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Abstract: In a previous attempt to achieve ileo-colonic targeting of bovine intestinal alkaline phos-
phatase (BIAP), we applied a pH-dependent coating, the ColoPulse coating, directly on powder bed
printed (PBP) tablets. However, the high surface roughness necessitated an additional sub-coating
layer [Nguyen, K. T. T., Pharmaceutics 2022]. In this study, we aimed to find a production method
for PBP tablets containing BIAP that allows the direct application of coating systems. Alterations of
the printing parameters, binder content, and printing layer height, when combined, were demon-
strated to create visually less rough PBP tablets. The addition of ethanol vapor treatment further
improved the surface’s smoothness significantly. These changes enabled the direct application of
the ColoPulse, or enteric coating, without a sub-coating. In vitro release testing showed the desired
ileo-colonic release or upper-intestinal release for ColoPulse or enteric-coated tablets, respectively.
Tablets containing BIAP, encapsulated within an inulin glass, maintained a high enzymatic activity
(over 95%) even after 2 months of storage at 2–8 ◦C. Importantly, the coating process did not affect
the activity of BIAP. In this study, we demonstrate, for the first time, the successful production of
PBP tablets with surfaces that are directly coatable with the ColoPulse coating while preserving the
stability of the encapsulated biopharmaceutical, BIAP.

Keywords: 3D printing; powder bed printing; personalized medicine; biologics; formulation; surface
analysis; ileo-colonic targeting; film coating; ColoPulse; controlled release

1. Introduction

Solid oral formulations are the predominant dosage forms for most pharmaceuticals
on the market. As medical treatments become increasingly personalized, the preparation
methods for solid dosage forms are also evolving. Over the last decade, several new oral
dosage forms have gained increased attention, for example, tablets that contain APIs in a
liquid state [1] and solid oral foams that increase gastroretention [2,3]. Another example
is the application of additive manufacturing methods to produce new oral dosage forms.
Originally created as a means to produce prototypes in the industry, the high level of
customization has led three-dimensional printing (3DP) to be used in the pharmaceutical
industry. Compared to traditional production methods, 3DP might result in reduced labor
and resource investment and allow rapid prototyping, especially due to its inherent dose
flexibility, as reviewed by Trenfield et al. [4]. Dosage forms that vary in structure, design,
drug load, and drug release profile to fit different needs can be created through 3DP [5,6].
This versatility, together with the flexibility to manufacture in small volumes, can greatly
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benefit drug development as well as clinical testing of newly developed drugs that exist in
limited quantities [5].

Powder-bed printing (PBP), also known as binder jetting, is a layer-by-layer manufac-
turing process. Initially, a fixed amount of powder is distributed to obtain an even layer
of powder. The layer is then wetted at specific coordinates, corresponding to the desired
design, by a binding fluid applied via an inkjet printhead. Then a new layer of powder
is distributed on top of the initial layer. The previously (partially) dissolved powder will
bind both the previous powder and the newly deposited powder together. This process is
repeated for multiple layers until the final structure is produced [5–7]. A final drying step
is required to remove residual solvent and fully solidify the layers, usually with convection
ovens or IR light. Among the several techniques being studied for 3DP of drugs, PBP is
the first and still the only technique that resulted in an approved drug product by the US
Food and Drug Administration (FDA) in 2015, namely Spiritam®, a rapid orodispersible
formulation containing levetiracetam [8]. When working with biopharmaceuticals, PBP
might be more suitable than other often used 3DP methods, such as fused deposition
modeling and laser sintering, as the high temperatures used in these methods might be
detrimental to protein stability [9].

Coating is a widely employed method to achieve a controlled release of the drug, with
many coating formulations having been produced and marketed. However, only a few
studies have tried to apply different coating formulations to 3D-printed tablets to achieve
different release profiles [9,10]. Tablets produced by PBP often have high surface roughness
and porosity [6,11,12]. Most reported porosity values range between 50 and 60% [13–15]
and, in certain cases, even up to 80% [16,17]. This can pose a major challenge when applying
a coating to PBP tablets, as these coatings should be fully closed to function properly [9].

