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Abstract: Extracellular vesicles (EVs) are promising therapeutic modalities for treating neurological
conditions. EVs facilitate intercellular communication among brain cells under normal and abnormal
physiological conditions. The potential capability of EVs to pass through the blood–brain barrier
(BBB) makes them highly promising as nanocarrier contenders for managing stroke. EVs possess
several potential advantages compared to existing drug-delivery vehicles. These advantages include
their capacity to surpass natural barriers, target specific cells, and stability within the circulatory
system. This review explores the trafficking and cellular uptake of EVs and evaluates recent findings
in the field of EVs research. Additionally, an overview is provided of the techniques researchers
utilize to bioengineer EVs for stroke therapy, new results on EV–BBB interactions, and the limitations
and prospects of clinically using EVs for brain therapies. The primary objective of this study is to
provide a comprehensive analysis of the advantages and challenges related to engineered EVs drug
delivery, specifically focusing on their application in the treatment of stroke.
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1. Introduction

EVs are nanoscale heterogeneous structures released constitutively into the extracellu-
lar space by nearly all prokaryotic and eukaryotic cell types [1–4]. EVs are lipidic vesicles
that develop in cells naturally. They facilitate cell-to-cell interaction by transferring various
bioactive molecules from the mother cell, such as microRNAs, messenger RNAs, long
noncoding RNAs (LncRNAs), circular RNAs (circRNAs) proteins, and lipids [5] (Figure 1).
They are divided into three distinct categories: (i) Exosomes, (ii) Microvesicles, and (iii)
Apoptotic bodies (Figure 2). Exosomes are a minor type of EVs, and prior electron mi-
croscopy studies have shown that they have a cup-like structure with a diameter ranging
from 40 to 100 nm. During the development of multivesicular endosomes, an inward
budding of the endosomal membrane produces exosomes [6]. Microvesicles, the second
most significant type of vesicle, are formed when the plasma membrane buds and splits
apart, with diameters between 100 and 1000 nm [7]. Apoptotic bodies represent the most
abundant type of vesicles, exhibiting a size range of 1–5 µm and a diverse range of mor-
phological characteristics. They are generated during the process of apoptosis. As a result,
they possess a wide variety of constituents inherited from their progenitor cells, such as
organelles and fragments of DNA [8].

Stroke is a prevalent neurological condition that can lead to permanent disability [9,10].
Annually, approximately 6.7 million individuals globally experience a stroke, with ischemic
stroke comprising 87% of all mortalities [11]. The pathophysiological responses that occur
after a stroke are complicated, and at present, tissue plasminogen activator remains the most
efficacious treatment option for stroke [12,13], effective only when taken within 4–6 h of the
onset of symptoms [14,15]. Despite this, due to its limited treatment window, it benefits less
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than 5% of patients [16]. Recent studies suggest that utilizing anti-inflammatory methods
has considerable potential for expanding the time frame for treatment and decreasing
severe brain damage following reperfusion [17,18]. Still, there is a constant demand for
effective and cutting-edge medications that may prevent ischemia cascades and the diseases
they cause.
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Figure 1. Composition and Structure of EVs. The structure of EVs consists of a phospholipid bilayer
that encloses proteins (membrane protein and cargo protein) and nucleic acids. Membrane proteins
encompass a variety of molecules, such as tetraspanins (including CD9, CD63, and CD81, among
others), adhesion molecules (such as integrins, EpCAM, and Ephrin), the major histocompatibility
complex (MHC), and receptors. Nucleic acids encompass DNA and RNA, which consist of various
types of RNA molecules, such as messenger RNA (mRNA), microRNA (miRNA), long non-coding
RNA (lncRNA), and circular RNA (circRNA). The phospholipid bilayer confers protection to the
contents enclosed within. Created with BioRender.com (https://app.biorender.com/illustrations/64
9b3cd0422a45d3d7cc3c29, accessed date: 7 July 2023).
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EVs significantly function in the complex intercellular communication among neurons,
glia, and vascular cells. They are essential in regulating homeostasis and influencing
the development and prognosis of pathological conditions. EVs are involved in various
physiological processes, including the maintenance and restoration of neurons [19], synaptic
function [20], neurovascular stability [21], and the preservation of myelination [22]. In
recent years, several studies have demonstrated the potential of EVs as nanotherapeutics
for treating brain pathologies [23–25]. The scientific world has taken a keen interest in this
topic, with numerous studies demonstrating the neuroprotective and regenerative effects
of natural EVs from various resources [23,26,27].

The present review suggests that engineered EVs can enhance the curative effective-
ness of EV-based treatments for stroke. We will explore the curative abilities of natural EVs
for neurological applications, including crucial factors for their therapeutic success. We
also discuss recent advances in regulating the BBB by EVs and their movement throughout
the BBB. In our final part, we summarized the many scientific approaches discovered
for modulating the content and surface of EVs, with a particular emphasis on the tactics
employed for various therapeutic and targeting drugs.

2. Analysis Criteria

A digital database and search tool were utilized to thoroughly review scientific liter-
ature, including original articles regarding experimental and observational studies, case
series, and reports, among other relevant sources. PubMed, Google Scholar, Scopus, Web
of Science, bioRxiv, medRxiv, CNKI, and WanFang Data are central databanks utilized for
medical studies. (The latter two databases are particularly significant within the Chinese
mainland.) The study analyzed a total of 42 articles that were published or in preprint form
between December 2017 and June 2023. A brief overview of the connection between EVs
and stroke was found.

3. Isolation and Characterization of EVs

The primary challenge in isolating and characterizing EVs lies in their small size and
heterogeneous nature. In 2018, the International Society for Extracellular Vesicles updated
its “Minimum information for studies of extracellular vesicles” (MISEV) standards, which
can be summed up as follows: (I) give a quantitative description of the EV source; (II) show
the existence of the functioning bilayers of lipids and describe their purity; (III) use a
mixture of EV analysis methods, ideally one optical and one biophysical/biochemical; and
(IV) use a solid and accurate experimental design when figuring out how EVs work in the
body [28,28].

