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Abstract: O6-methylguanine-DNA methyltransferase (MGMT) constitutes an important cellular
mechanism for repairing potentially cytotoxic DNA damage induced by guanine O6-alkylating
agents and can render cells highly resistant to certain cancer chemotherapeutic drugs. A wide variety
of potential MGMT inactivators have been designed and synthesized for the purpose of overcoming
MGMT-mediated tumor resistance. We determined the inactivation potency of these compounds
against human recombinant MGMT using [3H]-methylated-DNA-based MGMT inactivation assays
and calculated the IC50 values. Using the results of 370 compounds, we performed quantitative
structure–activity relationship (QSAR) modeling to identify the correlation between the chemical
structure and MGMT-inactivating ability. Modeling was based on subdividing the sorted pIC50

values or on chemical structures or was random. A total of nine molecular descriptors were presented
in the model equation, in which the mechanistic interpretation indicated that the status of nitrogen
atoms, aliphatic primary amino groups, the presence of O-S at topological distance 3, the presence of
Al-O-Ar/Ar-O-Ar/R..O..R/R-O-C=X, the ionization potential and hydrogen bond donors are the
main factors responsible for inactivation ability. The final model was of high internal robustness,
goodness of fit and prediction ability (R2

pr = 0.7474, Q2
Fn = 0.7375–0.7437, CCCpr = 0.8530). After the

best splitting model was decided, we established the full model based on the entire set of compounds
using the same descriptor combination. We also used a similarity-based read-across technique to
further improve the external predictive ability of the model (R2

pr = 0.7528, Q2
Fn = 0.7387–0.7449,

CCCpr = 0.8560). The prediction quality of 66 true external compounds was checked using the
“Prediction Reliability Indicator” tool. In summary, we defined key structural features associated
with MGMT inactivation, thus allowing for the design of MGMT inactivators that might improve
clinical outcomes in cancer treatment.

Keywords: MGMT; pseudosubstrates; inactivating agents; methyltransferase assay; MGMT activity
determination; QSAR; read-across
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1. Introduction

The DNA repair protein, O6-methylguanine-DNA methyltransferase (MGMT; also
known as O6-alkylguanine-DNA alkyltransferase; AGT), can protect cells against the cyto-
toxic effects induced by DNA alkylating agents, such as the methylating antitumor drugs
temozolomide (TMZ), procarbazine (PCB) and dacarbazine (DITC) and the chloroethy-
lating antitumor drugs 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU), 1-(2-chloroethyl)-3-
cyclohexyl-1-nitrosourea (CCNU) and 1-(4-amino-2-methyl-5-pyrimidinyl)methyl-3-(2-
chloroethyl)-3-nitrosourea (ACNU) [1–4]. These alkylating agents predominantly exert
their antitumor activity through the alkylation of DNA at the O6-position of guanine, gen-
erating a highly cytotoxic lesion [1,3,5]. However, O6-alkylguanine adducts can be repaired
by MGMT that transfers an adducted alkyl group to its active center Cys145 residue in an
irreversible and stoichiometric reaction [6]. Thus, MGMT is a “suicide enzyme” that acts
only once, and further repair activity can be restored only by de novo protein synthesis [7].

The consensus repair mechanism by MGMT is shown in Figure 1. The formation
of the S-alkyl adduct, at least in the case of methyl, causes a conformational change in
MGMT, resulting in an increased recognition by ubiquitin ligase, targeting it for proteasome
degradation [8–10].
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Figure 1. The consensus repair mechanism of O6-alkylguanines by MGMT. In the crystal structure of
the Cys145Ser MGMT mutant bound to O6-MeG-containing DNA (upper left panel), the guanine
moiety is flipped by Arg128 into the active site pocket and then forms hydrogen bonds (red dashed
line; upper right panel) with Cys145Ser, Val148, Tyr114 and Ser159 residues. Lower panel: as a
water-mediated general base, His146 deprotonates Cys145 (in the native protein), resulting in the
transfer to the S atom of the O6-alkyl carbon, while the N3 is protonated by the Tyr114 residue.

Given the role of MGMT in alkylating chemotherapeutic resistance and its ability to act
on O6-alkylguanines as free bases, various groups have synthesized a large number of such
“pseudosubstrates” as potential inactivators of MGMT function [11–22]. Administering
such agents prior to alkylating agents was proposed to ablate the protection provided by
MGMT and hence increase the effectiveness of the chemotherapeutics [1,3,6].