Previously, successful coating of PBP tablets was achieved only after the deposition of
a sub-coating layer consisting of PEG 1500, which was required to obtain a smoother tablet
surface [9]. Although this approach proved to be effective, it added an extra coating step
and thus increased the complexity of the production process. Hence, a direct coating step
is desirable.

The formulation design for PBP tablets has been studied extensively [11,17–21]. To
circumvent the use of PEG 1500, it might be feasible to manipulate the formulation and
printing process to achieve a sufficient degree of tablet surface smoothness to allow direct
coating. Reducing layer thicknesses, also known as layer height, and increasing the binder
content resulted in firmer, less porous, and thus possibly easier-to-coat tablets [11,15]. We
also imagined that exposure to ethanol vapor might also help reduce surface roughness.
Therefore, this study aimed to investigate the aforementioned parameters to allow the
creation of tablets with surfaces that are directly coatable. Additionally, the effect of these
changes as well as the subsequent coating process on the stability of the incorporated
alkaline phosphatase, a possible biopharmaceutical for the treatment of ulcerative colitis,
was also investigated.

2. Materials and Methods
2.1. Materials

Hydroxypropyl cellulose LFP (HPC-LFP) was obtained from Nisso HPC (Nisso Chem-
ical Europe GmbH, Düsseldorf, Germany). Bovine intestinal alkaline phosphatase (BIAP),
bovine serum albumin (BSA), ammediol (2-Amino-2-methyl-1,3-propanediol), HEPES
(4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid), and triethyl citrate were obtained
from Sigma-Aldrich (St. Louis, MO, USA). D-mannitol was purchased from VWR Chemi-
cals, BDH, USA. Eudragit S100 and Eudragit L100-55 were gifts from Evonik Operation
GmbH (Essen, Germany). Macrogolum 6000 (PEG6000) and talc were obtained from
BUFA (IJsselstein, The Netherlands). Croscarmellose sodium (AcDiSol) was obtained from
FMC BioPolymer (Philadelphia, PA, USA). Inulin (4 kDa) was a generous gift from Sen-
sus (Roosendaal, The Netherlands). Methylene blue was obtained from Interpharm B.V.
(Rotterdam, The Netherlands; now discontinued).
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2.2. Spray Drying of Inulin Stabilized BIAP

The HEPES buffer 2 mM pH 7.4 solution was heated to the boiling point before dis-
solving inulin 4 kDa and then left to cool to ambient temperature. BIAP was then added to
the inulin solution at a 99:1 inulin:enzyme ratio (w/w) to create 5% (w/v) solutions [22].
A Büchi B-290 mini spray drier equipped with a high-performance cyclone, a B-296 dehu-
midifier, and a B-295 inert loop (Flawil, Switzerland) was used to spray dry the solution.
Parameters for spray-drying were: 105 ◦C inlet temperature, 3.3 mL/min feed rate, 50 mm
atomizing airflow, and 100% aspirator airflow. The spray-dried powder was collected, and
the container was filled with dry nitrogen gas, sealed, and stored at 2–8 ◦C until it was
used for printing.

2.3. Powder Mixture Preparation and PBP

The binder HPC-LFP and bulking agent mannitol were passed through a 100 µm
sieve. The sieved powders were blended at 24 rpm for 30 min in a tubular mixer, a
Stuart General Rotator STR4 (Reagecon, Shannon, Ireland), with an STR4/3 drum (Antylia
Scientific, Vernon Hills, IL, USA), to produce the printing powder. For the preparation
of tablets containing spray-dried (SD) inulin/BIAP, geometric dilution was carried out
initially with SD inulin/BIAP and mannitol in a stainless-steel mortar. The remaining
binder:bulk powder, and the mixed mannitol/SD inulin/BIAP were then added together
into a tubular mixer for mixing at 24 rpm for 30 min.