The methodologies used for EV separation exhibit a wide range of diversity. Moreover,
every single technique may possess unique parameters and configurations designed to
enrich specific subtypes of EVs. The workflow of EV analysis is shown in (Figure 3), along
with typical methods for EV size, concentration, and cargo measurement. The selection
of the EV separation method, or a combination of methods, is significantly impacted by
the research purpose, as well as considerations of time, costs, and applicability. This is
particularly important when considering potential clinical applications [29].
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Figure 3. Isolation and quantification techniques for EVs. The diagram illustrates frequently em-
ployed methods for analyzing EVs. EVs can be quantified in tissue homogenates and natural fluids,
such as urine, saliva, and blood. The isolation of plasma or serum from blood is utilized in this context
as an illustrative case. Nanoflow cytometry enables direct labeling and quantifying EVs in various
fluid samples. In contrast, EVs have the potential to be separated and subsequently utilized for further
analysis. Immunoprecipitation is a technique that can be employed to enhance the specificity of EV
populations. EVs can be observed using electron microscopy (EM) or alternative high-resolution
microscopy methodologies. Lipidomics and proteomics methodologies can also be utilized to analyze
and describe the composition of EVs populations. Ultimately, EV concentration and size measurement
can now be achieved through dynamic light scattering and nanoparticle tracking analysis. Addi-
tionally, EV products can be measured by employing susceptible protein or RNA assays. Created
with BioRender.com (https://app.biorender.com/illustrations/649b163862468f1db106b519, Accessed
date: 7 August 2023).

4. EV Extraction from Biological Specimens

EVs have been extracted from a wide range of biological fluids, such as blood, urine,
saliva, breast milk, cerebrospinal fluid, ascitic fluid, gastric juice, bile, sputum, bronchoalve-
olar lavage, semen, and tears [30,30–34]. They are actively released by cells throughout
various tissues and organs, exhibiting their presence in physiological and pathological
conditions [35,36]. The primary contributors to the population of blood microvesicles
are platelets, which constitute a significant proportion of blood, with EVs ranging from
70% to 90% [35]. In addition to the mentioned hematopoietic cells, many other cell types,
including reticulocytes, B lymphocytes, T cells, neutrophils, mast cells, dendritic cells, and
macrophages, also play a significant role. Moreover, cells originating from different bodily
tissues, such as epithelial cells, also contribute to this process [37]. The use of standardized
pre-analytical procedures (Figure 3) is of the greatest significance to minimize the presence
of mistakes in the analysis of EVs, mainly when these EVs are obtained from complex body
fluids, such as blood. The composition, concentration, and characteristics of EVs produced
from biofluids can be influenced by various factors, such as age, gender, ethnicity, body
mass index, disease status, medication usage, overall lifestyle, and dietary lifestyles [38].
These variables must be considered and modified across all study participants (patients
and any relevant controls).

BioRender.com
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5. Natural EVs for Treating Stroke

The significance of EV signaling within the brain’s framework was initially recorded
in the early 1950s through electron microscopy studies [39–42]. Since then, researchers
have discovered that EVs produced by nerve cells, like astrocytes and microglia, play an
important role in immune signaling during synaptic plasticity [43–45]; in the specialized
nature of neural cell interaction [46,47]; and in the diffusion of various neurological diseases,
like neurodegenerative diseases and cerebral tumors [48]. Stroke [24], traumatic brain injury
(TBI) [49], Alzheimer’s disease (AD) [50], autism [51], and schizophrenia [52] are just a
few of the brain disorders where the therapeutic effects of EVs have been described since
2011. Over the past decade, a notable transition has been from cell-based treatments to EVs
treatments. Several clinical investigations have exhibited the potential of EVs to protect
and regenerate in various therapeutic applications in stroke (Table 1).

Table 1. Natural EVs for the treatment of stroke.

Disease Model EV Source Route Dose Outcome Reference

Stroke

MCAO in
mouse

Human MSCs IV Multiple
administrations

↑ Neurogenesis
↑ Angiogenesis [53]

M2 Microglia IV 100 µg ↑ Neuron protection
↓ Volume of infarction [54]

Mouse NSCs IV 100 µg
↑ Availability of

astrocytes
↓ Volume of infarction

[27]

Mouse NSCs
and MSCs RO

1–100 µg
(multiple

administrations)

↓ Impaired motor
coordination

↑ Neuro-regeneration
[55,56]

TE-MCAO in
mouse Human NSCs IV

2.7 × 1011 EVs/kg
(multiple

administrations)

↓ Cerebral atrophy
↑Motor recovery [57,58]

MCAO in rat

Porcine MSCs IV 100 µg
↑ Functional recovery
↓ Volume of infarct
↑ Angiogenesis

[59]

Human MSCs IA 200 µg/kg
↑ Functional recovery
↓ Volume of infarct
↑ Angiogenesis

[60]

Rat NSCs ICV 30 µg

↑ Neural protection
↓Microgliosis
↓ Size of infarct

↓ Behavioral deficits

[61,62]

Rat MSCs ICV 100 µg ↓ Size of infarct
↑ Functional recovery [63]

Rat MSCs IV 100 µg ↑ Neuron
transformation [24]

MSCs—Mesenchymal stem cells; IV—intravenous injection; MCAO—middle cerebral artery occlusion;
NSCs—neural stem cells; TE-MCAO—thromboembolic middle cerebral artery occlusion; RO—retro-orbital;
ICV—intracerebroventricularly. ↑ Increase, ↓ Decrease.