Currently, only two MGMT inactivators, O6-benzylguanine (O6-BG) and O6-(4-bromo
thenyl)guanine (O6-4-BTG; Lomeguatrib), have been used as potentiating agents in clinical
trials [6,23–26]. Unfortunately, the combination greatly increased the systemic toxicity
of the alkylating chemotherapeutic drugs, requiring a considerable reduction in their
dose [1,6,23–25]. This dose reduction might explain, at least in part, why the MGMT
inactivators did not improve the clinical outcome of chemotherapy. Other factors might
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include: the rates of recovery of MGMT activity following depletion; tumor cell proliferation
rates; the contribution of other protective mechanisms to cell survival; the relatively lower
affinity of MGMT for free bases compared with O6-alkylguanines in duplex DNA [9,27];
poor water solubility; low bioavailability, instability and/or catabolic processes and rapid
plasma clearance [28].

Given that the systemic delivery of MGMT inactivators exacerbates collateral toxicities,
the synthesis of tumor-targeting inactivating agents might be expected to circumvent
this [1,3,21,29,30]. To build into an inactivating agent tumor-targeting moieties, or, indeed,
any other structural moieties that may optimize in vivo effectiveness, it will be essential to
know what structural features endow the greatest activity and which regions cannot be
modified without a loss of function.

To achieve this, we performed quantitative structure–activity relationship (QSAR)
modeling to establish the detailed relationship between the molecular structure and MGMT
inactivation potency. Although we reported a QSAR model for MGMT inhibitors in
a previous study, the focus was primarily on base analogs, and the dataset used was
relatively smaller, consisting of 134 compounds [16]. In the current study, we used MGMT
in vitro inactivation assay results for a total of 370 compounds, which provided IC50 values
as the response endpoint, which included not only base analogs but also other types of
molecules. Additionally, all the experimental values for the 370 compounds were directly
determined in our laboratory, rather than relying on data from the literature. Furthermore,
the chemical synthesis of the 370 compounds was conducted within our lab as well. Our
model contributes to a definitive mechanistic interpretation but also provides a tool for
predicting and rapidly designing new candidates for depleting MGMT activity, including
the tumor-targeting MGMT inactivators.

2. Materials and Methods
2.1. Compound Design and Synthesis

The listed compounds were designed by R. Stanley McElhinney and T. Brian H.
McMurry and synthesized by members of the Chemistry Department of Trinity College,
Dublin. Typical examples of the methods for the synthesis and analysis of the compounds
are presented elsewhere [18]. In addition to curiosity-driven compounds in pursuit of
increasingly potent agents, others were designed with specific objectives in mind, among
which there were: combination alkylators–inactivators; tumor receptor targeting agents
or potential precursors and agents that would produce antimetabolites upon dealkylation
(see Table S1).

2.2. MGMT Activity Assay

Compounds were assayed for their ability to inactivate human recombinant MGMT
in vitro using [3H]-methylated-DNA-based MGMT inactivation assays, as described in [18],
at the Paterson Institute for Cancer Research, Manchester, U.K. The IC50 values were ob-
tained for QSAR modeling. It should be noted that the in vitro assay does not differentiate
between actual inactivation due to alkyl group transfer to Cys145 (see Figure 1) and com-
petitive inhibition: alkyl group transfer to MGMT has been demonstrated for very few
compounds, but we are not aware of any reports in which the mechanism of action has
been proven to be competitive inhibition.

A flowchart of the methodology in the present study is shown in Figure 2.
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2.3. Dataset Preparation

The Organization for Economic Co-operation and Development (OECD) principle 1
states that a QSAR model should be associated with “a defined endpoint” [31–33], and
in the present study, the IC50 value was used as the activity endpoint. All IC50 values
(µM) were transformed into –logIC50 (pIC50, mol/L), which is a common practice in
QSAR modeling [32,34,35]; thus, the higher the pIC50 value, the more potent the MGMT
inactivator.

