www.ncbi.nlm.nih.gov/pubmed/27510801
https://doi.org/10.1016/j.ejmech.2019.06.001
https://doi.org/10.1021/jm100482n


Pharmaceutics 2023, 15, 2208 27 of 29

133. Wilkinson, S.T.; Sanacora, G. A new generation of antidepressants: An update on the pharmaceutical pipeline for novel and
rapid-acting therapeutics in mood disorders based on glutamate/GABA neurotransmitter systems. Drug Discov. Today 2019, 24,
606–615. [CrossRef]

134. El-Haggar, S.M.; Eissa, M.A.; Mostafa, T.M.; El-Attar, K.S.; Abdallah, M.S. The phosphodiesterase inhibitor pentoxifylline
as a novel adjunct to antidepressants in major depressive disorder patients: A proof-of-concept, randomized, double-blind,
placebo-controlled trial. Psychother. Psychosom. 2018, 87, 331–339. [CrossRef]

135. Bah, T.M.; Kaloustian, S.; Rousseau, G.; Godbout, R. Pretreatment with pentoxifylline has antidepressant-like effects in a rat
model of acute myocardial infarction. Behav. Pharmacol. 2011, 22, 779–784. [CrossRef]

136. Yasrebi, S.-O.; Momtazmanesh, S.; Moghaddam, H.S.; Shahmansouri, N.; Mehrpooya, M.; Arbabi, M.; Ghazizadeh-Hashemi, F.;
Akhondzadeh, S. Pentoxifylline for treatment of major depression after percutaneous coronary intervention or coronary artery
bypass grafting: A randomized, double-blind, placebo-controlled trial. J. Psychosom. Res. 2021, 150, 110635. [CrossRef] [PubMed]

137. Abdollahi, M.H.; Izadi, A.; Hajiesmaeili, M.R.; Ghanizadeh, A.; Dastjerdi, G.; Hosseini, H.A.; Ghiamat, M.M.; Abbasi, H.R. Effect
of etomidate versus thiopental on major depressive disorder in electroconvulsive therapy, a randomized double-blind controlled
clinical trial. J. ECT 2012, 28, 10–13. [CrossRef] [PubMed]

138. Wilson, A.C.; Vadakkadath Meethal, S.; Bowen, R.L.; Atwood, C.S. Leuprolide acetate: A drug of diverse clinical applications.
Expert Opin. Investig. Drugs 2007, 16, 1851–1863. [CrossRef]

139. Lindemann, L.; Porter, R.H.; Scharf, S.H.; Kuennecke, B.; Bruns, A.; von Kienlin, M.; Harrison, A.C.; Paehler, A.; Funk, C.;
Gloge, A. Pharmacology of basimglurant (RO4917523, RG7090), a unique metabotropic glutamate receptor 5 negative allosteric
modulator in clinical development for depression. J. Pharmacol. Exp. Ther. 2015, 353, 213–233. [CrossRef] [PubMed]

140. Stedenfeld, K.A.; Clinton, S.M.; Kerman, I.A.; Akil, H.; Watson, S.J.; Sved, A.F. Candesartan reverses depression-like behavior in a
rodent model of depression. FASEB J. 2010, 24, 1052.3. [CrossRef]

141. Luo, C.; Fan, H.; Li, S.; Zou, Y. Therapeutic of Candesartan and Music Therapy in Diabetic Retinopathy with Depression in Rats.
Evid. -Based Complement. Altern. Med. 2021, 2021, 5570356. [CrossRef]

142. Rizvi, S.J.; Kennedy, S.H. Emerging drugs for major depressive disorder: An update. Expert Opin. Emerg. Drugs 2012, 17, 285–294.
[CrossRef]

143. Ar, M.; Ozbalak, M.; Tuzuner, N.; Bekoz, H.; Ozer, O.; Ugurlu, K.; Tabak, F.; Ferhanoglu, B. Severe bone marrow failure due to
valganciclovir overdose after renal transplantation from cadaveric donors: Four consecutive cases. Transplant. Proc. 2009, 41,
1648–1653. [CrossRef]