5.1. EV Origin

According to current research, the origin of EVs after systemic treatment affects their
biodistribution [64]. This aspect has yet to be thoroughly investigated when designing
EVs as therapies for stroke. A natural brain stereotype could be employed to enhance
the therapeutic benefit of an EV. As far as current knowledge goes, research has yet
to be conducted to directly contrast the brain tropism of extracellular vesicles derived
from various origins. Research on native EVs for stroke has focused on their therapeutic
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potential rather than their specific ability to target the brain. According to experimental
evidence, the mechanism by which EVs are derived from mesenchymal stem cells (MSCs)
targeting damaged areas in the brain may be influenced by inflammatory processes [65].
Previous research has utilized EVs released by neural stem cells (NSCs) sourced from the
subventricular area of mice [6,46,66] or from human NSCs [57] that were derived following
the division of induced embryonic stem cells (Figure 4). Initial research utilizing mouse
NSC-EVs indicated that these EVs are more likely to build in the liver and lung than the
brain following intravenous or retro-orbital administration [55].
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Figure 4. Choices and obstacles while using EVs. The application of EVs originating from diverse
cellular origins is commonly observed in managing stroke. The properties of EVs associated with
each cell type may have varying levels of tropism for brain vasculature or neuronal cells, which
could impact their ability to target the brain effectively. However, a complete evaluation of these
properties has yet to be conducted. Crossing the blood–brain barrier (BBB) poses a significant
challenge. The method of administration affects the biodistribution and clearance of EVs and
can also impact the effect’s nature, i.e., whether it is localized or systematic. Lastly, the dosing
schedule can be single or repeated, affecting accumulation and efficacy. Created with BioRender.com
(https://app.biorender.com/illustrations/647df1821b2f09af295c29aa, accessed Date: 5 June 2023).

Substances on their surface mediate the natural targeting capability of EVs [67,68].
Findings from the report of metastatic progression have revealed that the brain tropism of
EVs originating from breast tissue cells [68] is determined by expressing Integrin Beta3. Ad-
ditional research on surface molecules that facilitate brain targeting may offer insights into
selecting cell sources or developing engineering techniques to improve cerebral tropism.

5.2. Route of Administration

The route of administration is an essential factor to consider when investigating the
biodistribution of a drug. This is also applicable to the investigation of EVs. (Figure 4). In a
variety of animal experiments, EVs have been given to the animals intracerebrally [69–73],
intravenously [74], intranasally [75], intra-arterially, intraperitoneally [76], and via retro-
orbital [77] routes. Limited research has been conducted to compare the number of EVs
produced in the nervous system through various delivery methods.

BioRender.com
https://app.biorender.com/illustrations/647df1821b2f09af295c29aa
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Administering EVs through the intra-arterial route is more productive for targeting
the brain than the other routes. This is because the EVs are delivered near the brain,
which reduces their elimination by other organs in the body [64]. EVs generated from
human mesenchymal stem cells isolated from human bone marrow were administered
intravenously to mice with acute brain lesions resembling ischemic stroke conditions [78].
Following treatment with EVs, a reduction in the presence of macrophages was observed
in the affected area compared to the control group. In addition, there was a decline in the
expression of pro-inflammatory cytokines and astrocyte activation.

5.3. EV Dose Comparisons

In addition to the delivery pathway and cellular origin, the number of EVs and the
schedule of administration are critical factors that significantly impact the therapeutic
effectiveness of the treatment (Figure 4). Various doses and administration regimens have
been utilized to treat stroke using native EVs (Table 1). In stroke therapy, Aβ oligomers
have been reduced in rats and a transgenic mouse model by administering native EVs
at concentrations ranging from 10 to 100 µg and 30 to 30 µg, respectively [60,61,63,72,79].
Some studies administer EVs only once, while others administer them multiple times due to
the quick elimination of EVs from the infarcted region within twenty-four hours of the initial
intravenous injection [80] to achieve sustained brain accumulation. The administration
time varied between 2 and 48 h post-ischemic stroke for single-dose therapies and 2 h
weekly for multiple-dose regimens [23,60,81]. It has been suggested that reducing systemic
inflammation in the blood after a stroke can be achieved by increasing the number of M2-
type macrophages and Treg populations and decreasing the number of Th17 cells within
2 h of treatment. This creates a favorable environment for successful brain remodeling [57].
Importantly, from a therapeutic standpoint, higher concentrations of EVs are not always
preferable. NPC-EVs or MSC-EVs at an average dose boosted neuronal densities in stroke
mice but not at either low or high doses.

5.4. Mechanism of Action

The purpose of current study aims to examine the functional benefits of vesicles
that are secreted from mesenchymal stem cells (MSCs) [82] and neural stem cells [57],
which have been identified in rodents, rats, and pigs [60] models of cerebral ischemia that
were caused by the blockage of the middle cerebral artery. It has been demonstrated that
MSC-derived EVs have similar outcomes to those described with MSC transplantation in
terms of decreasing infarct volume, enhancing functional recovery, increasing angiogenesis
and neovascularization [83,84], decreasing astrocyte stimulation [60], and modulating
peripheral immune system responses (Figure 5).

Most reported therapeutic effects of EVs in treating stroke are believed to be passive,
mediated explicitly through extracranial organs. EVs facilitate a reduction in the overall
inflammatory response following stroke, which might decrease leukocyte infiltration in
the brain, ultimately reducing blood–brain permeation and neuronal inflammation [57,85].
The study reveals that NSC-EVs can induce the polarization of macrophages toward an
M2 genotype with anti-inflammatory properties. Additionally, NSC-EVs were found to
increase the population of regulatory T cells while reducing the number of proinflammatory
T helper 17 cells [57].