Tablets were printed using an in-house-built powder bed printer developed by TNO [23].
The modeled 3D structures and the printing procedure were the same as previously de-
scribed by Nguyen et al., as presented in Figure 1 [9]. In short, the tablet 3D models were
designed with OpenSCAD (version 2019.05), exported to STL format files, and sliced using
Simplify3D (version 4.0.1) to generate G-code instructions for the powder bed printer. The
printing powder was transferred from a powder depositor onto the printing platform and
spread out evenly to create a layer of consistent thickness using a counter-rotating roller.
A solenoid valve (Lee valve INKA2436510H, orifice diameter of 70 µm, and FFKM seal
material) with a drop mass of 11–12 µg was used for jetting ethanol selectively onto the
printing powder as designed (Figure 1). The distance between two lines of the jetting liquid
being deposited is called line spacing (LS). For tablets used in in vitro dissolution testing,
methylene blue was dissolved in the jetting fluid to function as a release indicator. Tablets
were dried overnight in an oven at 50 ◦C. Finally, the tablets were placed in a container,
vacuum sealed, and stored at 2–8 ◦C until further analysis.
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Figure 1. Deposition pattern of jetting liquid and tablet dimension.

Tablets were treated with ethanol vapor as follows: Three-dimensionally printed
tablets were placed on a sponge and then placed in a plastic box on top of an inverted
aluminum dish. 50 mL of ethanol was poured onto the bottom of the box, after which the
box was closed. After a certain time, depending on the experiment, the tablets were taken
out and placed in an oven at 50 ◦C for an hour to dry. Tablets were taken out and stored at
2–8 ◦C in an atmosphere of dry nitrogen until further analysis.
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2.4. Basic Tablet Properties Analysis

Tablets were analyzed for physical properties including diameter, thickness, weight,
crushing strength, friability, and disintegration time. Tablets’ diameters and thicknesses
were measured with a Digital ABS AOS Caliper (Mitutoyo, Veenendaal, The Netherlands).
Tablets were weighed using an AE200 Analytical Balance (Mettler Toledo, OH, USA).
Tablets’ crushing strengths were evaluated using the Pharmatron 6D tablet hardness tester
(Dr. Schleuniger, Solothurn, Switzerland). Due to the inherent porosity of PBP tablets, some
of them did not exhibit cracking during the crushing strength experiment; thus, the device
would keep running and flatten the tablet. Results from these incidents were excluded from
further analysis. Friability was determined with a single-blade friability tester, Erweka
(Erweka, Hessen, Germany). In total 10 tablets were dedusted, weighed, and placed
carefully in the rotor, which rotated at 20 rpm for 5 min. Afterward, tablets were dedusted
and weighed again to calculate the relative weight loss. The disintegration times of tablets
were determined using a European Pharmacopoeia 7.0 standard DT2 disintegration tester
(Sotax, Aesch, Switzerland). Demineralized water at 37 ◦C was used as the disintegration
medium. All measurements were performed in triplicate, except weight determination,
which was conducted for 10 tablets.

2.5. SEM Surface Imaging of Printed Tablets

Tablet surface morphology was analyzed. Surface morphology was visualized using
a scanning electron microscope (SEM) JSM 6460 (JEOL, Tokyo, Japan) as described previ-
ously [24]. Tablets were fixed on sample stubs by a double-sided adhesive carbon tape,
sputter coated with 10 nm of pure gold using a JFC-1300 auto fine coater (JEOL, Tokyo,
Japan), and purged in argon gas before being put under a high vacuum. Imaging was
carried out with a spot size of 25, an acceleration voltage of 10 kV, and a working distance
of 10 mm.