2.4. Descriptor Calculation and Dataset Splitting

All the molecular structures were manually drawn using the ChemBioDraw Ultra
14.0 software (version 14.0, Cambridge soft, Cambridge, MA, USA) and geometrically
optimized by energy minimization using its 3D module. After optimization, five quantum
chemical descriptors including the dipole moment (µ), total energy (E), lowest unoccupied
molecular orbital energy (ELUMO), highest occupied molecular orbital energy (EHOMO) and
ELUMO − EHOMO gap were calculated. Dragon software (version 7.0) [36] and PaDEL-
Descriptor software (version 2.18) [37] were used to calculate the molecular descriptors.
In order to avoid the occurrence of conformational complexity due to the inclusion of 3D
descriptors, and for the ease of interpretability and reproductivity, only 2D descriptors with
a definite physicochemical meaning were calculated. To remove redundant variables, we
excluded the constant or near-constant descriptors (>80% compounds have the same value)
and inter-correlated descriptors (>0.95) from the descriptor pool.

To avoid possible bias, the dataset was split into training sets and prediction sets in an
approximately 3:1 ratio using QSARINS v2.2.4 software (Varese, Italy) [38,39], in which the
training set was used to establish the model, while the prediction set was used for model
validation. Three splitting techniques were used [38], and in each, the inactivators with the
maximum and minimum response pIC50 values and principal component 1 (PC1) scores
were always put into the training set to cover the range of the prediction set. Splitting
was undertaken by the software and was based on (1) the sorted pIC50 values (ORes) or
(2) the structure based on the PC1 score of descriptors (OStr) or (3) was random. For ORes
splitting, compounds were sorted by their pIC50 values, and from the second molecules,
every fourth compound was placed in the prediction set, and the remaining three of the
four were put into the training set. For OStr splitting, compounds were sorted by their
PC1 scores, and again, one of every four compounds was placed in the prediction set. The
distribution of splitting (PC1 vs. PC2) was checked by the principal component analysis
(PCA) using only descriptor variables (Figure S1).

The dataset splitting methods ensured that the selection procedure was unbiased. In
order to develop a model with a wider applicability domain (AD), once the best variable
combination was found by the splitting technique, the full model was obtained through
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recalculation on the complete set (combining training and prediction sets), since all available
experimental information was then considered [40,41].

2.5. Model Development and Validation

Variable selection from the large pool of descriptors is a very important step in the
process of model development. Here, we used a Genetic Algorithm Variable Subset
Selection (GA-VSS) tool of the QSARINS software [38] to conduct the variable selection.
Initially, all the possible combinations of two descriptors were explored by all subset
facilities to find the subset of descriptors encoding the response. Then, using the leave-
one-out cross-validated correlation coefficient (Q2

LOO) as a fitness function, GA-VSS was
utilized to seek the new combinations with additional descriptors to yield the models. The
generation per size, population size and mutation rate were given values of 2000, 200 and
20, respectively.

Depending on the empirical ratio [33,42], to reduce the possibility of chance correlation,
the number of descriptors in the model should be less than one-fifth of the number of
training compounds. QSAR models were established through Multiple Linear Regression
(MLR) using the Ordinary Least Squares (OLS) approach implemented in the QSARINS
software [38]. According to the OECD principle 2, a QSAR model should be associated with
“an unambiguous algorithm” [42], which ensures the transparency of the model algorithm.
It should be noted that the algorithmic information in commercial models is usually less
publicly available.

Depending on the OECD principle 4, a QSAR model should be associated with “ap-
propriate measures of goodness-of-fit, robustness and predictivity” [42]. The internal
robustness and predictive ability of the model were assessed by the Q2

LOO, Q2
LMO, R2

(including adjusted R2
adj), root mean standard error (RMSEtr) and mean absolute error

(MAEtr) [43,44]. In the leave more out (LMO) procedure, 30% of compounds were excluded
from each calculation for 2000 iterations. A Y-randomization test (the dependent variable
Y was randomly scrambled, while the independent variable matrix is unchanged) with
2000 iterations was also used for assessing the chance correlation between the model de-
scriptors and response endpoint. In this test, the sequence of the response vector Y was
randomly scrambled, while the descriptor variable X for each object was unchanged. In
addition, we set the threshold of the QUIK (Q Under Influence of K) rule as 0.05 to exclude
multi-co-linearity [42,45]. The external predictivity of the model was evaluated by the
statistical parameters R2

pr, Q2
F1, Q2

F2, Q2
F3, CCCpr, RMSEpr and MAEpr [44]. The detailed

calculated formulae can be found elsewhere [44,46]: all the parameters are listed in Table
S2 in the Supplementary Materials.