The fact that EVs can cross the BBB and retain their functional cargo has significantly
contributed to the development of biomarker research using EVs and their potential ap-
plication as a vehicle for drug delivery. Alvarez-Erviti et al. showed that mice injected
with EVs delivered siRNA to the brain. Dendritic cells were modified to express EVs
membrane protein Lamp2b26. Genetically pairing Lamp2b with a CNS-specific rabies
virus glycoprotein (RVG) peptide targeted EVs exclusively to the brain [50]. In another
study, researchers utilized rats as subjects to investigate the presence of a fluorescently
labeled protein specifically expressed in brain tissue. The study found this protein could
be detected in microscopic EVs in the rats’ blood. This research study presents empirical
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support for intercellular communication facilitated by EVs originating from the CNS and
disseminating throughout the peripheral tissues [86]. The studies provide evidence that
supports the concept of EV crossing the BBB in a bidirectional manner. However, the
precise mechanism by which this crossing occurs remains uncertain.
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has shown benefits through direct local effects in the brain, such as neuroprotection, neurogenesis,
angiogenesis, antioxidant and anti-inflammatory properties, and systemic effects by modulating
peripheral immune system responses. These effects may create a favorable environment for cerebral
regeneration. Created with BioRender.com (https://app.biorender.com/illustrations/647df0bfe74d4
f82a5bc4ade, accessed: 11 June 2023).

The therapeutic efficacy of EVs in stroke is primarily attributed to the molecular mech-
anisms involving microRNAs (miRNAs) present within these vesicles. Typically, in vitro
experiments evaluate the direct impact of EVs on neuronal cells. They promote neurite out-
growth in nerve cells, and the inhibition of the growth factor for connective tissue in astrocytes
was observed upon exposure to miR-133b-containing EVs released by mesenchymal stem
cells (MSCs). This effect was attributed to the suppression of RhoA by the EVs [87,88]. Fur-
thermore, it has been discovered that EVs containing miR-124, released by M2 microglia cells,
can increase neuronal survival in vivo. The downregulation of ubiquitin-specific protease 14
is regulated to achieve the desired result. However, whether the effect is direct or systemic is
still being determined since there is no apparent connection between transfected cells and the
downregulation of ubiquitin-specific protease 14 (Figure 6).

BioRender.com
https://app.biorender.com/illustrations/647df0bfe74d4f82a5bc4ade
https://app.biorender.com/illustrations/647df0bfe74d4f82a5bc4ade


Pharmaceutics 2023, 15, 2173 9 of 24

Pharmaceutics 2023, 15, x FOR PEER REVIEW 9 of 25 
 

 

seminating throughout the peripheral tissues [86]. The studies provide evidence that sup-
ports the concept of EV crossing the BBB in a bidirectional manner. However, the precise 
mechanism by which this crossing occurs remains uncertain. 

The therapeutic efficacy of EVs in stroke is primarily attributed to the molecular 
mechanisms involving microRNAs (miRNAs) present within these vesicles. Typically, in 
vitro experiments evaluate the direct impact of EVs on neuronal cells. They promote neu-
rite outgrowth in nerve cells, and the inhibition of the growth factor for connective tissue 
in astrocytes was observed upon exposure to miR-133b-containing EVs released by mes-
enchymal stem cells (MSCs). This effect was attributed to the suppression of RhoA by the 
EVs [87,88]. Furthermore, it has been discovered that EVs containing miR-124, released by 
M2 microglia cells, can increase neuronal survival in vivo. The downregulation of ubiqui-
tin-specific protease 14 is regulated to achieve the desired result. However, whether the 
effect is direct or systemic is still being determined since there is no apparent connection 
between transfected cells and the downregulation of ubiquitin-specific protease 14 (Figure 
6). 

 
Figure 6. Natural EV modes of action in stroke. The transfer of MiR-133b through EVs originating 
from mesenchymal stem cells (MSCs) has been found to facilitate the growth of neurites. This effect 
is achieved through the targeting of the converting protein RhoA. Additionally, miR-124 is linked 
to increased neuronal viability by targeting USP-14, a ubiquitin-specific protease. Systemically, it 
has been demonstrated that EVs from NSC reduce pro-inflammatory Th17 cells while improving 
immunosuppressive Treg cells. Created with BioRender.com (https://app.biorender.com/illustra-
tions/647ca600a95ee7a5e7fd6757, accessed: 11 June 2023). 

6. Neuronal Regeneration via Sustained EV/NP Delivery 
Over several decades, extensive research has been conducted on utilizing the body’s 

inherent regenerative capacity. Numerous studies have investigated the utilization of var-
ious therapeutic approaches to induce endogenous regeneration. These approaches in-
clude instructive biomaterial scaffolds, EVs, nanoparticles (NPs), small molecules, and 
other similar interventions [89]. Therapeutic EVs have been utilized for potential regener-
ative uses primarily due to their adaptability in modifying size and capacity to serve as 
carriers for transporting drugs, growth factors, tiny molecules, or genetic information 
[90,91]. 

Nerve injuries pose significant clinical challenges as a result of their inherent limita-
tions in terms of regenerative capacity. Conventional treatments for nerve injuries have 
traditionally relied on autologous nerve grafts. However, these grafts are gradually being 

Figure 6. Natural EV modes of action in stroke. The transfer of MiR-133b through EVs originating
from mesenchymal stem cells (MSCs) has been found to facilitate the growth of neurites. This effect
is achieved through the targeting of the converting protein RhoA. Additionally, miR-124 is linked
to increased neuronal viability by targeting USP-14, a ubiquitin-specific protease. Systemically, it
has been demonstrated that EVs from NSC reduce pro-inflammatory Th17 cells while improving
immunosuppressive Treg cells. Created with BioRender.com (https://app.biorender.com/illustrations/
647ca600a95ee7a5e7fd6757, accessed: 11 June 2023).

6. Neuronal Regeneration via Sustained EV/NP Delivery

Over several decades, extensive research has been conducted on utilizing the body’s
inherent regenerative capacity. Numerous studies have investigated the utilization of vari-
ous therapeutic approaches to induce endogenous regeneration. These approaches include
instructive biomaterial scaffolds, EVs, nanoparticles (NPs), small molecules, and other
similar interventions [89]. Therapeutic EVs have been utilized for potential regenerative
uses primarily due to their adaptability in modifying size and capacity to serve as carriers
for transporting drugs, growth factors, tiny molecules, or genetic information [90,91].