2.6. Application of the ColoPulse and Enteric Coating

The ColoPulse coating consisted of Eudragit S100:PEG6000:AcDiSol:Talc in a weight
ratio of 7:1:3:2 dissolved or dispersed in 96% ethanol [25]. The enteric coating contained
Eudragit L100-55:triethylcitrate:Talc 10:1:2.85 (w/w/w) and was also dissolved or dispersed
in ethanol (96%). The coating setup consisted of a mini-rotating drum at 32 rpm equipped
with a nozzle with a bore diameter of 1 mm (Schlick 970, Düsen-Schlick, Coburg, Germany)
driven by a connected peristaltic pump (Minipuls 3, Gilson, Viliers le Bel, France) at a
spray rate of 0.75–1.0 mL/min. Dummy tablets made of similar dimensions, each weighing
150 mg, were added together with the PBP tablets during coating to assist the tablet’s
tumbling and ensure proper distribution of the coating being sprayed. The total number
of PBP tablets and dummies was 40 for every coating batch. The drum temperature was
maintained within 20–25 ◦C. After coating, the tablets were left to dry in the rotating drum
for 5 min before being transferred into an oven for drying at 30 ◦C for 2 h.

2.7. Assessment of BIAP Stability

BIAP stability was determined by measuring its enzymatic activity [22,26]. A colorless
substrate, p-nitrophenyl phosphate (p-NPP), which turns yellow after enzymatic conversion
and can be detected at 415 nm, was used. Tablets were cut in half and dissolved in ultrapure
water containing 0.01% BSA (w/w) to 10 µg/mL BIAP, based on total tablet weight. Then,
20 µL of sample solution was added to 160 µL of 0.05 M ammediol (pH 9.8) containing 1%
MgCl2 (w/v) in a 96-well plate. Mixtures were equilibrated on a stove at 37 ◦C for 10 min.
20 µL of 5 mg/mL p-NPP was subsequently added to start the reaction, and the color
development was measured at 415 nm every 30 s for 5 min using a Synergy HT plate reader
(BioTek, VT, USA) equilibrated at 37 ◦C. In between each measuring interval, the microplate
was shaken for 15 s. The activity of samples was calculated based on the conversion rate of
p-NPP, which was fitted to the calibration curves of the reference BIAP solutions ranging
from 0 to 10 µg/mL using linear regression analysis.
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2.8. Drug Release Profile Testing in the Gastrointestinal Simulated System

The in vitro dissolution of the coated tablets was evaluated in a gastrointestinal simu-
lation system (GISS) previously described by Schellekens et al., with the modification that
half of the volumes were used [27]. In GISS, tablets are exposed to four different phases
of different pHs, similar to the passage in the in vivo gastrointestinal tract. These phases
are shown in Table 1. The GISS was prepared by adding four different media sequentially,
as presented in Table 2. Approximately 5–10 min before reaching the next phase time
point, the subsequent media were added using a peristaltic pump. The composition of
each medium is provided in Table 2. Tablet dissolution testing was carried out in a USP
dissolution apparatus type 2 (Sotax AT 7, Sotax, Basel, Switzerland) at 37 ◦C and a paddle
speed of 50 rpm. The release of tablet content was determined by measuring the concentra-
tion of methylene blue using an in-line UV-spectrophotometer set to measure at 664.5 nm
(Evolution 300 UV–VIS spectrophotometer, Thermo Fisher Scientific, Madison, WI, USA).
Samples were taken every 5 min for 8 h, and all experiments were performed in triplicate.

Table 1. Specifications of the GISS according to reference [23], adapted with permission [27].

Phase Segment Gastrointestinal Tract pH Volume (mL) Time (h)

I Stomach 1.20 ± 0.20 500 2.0
II Jejunum 6.80 ± 0.20 629 2.0
III Terminal ileum 7.63 ± 0.12 940 0.5
IV Colon 6.00 ± 0.25 1000 3.5

Table 2. Composition of the switch solutions in this study, adapted with permission [27].

Phase Composition Time Added to the Dissolution Vessel (h)

I 0.50 g sodium chloride, 1.75 mL concentrated hydrochloric acid, add
demineralized water to 250 mL 0

I to II 2.04 potassium dihydrogen phosphate, 15 mL sodium hydroxide 2.0
M (80 g/L), add demineralized water to 65 mL 2.0

II to III 1.02 g potassium dihydrogen phosphate, 6.0 mL sodium hydroxide
2.0 M (80 g/L), add demineralized water to 156 mL 4.0

III to IV 4.5 mL hydrochloric acid 3.0 M, add demineralized water of 30 mL 4.5

2.9. Statistical Analysis

Prism 8.0 was used for data analysis. Data are presented as means ± standard devia-
tion and analyzed using one-way ANOVA with post hoc Tukey’s multiple comparison test.
Results with a calculated p < 0.05 were considered significantly different.