144. Treggiari-Venzi, M.; Borgeat, A.; Fuchs-Buder, T.; Gachoud, J.-P.; Suter, P.M. Overnight sedation with midazolam or propofol in
the ICU: Effects on sleep quality, anxiety and depression. Intensive Care Med. 1996, 22, 1186–1190. [CrossRef]

145. Grunebaum, M.F.; Galfalvy, H.C.; Choo, T.-H.; Keilp, J.G.; Moitra, V.K.; Parris, M.S.; Marver, J.E.; Burke, A.K.; Milak, M.S.;
Sublette, M.E. Ketamine for rapid reduction of suicidal thoughts in major depression: A midazolam-controlled randomized
clinical trial. Am. J. Psychiatry 2018, 175, 327–335. [CrossRef]

146. Grunebaum, M.F.; Ellis, S.P.; Keilp, J.G.; Moitra, V.K.; Cooper, T.B.; Marver, J.E.; Burke, A.K.; Milak, M.S.; Sublette, M.E.; Oquendo,
M.A. Ketamine versus midazolam in bipolar depression with suicidal thoughts: A pilot midazolam-controlled randomized
clinical trial. Bipolar Disord. 2017, 19, 176–183. [CrossRef] [PubMed]

147. Albert, K.; Bin, L.; Ray, M.D.; Michael, S.J.; Deyi, Z. Imidazole Carboxamides. Indian Patent 271995, 18 March 2016.
148. Lee, J.; Seo, H.J.; Kang, S.Y.; Park, E.-J.; Kim, M.J.; Lee, S.H.; Kim, J.Y.; Kim, J.; Jung, M.E.; Kim, H.J.; et al. Arylpiperazine-

Containing Imidazole 4-carboxamide Derivatives and Pharmaceutical Composition Comprising Same. U.S. Patent US 8,835,436,
16 September 2014.

149. Ceccarelli, S.M.; Jagasia, R.; Jakob-roetne, R.; Wichmann, J. Benzimidazoles as CNS Active Agents. U.S. Patent US 20,150,203,472A,
23 July 2015.

150. Schwartz, J.-C.; Lecomte, J.-M. Combination Product Comprising an Antagonist or Inverse Agonist of Histamine Receptor H3
and an Antipsychotic and Antidepressant agent, and Use Thereof for the Preparation of a Medicament That Prevents the Adverse
Effects of Psychotropic Drugs. U.S. Patent US8,106,041B2, 31 January 2012.

151. Thurkauf, A.; Horvath, R.F.; Yuan, J.; Peterson, J.M. Certain 4-Aminomethyl-2-substituted Imidazole Derivatives and 2-
Aminomethyl-4-substituted Imidazole Derivatives; New Classes of Dopamine Receptor Subtype Specific Ligands. U.S. Patent
US6,797,824B2, 28 September 2004.

152. Borroto-Escuela, D.O.; Li, X.; Tarakanov, A.O.; Savelli, D.; Narváez, M.; Shumilov, K.; Andrade-Talavera, Y.; Jimenez-Beristain, A.;
Pomierny, B.; Díaz-Cabiale, Z. Existence of brain 5-HT1A–5-HT2A isoreceptor complexes with antagonistic allosteric receptor–
receptor interactions regulating 5-HT1A receptor recognition. ACS Omega 2017, 2, 4779–4789. [CrossRef] [PubMed]

153. Bricker, B.A.; Voshavar, C.; Onyameh, E.K.; Gonela, U.M.; Lin, X.; Swanson, T.L.; Kozell, L.B.; Schmachtenberg, J.L.; Bloom, S.H.;
Janowsky, A.J. Enantiomeric Separation, Absolute Configuration by X-ray Crystallographic Analysis, and Functional Evaluation
of Enantiomers of the Dual Ligand, SYA0340 at 5-HT1A and 5-HT7A Receptors. ACS Omega 2023, 8, 21736–21744. [CrossRef]
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