Nerve injuries pose significant clinical challenges as a result of their inherent limita-
tions in terms of regenerative capacity. Conventional treatments for nerve injuries have
traditionally relied on autologous nerve grafts. However, these grafts are gradually being
supplanted by artificial nerve guidance conduits (NGCs) due to limitations, such as the
limited availability of nerve grafts, the need for multiple surgeries to isolate donor grafts,
and the potential risk of developing neuromas. The primary objective of a recent research
study on managing peripheral nerve injury was to explore the potential of targeted thera-
peutics. This was achieved by utilizing alginate hydrogels composed of laminin-coated
poly(l-lactide-co-glycolide) (PLGA) conduits. These conduits were designed to contain a
mixture of gold nanoparticles (NPs), brain-derived neurotropic growth factor (BDNF), and
adipose-derived stem cells [92].

A separate investigation examined the administration of conductive
poly(3,4-ethylenedioxythiophene) nanoparticles/EVs modified with cell adhesive tetrapep-
tide. These nanoparticles were delivered using a biocompatible chitin scaffold. The study’s
results indicate that the conductive scaffold exhibited high porosity and compatibility with
biological systems. Upon introduction into an in vivo model, a notable enhancement in
nerve regeneration was observed, as evidenced by an increase in the regenerated myelin’s
thickness and the muscle fibers’ area. An augmentation in the adhesive capacity of Schwann
cells, along with enhanced angiogenesis, was also noted at the site of the injury (Figure 7).
Hence, the utilization of this chitin scaffold with electrical activity has been proposed as a
promising alternative for a nerve guidance conduit, as well as a suitable material for the
administration of therapeutics to facilitate nerve regeneration [93].

BioRender.com
https://app.biorender.com/illustrations/647ca600a95ee7a5e7fd6757
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Figure 7. EV/NP. Transport Neural Remodeling. Poly(3,4-ethylenedioxythiophene) modified with
tetrapeptide was administered utilizing a biocompatible chitin scaffold. In an in vivo model, myelin
thickness increased, indicating nerve regeneration. At the injury’s site, Schwann cell adhesiveness
and angiogenesis increased. Created with BioRender.com (https://app.biorender.com/illustrations/
64a80816d2fc5a3659e189a9, accessed: 7 July 2023).

7. Drug Loading Techniques

The effectiveness of EVs as a new class of nanocarriers arises from their unique quali-
ties as information carriers, including their inherent homing ability, widespread distribution
in biological fluids, biological compatibility, cell-specific targeting, non-immunogenicity,
and easy penetration through physiological barriers. Pre-loading and post-loading are the
two primary strategies for transferring cargo into EVs. Pre-loading refers to loading cargo
into parent cells before the isolation of EVs, which releases o EVs that are loaded with cargo.
Post-loading refers to loading cargo directly into EVs using either passive or active means
after EVs have been isolated (Figure 8). Table 2 provides a comprehensive overview of
various cargo loading tactics and procedures employed for extracellular vesicles, along
with their advantages and disadvantages.

Table 2. Methods for loading EVs with drugs.

Loading
Strategies Loading Methods Advantages Disadvantages Reference

Pre-loading

Co-incubation
1. Simple
2. Cost-effective
3. EV-friendly

1. Low encapsulation efficiency
2. Strict cargo selection [94–96]

Transfection Target molecule overexpression
1. Time-consuming
2. Highly dependent on cell viability
3. Potential toxicity and genetic changes

[97,98]

Post-loading

Co-incubation
1. Easy operation
2. No extra equipment is required
3. Minimal destruction to EVs

1. Low loading efficiency
2. Limited variety [99–101]

Electroporation 1. Effective loading efficiency
2. Loading of large biomolecules

1. Affect EVs integrity
2. Risk of EVs aggregation
3. Heat can cause damage

[102,103]

Sonication High loading efficiency 1. EVs membrane degradation
2. EV aggregation risk [104,105]

Freeze–thawing cycle 1. Cost-effective
2. Applicable for most cargoes

1. Low loading efficiency
2. EVs membrane damage
3. EVs aggregation risk

[106,107]

Surfactant administration 1. Affordable
2. Applicable for most cargoes

EVs surface potential and functionality
may be altered [76,108]

BioRender.com
https://app.biorender.com/illustrations/64a80816d2fc5a3659e189a9
https://app.biorender.com/illustrations/64a80816d2fc5a3659e189a9
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Figure 8. Engineering strategies for modifying EV content. Cellular engineering techniques can
regulate EVs, including altering primitive cells or directly loading them via various post-isolation
methods. (A) Cell engineering uses genetic manipulation techniques, such as plasmid transfection or
enriching cells with miRNAs or small compounds, to load a parent cell indirectly. (B) Electroporation,
sonication, freeze–thaw cycles, and chemical agents modulate isolated EVs post-isolation. Therapeutic
substances and loading efficiency determine the optimum EV modulation strategy. EVs cargo
manipulation can treat stroke by acting on cargo type. (C) Proteins. (D) Small molecules. (E) miRNAs.
Created with BioRender.com (https://app.biorender.com/illustrations/647dfe244f0c62bb59ac8cb8,
accessed: 6 June 2023).

8. Engineered EVs for Stroke Treatment

Despite advancements in the preclinical application of endogenous EVs as therapeutic
agents for stroke over the past decade, additional enhancements are required to optimize
their therapeutic efficacy and expedite their clinical implementation. The first involves the
biological effects of EVs. The EVs of native origin exhibit heterogeneity, even if obtained
from an identical cell resource. Therefore, concentrating the EV material into a singular
therapeutic entity with the most potent neuronal activity can enhance the efficacy of their
treatment. The second is related to the focus on EV targeting. After being administered
systemically, very few EVs (usually less than 5%) end up in the brain [109–111]. To have the
most significant local or direct effect on the brain, we need to make strides in the surface
engineering of EVs to improve their range and target particular cell membrane receptors.
On the other hand, assessing the in vivo targeting and therapeutic mechanisms of EVs
demands the creation of analytical and imaging platforms that are highly sensitive and
have high resolution, respectively.