3. Results and Discussions
3.1. Influencing Tablet Surface Characteristics
3.1.1. The Effect of Printing Conditions

The primary focus was on obtaining a more homogeneous and smoother surface for
PBP tablets. Some formulation factors have demonstrated positive effects on reducing the
porosity of the tablets and, as a result, the surface roughness. They include the particle
size of materials, the layer thickness during printing, and the binder content [11,15]. The
PBP tablets developed in our previous study had a rough surface and a layered ‘staircase’
structure on the tablet’s side, resulting in incomplete coating coverage, especially due to the
irregular tablet’s side [9]. The coating droplets were most likely not big enough to cover the
gap between each layer. Reducing the surface roughness and minimizing this staircase gap
were therefore vital. This was evaluated by modifying the composition of the formulation
and the printing conditions. The tablets printed for these evaluations did not include any
SD inulin/BIAP powder. Five different types of tablets varying in binder:bulk ratio, line
spacing, and layer height were prepared (see Table 3). Tablets formulated according to our
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previous study were used as a starting point for comparison (tablet A) [9]. The following
modifications were applied: The binder:bulk ratio was increased from 20:80 to 50:50 (tablet
B), the line spacing was increased from 0.45 to 0.50 mm (tablet B to C), and the layer height
was reduced from 0.4 to 0.2 (C to D) and 0.1 (C to E). The small increase in line spacing
from tablet B to C was made to accommodate the subsequent gradual decrease in layer
height. Keeping the 0.45 mm line spacing would lead to the overexposure of ethanol at
each printing layer at a lower height.

Table 3. Formulations and printing conditions.

Tablet Binder: Bulk Ratio (w/w) Layer Height (mm) Line Spacing (mm)

A 20:80 0.4 0.45
B 50:50 0.4 0.45
C 50:50 0.4 0.50
D 50:50 0.2 0.50
E 50:50 0.1 0.50

The tablet surface was evaluated by analyzing SEM micrographs (Figure 2). An
increase in the binder content (from tablet A to tablet B), while showing a visually improved
surface smoothness, did not yield a similar beneficial effect on the smoothness of the tablet’s
side, specifically the staircase structure. Therefore, the layer height was gradually reduced
from tablets C 0.4 mm (tablet A–C) progressing to 0.2 mm (tablet D), and finally 0.1 mm
(tablet E). SEM micrographs revealed a notable reduction in the staircase structure, as it
nearly disappeared. The small increase in line spacing from tablet B to C did not have
much effect on the tablet. Tablets D and E visually appeared to have a more compact outer
structure, and the tablet sides showed decreasing layer steps as the layer thickness was
reduced from 0.4 to 0.2 and 0.2 to 0.1 mm, Figure 2C–E, respectively. Nevertheless, the
loosely connected particles, an inherent characteristic of PBP tablets, remained, presenting
an inhomogeneous surface with lots of small gaps in between.
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3.1.2. The Effect of Ethanol Vapor Treatment