Consequently, engineering techniques to modify EV bioactivity [27,112–121], target-
ing [122–130], and tracking [123] have been created to tackle past difficulties. The earlier
approaches can be implemented in EVs after isolation or within the cells responsible for
EV production. This can be achieved through the use of gene editing [112], metabolic and
residue-specific protein packaging [131], or the process of incubating cells with external
compounds [132] or nanoparticles [133] (Figures 8 and 9; Tables 2 and 3). Numerous

BioRender.com
https://app.biorender.com/illustrations/647dfe244f0c62bb59ac8cb8
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techniques are available for rapidly and efficiently engineering EVs with functional groups,
genetic material, biologically active proteins, and peptides. However, the development
of methods that do not adversely affect the function of EVs remains a challenging task.
The present section investigates various methodologies, including genetics, exogenous
delivery, and chemically inspired techniques, that can alter EVs’ outside appearance and
composition to facilitate drug delivery to the brain.
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Figure 9. Surface modulation of EVs. The modulation of EV surfaces can be accomplished
by genetically modifying the cells that produce them. (A) Protein plasmids or (B) Protein-
residues (C) directly conjugated to lipids that are then integrated into EV membranes. (D) Bio-
orthogonal chemistry identifies extracellular vesicle functional groups. Created with BioRender.com
(https://app.biorender.com/illustrations/6480cf6ae6947f82704ea72e, accessed: 11 June 2023).

Table 3. Techniques for modifying EVs cargo in stroke.

Origin of EVs Method Model Result Reference

Rat MSCs miR-17-92 cluster
overexpression MCAO rat model ↑ Neurogenesis

↑ Neurological function [119]

Rat MSCs miR-133b
overexpression MCAO rat model ↑ Neuroprotection [116]

Human ADSCs miR-126
overexpression Rat MCAO

↑ Neurogenesis
↑ Angiogenesis
↓ Inflammation

[113,134]

Mouse EPCs miR-126
overexpression Mouse MCAO

↓ Infarct size
↑ Neurogenesis
↑ Angiogenesis

[135]

Mouse MSCs Diffusion of
curcumin-loaded EVs Mouse MCAO model ↓ Inflammation

↓ Neuronal apoptosis [122]

Human MSCs Diffusion of
leucocyte-loaded EVs Mouse MCAO model ↓ Brain leukocyte infiltration

↑ Neuroprotection [136]

BioRender.com
https://app.biorender.com/illustrations/6480cf6ae6947f82704ea72e
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Table 3. Cont.

Origin of EVs Method Model Result Reference

Rat-blood-derived EVs PCSK9
overexpression Mouse ICH model

↑ Neuroprotection
↑Myelination
↑ Angiogenesis

[137]

Human umbilical cord
blood (UCB)–MSC-derived

EVs

Diffusion of
BDNF-Loaded EVs

Rat IVH
model

↑ Neuroprotection
↓ Inflammatory response/

Apoptosis/
↑Myelination and neurogenesis

[138]

Bone-marrow–MSCs
derived EVs

miR-21-5p
overexpression Rat SAH model ↓ Neuronal apoptosis

↑ Neuroprotection [139]

BMSC-derived EVs miR-183-5p
overexpression Rat model of db-ICH ↓ Neuroinflammation

↓ Neurological deficit [140]

EVs from
angiotensin-converting

enzyme 2 (ACE 2)

Endothelial progenitor
cells overexpression Mouse ICH model

↓ Decreased hemorrhage volume
↓ Brain edema

Improved Neurological Deficit
Score (NDS)

[141]

MSCs—Mesenchymal stem cells; ADSCs—adipose-derived stem cells; EPCs—endothelial progenitor cells;
EVs—extracellular vesicles; MCAO—middle cerebral artery occlusion; ICH—intracerebral hemorrhage;
IVH—intraventricular hemorrhage; SAH—subarachnoid hemorrhage; BMSCs—bone marrow mesenchymal
stem cells; db-ICH—diabetic intracerebral hemorrhage. ↑ Increase, ↓ Decrease.

8.1. Modulation of Content

Over the past five years, a remarkable increase in the number of described techniques
for loading functional molecules into EVs has been seen [27,116,118,142,143]. The pre-
dominant approach employed in such methods involves genetic modification via plasmid
transfection of the cells that secrete extracellular vesicles, thereby effectively regulating
the composition of the EVs [27,114,116,119,144]. Plasmid transfection can be accomplished
through electroporation or incubation with transfection reagents [117]. Therefore, EVs have
modulated the expression of genes in human disease models, both in vitro and in vivo,
by incorporating functional proteins, mRNAs, microRNAs (miRNAs), and other short
noncoding RNAs [119,145]. The direct modulation technique has been implemented in
manipulating isolated EVs to incorporate small drug molecules and for encapsulating
proteins and small amounts of non-coding RNA within EVs (Figure 8) [106,146–148]. When
implementing these strategies, it is essential to consider certain factors. The molecules’ size
determines the material type that EVs can transport. Numerous molecules, such as miRNAs
or small drugs, can be encapsulated within EVs. However, the capacity of EVs is restricted
when it comes to larger molecules such as mRNA or proteins. Furthermore, a more signif-
icant amount of cargo sometimes equates with increased biological value. Additionally,
genetically modified EVs’ effectiveness on the target cell is influenced by internalization
efficiency, intracellular trafficking, and channels altered by the EV-based molecules.

The fact that these studies were performed on animal models is the only thing that
could be considered a limitation. On the other hand, there is no evidence of this therapeutic
possibility in the human field due to the challenges involved in the preparation of engi-
neered EVs and the challenges related to the methods of administration needed to achieve
a significant enough result to be considered a valid therapeutic strategy. Although there are
plenty of issues to be resolved, the development of standardized techniques and guidelines
for EV engineering, isolation, and storage has brought EV-based therapies closer to being
utilized for stroke and other neurological illnesses (Table 4).
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Table 4. EV cargo modification in other neurological conditions.