To further increase surface smoothness, the printed tablets were exposed to ethanol
vapor. It was hypothesized that during this process, the binder on the tablet’s surface
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would partially dissolve, leading to the filling of pores by viscous flow, followed by re-
solidification after drying. All tablets A, B, C, D, and E were subjected to the ethanol vapor
treatment process, which lasted for 100 min. Afterward, the surface of the tablets was
analyzed by SEM. Following ethanol vapor treatment, all tablet types A to E showed an
improvement in their visual roughness (Figure 3). Tablets A, B, and C did show changes
in surface characteristics after exposure to ethanol; however, many pores could still be
observed. Tablet A showed the least noticeable change among all the tested tablets. Upon
subsequent testing, extended treatment time could not improve the surface smoothness of
tablet A further. They might have lower susceptibility to ethanol vapor treatment due to the
lower binder content. The partially dissolved binder on the tablet A surface was probably
insufficient to fill the gaps between the loosely connected materials during ethanol vapor
exposure. On the other hand, tablets D and E show the most drastic changes in surface
profiles observed by SEM, with most of the original roughness due to loosely connected
particles and especially the layered structure reduced to a smooth surface. Visually, tablets
D and E appeared to be similar in terms of surface characteristics.
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3.1.3. The Influence of Surface Manipulation Processes on the General Properties of
PBP Tablets

As the smoothness of the tablet’s surface was improved by these changes in the
formulation and/or printing parameters, it is important to consider their effects on the
tablet’s physical properties. Therefore, the weight, dimension, friability, crushing strength,
and disintegration time of the different tablets before and after ethanol vapor treatment
were determined (results see Figure 4). The tablet weight was, as expected, not significantly
affected by ethanol vapor treatment for all tablets. Tablets D and E exhibited significantly
higher weight than other tablets, while the tablet dimensions were similar, suggesting a
denser structure and thus lower porosity. This can be attributed to the lower layer thickness,
which resulted in greater jetting liquid (ethanol) exposure and less powder being printed
per layer. As a consequence, the binding of particles increased, resulting in a lower porosity
and thus an increased tablet weight. Tablet height slightly decreased after ethanol vapor
exposure; however, this decrease was neither significant nor consistent across the various
tablet types.
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Friability data showed the most drastic changes between tablets before and after
ethanol vapor treatment. The friability of tablets A, B, and C was 1.8 to 3% before ethanol
vapor treatment but was reduced to well below 1% after ethanol vapor treatment. Tablets
D and E, however, already had less than 1% friability, even without ethanol treatment.
Crushing strength and disintegration time increase with high binder content (tablet A to B)
and lower layer thickness (tablet C to D, and E). Both crushing strength and disintegration
time of the tablets did not show significant differences before and after ethanol vapor treat-
ment, except for tablet C. Despite having the same binder content as tablet B and higher
than tablet A, tablet C had much higher friability, disintegrated faster, and showed lower
crushing strength than tablets A and B. This was possibly due to the higher line spacing, as
the reduced ethanol exposure led to insufficient particle connection from the binder. As a
result, tablet C was much more fragile, more prone to cracking in the crushing strength
test, and disintegrated faster. The addition of ethanol vapor treatment could thus show a
significant improvement in tablet C’s friability, crushing strength, and disintegration time.
Tablets D and E had noticeably higher crushing strengths and disintegration times (approx-
imately 60–70 min) than tablets A, B, and C, regardless of an ethanol vapor treatment. The
higher tablet weight, lower friability, higher crushing strength, and longer disintegration
time point toward a well-connected structure, which was also seen in the SEM images
(Figures 2 and 3). These changes can be attributed to two factors: the lower layer thickness,
leading to increased binding caused by the jetting liquid, and, more importantly, the higher
binder content in the printing powder, as also noted in other studies [28,29].
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3.1.4. Optimization of Ethanol Vapor Treatment Time for Tablet E

Of all tablet types investigated, tablet E visually had the least rough surface and
smoothest side, especially after ethanol vapor treatment. Because tablet E also had excellent
crushing strength and friability, it was selected for subsequent experiments on coating
and stability evaluation of incorporated inulin-encapsulated BIAP. An optimization of
vapor treatment was conducted to reduce ethanol exposure to BIAP and facilitate the
production process. Tablets were exposed to ethanol vapor over different time intervals and
then visualized by SEM to observe this process. With increasing ethanol vapor exposure
time, the surface of the tablets appeared increasingly smoother (Figure 5). After 60 min of
treatment, a complete filling of the gaps was observed (Figure 5D). Thus, it was concluded
that a treatment time of 60 min was sufficient to manipulate PBP tablet E surface roughness
toward a smoother and more continuous structure.
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3.2. Coating, SEM Imaging, and In Vitro Release Profile of the Coated 3D Printed Tablets

Tablets E, without or with ethanol vapor treatment (60 min), were coated with either a
ColoPulse or an enteric coating layer without first applying a PEG sub-coating. To examine
whether the coated tablets exhibited the desired release profile, in vitro drug release was
tested for the coated tablets using the GISS.