Origin of EVs Method Model Result Reference

Mouse embryonic
fibroblasts

Cre recombinase
enzyme overexpression

Transgenic
mouse model

Intranasal transport of
brain-active proteins [117]

Human HEK-293 T Overexpression of the
catalase enzyme PD mouse model ↓ Neuronal inflammation [112]

Mouse astrocytes Transfection with
lincRNA-Cox2-siRNA

In vitro/in vivo
lincRNA-Cox2

knockout model
Intranasal

↓ Expression of lincRNA-Cox2;
LPS-induced

microglial proliferation
[114]

Human astrocytes Transfection with
lincRNA-Cox2-siRNA

In vitro/in vivo
lincRNA-Cox2

knockout model
Intranasal

Microglial phagocytic
activity restored [149]

Mouse macrophages Transfection with
curcumin Rat AD model ↑ Neuron survival;

↓ Tau phosphorylation [118]

Mouse macrophages
EV loading with

catalase: sonication,
extrusion, or saponin

Mouse PD model ↓ Oxidative stress
↑ Neuron survival [106]

Human ESCs EV loading with
paclitaxel: diffusion

Orthotopic mouse
xenografts

↑ Accumulation at the glioma spot
↑Mouse survival [147]

Mouse BECs
EV loading with

paclitaxel or
doxorubicin: diffusion

Xenotransplanted
brain cancer zebrafish

model
↑ Brain cancer cell elimination [148]

Mouse blood serum EV loading with
dopamine: diffusion Mouse PD model ↑ Dopaminergic neurogenesis

↑ Symptomatic performance [150,151]

PD—Parkinson’s disease; AD—Alzheimer’s disease; ESCs—embryonic stem cells; BECs—brain endothelial cells.
↑ Increase, ↓ Decrease.

8.1.1. Nanoparticle

EVs are being utilized to enclose tiny therapeutic particles, typically comprising a
medicinal substance, with sizes ranging from 10 nm [123] to 150 nm [152]. This approach
aims to enhance the transportation of such nanoparticles across the blood–brain barrier
(BBB). The loading of EVs can be achieved through two distinct processes: The first involves
isolating the EVs and subsequently subjecting them to an electroporation procedure with
nanoparticles [123]. The second process entails transfecting EV-secreting cells with nanopar-
ticles and loading the EVs [68]. Recent research has indicated that EVs exhibit comparable
therapeutic efficacy to stem cells derived from ischemic stroke treatment [56,81,153,154].
One central area for improvement in utilizing exosomes is the inability to target the ischemic
lesion within the brain specifically. It has been found that using magnetic nanovesicles
(MNVs) made from mesenchymal stem cells (MSCs) and filled with iron oxide nanopar-
ticles makes it easier to target the area of the brain that is ischemic. This is achieved by
applying an external magnetic field, which facilitates magnetic navigation. Using magnetic
navigation resulted in a 5.1-fold increase in the EVs’ capacity to target the ischemic lesion
specifically. The MNVs were found to have a significant impact on reducing the infarct
volume and enhancing motor function. Additionally, they were observed to stimulate a
defensive response, promote vascular development, and prevent cell death in cerebral
ischemia [88,155–157].

An animal stroke model utilized gold nanoparticles coated with glucose to facilitate
non-invasive neurological imaging and EV tracking. This approach aided in identifying
the most effective administration route and size parameter [158,159]. The diagnosis and
treatment of numerous neurological disorders are impeded due to the limited ability of
diagnostic agents to penetrate the blood–brain barrier (BBB) [160]. Following the idea of
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the Nature Biotechnology Group, which involved the production of EVs as vehicles for
genetic treatment with selective targets in the brain [50], gold-coated vesicles targeted brain
cells by enhancing nanoparticle permeability to cross the BBB [161].

8.1.2. Proteins

Determining the appropriate approach for encapsulating therapeutic proteins within
EVs is based on their intended utilization. The method of transfecting cells that secrete
extracellular vesicles (EVs) with plasmids is utilized to produce enzyme-loaded EVs, includ-
ing catalase [106], Cre-recombinase [117], and the lysosomal enzyme tripeptidylpeptidase-1
(TPP-1) [76]. Following a stroke, there is a change in the proportions of pro-inflammatory
and anti-inflammatory proteins, impacting the size of the infarct and the individual’s func-
tional outcome [162,163]. EVs containing IFN-G have been utilized in treating neurodegen-
erative conditions such as multiple sclerosis. The study demonstrated that IFN-G-stimulated
extracellular vesicles (EVs) decreased demyelination and neurological inflammation in
a murine model [158,164]. They investigated the impact of TNFα and interleukin-1β cy-
tokines on the molecular composition and release of astrocyte-derived extracellular vesicles.
The findings indicate that vesicles derived from astrocytes treated with TNFα and IL-1β
contained a high concentration of miR-125a-5p and miR-16-5p, which are known to target
proteins that regulate neurotrophin signaling.

Furthermore, it was noted that EVs injected with cytokines reduced the neuronal
expression of NTKR3 and Bcl2 [165]. The inflammatory cytokine IL-1β, which affects the
brain’s inflammatory response to injury, was administered into the brain. An IL-1β injection
into the striatum led to more Ly6b+ leukocytes going to the lesion site and more circulating
vesicles in the plasma of mice compared to controls. IL-1β also caused astrocytes to release
EVs, which quickly passed the BBB [166].

An additional study examined the pro-angiogenic effects of microglial BV2 cells that
were polarized by IL-4 and lipopolysaccharide. The cells polarized by IL-4 demonstrated
an increase in endothelial cell tube formation through the secretion of EVs. Furthermore,
the miRNA-26a profile was observed to be higher in comparison to the LPS-polarized
group [167]. Researchers found that preconditioning neural stem cells with IL-6, a proin-
flammatory cytokine that promotes prosurvival signaling, reduced ischemic injury in a
mouse stroke model [167,168].