For the ColoPulse coating, three different coating thicknesses of 8, 10, and 12 mg/cm2

were applied to the tablets. In Figure 6, the release profiles of tablet E with and without
ethanol vapor treatment are given. Both tablets released the methylene blue only after
the dissolution medium was changed to phase III, simulating the terminal ileum, which
conformed with the desired illeocolonic targeting profile. The release rate decreased
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with increasing thicknesses of the ColoPulse coating. Whereas a coating thickness of
8 mg/cm2 resulted in an almost complete release after the last 4 h, tablets coated with 10
and 12 mg/cm2 did not reach 100% cumulative release. However, when measuring the
methylene blue concentration in the dissolution medium after an additional 4 h, up to 100%
of the dye was detected in the dissolution medium. This outcome was expected, as the
ColoPulse coating can only dissolve at the pH peak of 7.4 in the simulated terminal ileum
phase but not at pH 6.0 in the simulated colonic phase. As the simulated terminal ileum
phase lasts for 30 min, the thicker coating layers of 10 and 12 mg/cm2 did not dissolve
completely in that short period, as observed during the release testing. As a consequence,
the remaining coating formed a barrier that reduced the drug release rate.
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Figure 6. Release profile of methylene blue from PBP tablets E coated with ColoPulse at 8, 10, and
12 mg/cm2 thickness (n = 3).

ColoPulse-coated tablets that underwent ethanol vapor treatment also started the
release of methylene blue in GISS phase III; however, at a much lower rate across the three
coating thicknesses. This can be explained by the fact that the ColoPulse layer of these
tablets only opened on the tablet’s side in GISS phase III during the release experiment,
leaving the top and bottom partially intact.

For enteric coating, a thickness of 8 mg/cm2 was applied to the printed tablets. This
coating thickness resulted in a desirable release profile, regardless of whether or not the
tablets were treated with ethanol vapor (Figure 7). Specifically, no release was observed in
the first 2 h (the gastric phase) of the GISS. However, when the dissolution medium was
switched to GISS phase II, simulating the jejunum, methylene blue was gradually released
from the tablet, and after approximately 5 to 6 h, 95 to 110% methylene blue was released
from both types of tablets.
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To further confirm that the coating could effectively cover the entire surface of the PBP
tablets, SEM imaging that zoomed in on the tablet surface was conducted. Tablets without
ethanol vapor treatment coated with either ColoPulse or enteric coating were evaluated, as
they originally had a rougher surface and thus might be more difficult to cover properly. In
Figure 8, it can be observed that although there were small holes on the tablet surface, the
coating material could penetrate and cover these areas when the magnification level was
increased. This aligned with the dissolution data showing a desirable release profile for
each coating solution.
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The sustained release from the coated tablets after the coating opened (phase II or
III in the GISS) can be attributed to both the high binder content of tablet E, consistent
with findings from other studies, and the increased jetting liquid exposure at a lower layer
height, leading to increased binding [10,30,31]. This sustained release might be beneficial
in some cases when a more homogeneous spread of incorporated biopharmaceuticals
along specific parts of the intestinal tract is needed. If a faster release is required, some
modifications in the formulation, such as adding super disintegrants such as sodium starch
glycolate or croscarmellose sodium, can be considered. These two disintegrants were found
to drastically improve the dissolution of captopril in another 3DP product, even when 65%
of the formulation contained a high molecular weight polymer binder, a binder content
even higher than that used in this study [29].

Overall, the ability to directly apply different coatings on PBP tablets was a drastic
improvement over the previously used sub-coating method, decreasing both the complexity
and labor intensity. Previously, only 3DP tablets produced by fuse-deposition modeling
(FDM) were studied for coating application, most likely due to their relatively smooth
surfaces, which might have a positive effect on their coatability [10]. Nevertheless, the
high process temperature of FDM hinders its application for biopharmaceuticals. Other
efforts investigating controlled-release 3DP products primarily focused on printing an
extra layer covering the core tablet to exhibit a desired dissolution profile [32–38]. These
approaches may require efforts to develop the formulation and printing of those layers.
This is circumvented by the work in this study, enabling the use of conventional coating
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techniques to directly coat PBP tablets with a controlled release layer without the need
for further development. Importantly, the manipulation of formulation and printing
parameters is straightforward to implement and does not affect the complexity of the overall
production process, particularly given that printer parameters are software-controlled. In
cases where adjustment of the printing process would not have a sufficient smoothening
effect, possibly when using more viscous coating formulations, the ethanol vapor treatment
might be added as an additional smoothening method. The changes observed in product
characteristics due to the optimization of PBP tablets for direct coating application might
also be useful for other purposes. Increasing binder content might be a possible option
when a sustained release is needed. For PBP tablets requiring additional mechanical
strength, a short ethanol vapor exposure might be sufficient. Furthermore, changing the
layer thickness during printing can also lead to an increase in disintegration time. These
modifications might be utilized when altering the printing powder formulation is not
an option.

3.3. The Stability of Incorporated BIAP in PBP Tablets

The stability of encapsulated biopharmaceuticals in coated PBP tablets is of paramount
importance. In this study, the model protein BIAP was subjected to several processes that
may affect the integrity of the protein, i.e., spray drying, PBP, ethanol vapor exposure,
coating, and storage. Tablets E were printed containing spray-dried inulin/BIAP with
a ratio of 99:1 (w/w), and the binder:bulk:SD powder ratio was 50:45:5 (w/w/w). The
enzymatic activity of BIAP was used as a readout to assess protein stability during each of
these processing steps. The results are given in Figure 9.
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Spray-drying did not affect BIAP activity; activity assays showed approximately 104%
of enzymatic function remained after the process (Figure 9). No significant difference
was found in the enzymatic activity between the spray-dried powder and printed tablet
E, with or without ethanol vapor treatment (60 min) affecting enzymatic activity, even
after 2 months of storage at 2–8 ◦C. After coating the tablets with either the ColoPulse or
enteric coating, no significant change in enzymatic activity was observed compared to the
spray-dried inulin:BIAP powder. One exception was tablet E pretreated with ethanol vapor
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after the enteric coating process showed reduced enzymatic activity. However, this might
be due to the abnormal dissolution of one sample, as it was observed that, for unknown
reasons, it did not dissolve completely. Overall, even for ethanol-treated tablet E, which had
the highest level of solvent exposure (lowest layer thickness at the same line spacing), BIAP
activity was maintained after all the steps. Therefore, it can be concluded that, for BIAP
to exhibit its activity in the colon or intestine properly, the tablet modification methods
used in this study did not result in instability of the incorporated protein. Additionally, the
observed sustained drug release of these tablets might be beneficial for the use of BIAP
in the treatment of ulcerative colitis, as the enzyme is distributed more equally across
the treatment site, i.e., the colon. The feasibility of the direct coatability of PBP-printed
products without affecting API stability opens up possibilities for further exploration of
PBP dosage forms.

4. Conclusions

To the best of our knowledge, this is the first study to demonstrate that by manipulating
the formulation and the printing process of PBP tablets, a relatively smooth surface can be
produced that can be directly supplied with a ColoPulse or enteric coating without requiring
a sub-coating. Directly coatable tablets could be produced by a proper combination of
binder content, line spacing, and layer thickness. Alternatively, we demonstrated that
tablets can be treated with ethanol vapor to further improve surface smoothness, with a
concurrent increase in mechanical strength. The encapsulated BIAP in the modified tablets
exhibited excellent stability after 2 months of storage as well as after the coating procedure.
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