8.1.3. Small Non-Coding RNAs

The study of EVs in the context of nervous system disorders is a relatively developing
area of research. The blood–brain barrier (BBB) is formed by the tightly joined endothelial
cells of brain capillaries, which effectively limit the passage of small molecules that are
lipid-insoluble (90–98%) into the brain [132,169,170]. Two distinct approaches can be
employed for the loading of non-coding RNAs in EVs: (I) chemical (e.g., chemically induced
transfection) [106,171] or physical (e.g., electroporation) [50,132] strategies following EV
separation; and (II) the introduction of plasmid-encoded non-coding RNAs or non-coding
RNAs directly into EV-secreting cells through transfection [113,119,149].

The researcher Yang et al. employed EVs to transport circular RNA to the ischemic
area of stroke. The study’s authors used a targeted approach to deliver Circ-SCMHI RNA
to neuronal cells. This was achieved by expressing RVG peptides on exosome membranes,
which served as a cargo-delivering vehicle system for the Circ-SCMHI RNA of interest.
The RVG-circSCMH1-EVs have been found to enhance neuronal plasticity through their
binding to MeCP2 and subsequent upregulation of downstream gene expression (Mobp,
Igfbp3, Fxyd1, and Prodh). This mechanism is believed to contribute to the maintenance
of proper brain function. The administration of RVG-CircSCMH1-EVs via intravenous
injection enhanced motor recovery, digit movement, and functional recovery in rodent and
non-human primate experimental models. The authors proposed that RVG-CircSCMH1-
EVs may possess a broader therapeutic window compared to existing treatments, as it
could be administered up to 24 h following the onset of stroke [172].
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MiR-124 is recognized for its propensity to promote neuronal development in the
developing and mature brain. EVs containing miR-124 facilitate the acquisition of neuronal
identity by cortical neural progenitors and confer post-ischemic recovery by promoting
reliable cortical neurogenesis [132]. The BACE1 gene was effectively knocked down through
siRNA delivery via EVs. This resulted in a significant decrease in β-amyloid levels in the
brains of mice with wild-type mutations [50]. MiRNA-210 exhibits promising prospects for
enhancing angiogenesis in the context of brain area restoration after ischemic events. The
enhancement of miRNA-210 expression resulted in a more excellent restoration of function
after stroke. The delivery of miRNA-210 to the ischemic area was achieved by linking EVs
with the c(RGDyK) peptide and adding miRNA-210.

This resulted in an upregulation of miR-210 at the ischemic site and increased the
expression of integrinβ3, vascular endothelial growth factor, and CD34, significantly im-
proving animal survival rates [130].

8.1.4. Neurotrophic Factors (NTFs)

The neurotrophic factor is being researched as a protective factor in neurological
diseases [173,174]. They control the development of neural stem cells, which are ac-
countable for restoring neurological function and repairing vascular damage caused by
stroke [175,176]. Neurotrophic factors (NTFs) are a promising therapeutic option for stroke
repair. Their diverse neuroprotective functions following ischemic events have been ac-
knowledged [177,178]. The clinical application of NTF is currently not feasible due to the
absence of an effective method for delivering it systemically to the ischemic area. Brain-
derived neurotrophic factor (BDNF) is extensively studied for its neuroprotective and
anti-inflammatory effects. BDNF was packed within naive exosomes and administered in-
travenously to rats to combat brain inflammation [179]. MiR-206 knockdown EVs reduced
early damage to the brain by increasing BDNF levels following the treatment [180]. This
suggests that bioengineering vesicles with BDNF could help with brain diseases like stroke.
More research is needed to understand how EVs and NTFs work in stroke treatment. It
would be highly beneficial to prioritize exploring this area in the future.

9. Conclusions and Future Prospective

The domain of EVs is presently considered a rapidly advancing field in fundamen-
tal science and applied research [181]. EVs derived from various cellular origins have
demonstrated therapeutic efficacy in stroke. Over the past decade, significant progress
has been achieved in the field (i) by demonstrating the curative value of specific groups of
EVs in preclinical studies for cognitive and behavioral brain diseases; (ii) by discovering
the systemic [57] and local [61] actions that characterize EV brain regeneration processes;
(iii) by showing the effects of EVs in neurogenesis [132], neural protection, angiogenesis,
and cerebral remodeling; and (iv) by describing how EVs are transported through the
BBB [132,182]. Based on empirical evidence, EVs are swiftly eliminated from the brain,
leading to a significant absence of EVs within a short time. So, experts are working on
bioengineering EVs to improve their half-life in circulation, make them more available at
the disease site, make it easier to deliver them to specific cells, and use them to provide
therapeutic molecules or regenerative medicine.

According to a study [57], treating ischemic stroke with innate EVs resulted in particular
outcomes, primarily attributed to the alteration of the immune response rather than a localized
effect in the brain. However, high growth in the lesion area could produce a greater neuropro-
tective and pro-angiogenic impact. Numerous investigations have been conducted, primarily
in vitro, wherein the culture environment may influence the EV’s biochemical and biophysical
characteristics. Consequently, further research is needed to comprehend the engineered EVs
physiological impacts on human well-being comprehensively.

In short, EVs possess significant potential for therapeutic applications. Clinical trials
have exclusively involved endogenous EVs, while engineered EVs designed to target the
brain have yet to undergo clinical testing. This is primarily due to challenges associated with



Pharmaceutics 2023, 15, 2173 17 of 24

the large-scale production of EVs and the production of EVs with similar characteristics.
Collectively, EV-derived therapeutics and diagnostics have exhibited encouraging outcomes
in diverse phases of clinical trials. Nevertheless, most clinical trials on EVs are underway,
and the available published data regarding their current progress or results could be
much better.

Translating modified EVs into clinical settings presents significant obstacles, including
restricted techniques for versatile isolation and purification, EV variability, poor storage con-
ditions, potential immunogenic adverse effects, and batch-to-batch variations. Therefore,
much work must be done to utilize EVs’ therapeutic effects properly.
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