2.6. Best Model Selection by Multiple-Criteria Decision Making

On the basis of fitting and internal and external validation, the Multiple-Criteria
Decision Making (MCDM) module implemented in QSARINS software [38] was utilized to
rank the model performance as a score from 0 (the worst) to 1 (the best). The MCDMfit value
was computed via the maximization of R2, R2

adj and CCCtr, whereas the minimization
of the R2 − R2

adj. MCDMext value was computed via the maximization of Q2
F1, Q2

F2,
Q2

F3 and CCCpr. As a consequence, we selected the best QSAR model depending on both
the MCDMfit and MCDMext values. These models fulfill the OECD principles as well as
various validation criteria [42]. It is accepted that the best model should be obtained with
the lowest number of descriptors.

2.7. Applicability Domain (AD) Analysis

Depending on the OECD principle 3, a QSAR model should have “a defined domain
of applicability” [42]. Only the compounds inside the AD of the model should provide
reliable predictions. Here, we used both leverage and standardized residue approaches
to define the AD [38,39]. Structural outliers were identified using the leverage approach.
If a compound has a hat (h) value greater than the warning h*, it will be identified as a
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structural outlier. The warning h* value was calculated by the formula of 3(p + 1)/n, in
which p is the number of variables in the model equation, and n is the number of training
set compounds. If the standardized residual of a compound is more than three standard
deviation units, it is identified as a response outlier.

We also prepared a true external set consisting of 66 compounds for checking the
predictivity of the developed model. In order to visually show the prediction confidence
for each molecule, an Insubria graph which plots the predicted values of the training/true
external set against their hat values was generated [39]. The predictions for compounds
with hat values greater than h* should be considered to have low confidence.

2.8. Prediction Using a Similarity-Based Chemical Read-Across Technique

Read-Across (RA) is a completely similarity-based technique without the process of
developing a statistical model, which is the most significant feature that is different from the
classical QSAR methodology [47,48]. RA is widely used in qualitive predictions; however,
the quantitative read-across technique was also reported in recent years. To further improve
the external predictive ability, we used a novel approach called the quantitative read-across
structure–activity relationship (q-RASAR) [49,50]. After completing the development of
2D-QSAR, the training set was divided into a subtraining set and subtest set, followed
by the optimization of the hyperparameter using the Read-Across V4.1 tool (https://
sites.google.com/jada vpuruniversity.in/dtc-lab-software/home) (accessed on 1 April
2023). The optimized hyperparameters were applied to the original dataset files as the
input. In this study, the similarity determination between the training compounds and test
compounds was determined based on the Euclidean distance, Laplacian kernel function
and Gaussian kernel function. Then, we calculated the RASAR descriptors based on
the selected descriptors in the 2D-QSAR model by the RASAR-Desc-Calc-v2.0 software
(https://sites.google.com/jada vpuruniversity.in/dtc-lab-software/home) (accessed on 1
April 2023) using the optimized hyperparameters. The RASAR descriptors were combined
with original 2D descriptors to develop the q-RASAR model using the same setting as
2D-QSAR. Finally, we obtained a q-RASAR model and q-RASAR-full model; the latter was
also applied to the predictions of true external compounds.

3. Results and Discussion
3.1. MGMT Inactivation

The MGMT inactivation assay results, along with the compound name, number and
structure, are listed in Table S1 in the Supplementary Materials.

3.2. Chemical Space Distribution

After processing the original data, we obtained 458 entries for MGMT inactivation
(Table S1). For compounds also produced as salts, only the entry corresponding to the
free compound was used. For hydrates, we deleted the water molecules in the descriptor
calculations and model development.

The initial QSAR model development showed that 17 compounds were always re-
sponse outliers that substantially influenced the linear fitting in different dataset splitting
schemes. These compounds may be related to the activity cliffs [51,52]. It is suspected
that the experimental IC50 values for these compounds may be erroneous, and they were
therefore excluded. In addition, there were 49 compounds that were found to not inactivate
MGMT at the highest concentration used in the assay and thus had no definitive IC50 values.
Therefore, a total of 66 compounds were excluded from the training and prediction sets
and selected as the true external set. Hence, in our modeling study (Table S1), the numbers
for the training set, prediction set and true external set were 279, 91 and 66, respectively, in
the best QSAR model (Tables S3 and S4).

Chemical space similarity is very important for evaluating the predictive performance
of a model. Here, we used two commonly used physicochemical parameters: molecu-

https://sites.google.com/jada
https://sites.google.com/jada
https://sites.google.com/jada
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lar weight (MW) and Ghose−Crippen LogKow (ALogP), to explore the chemical space
distribution [53–56] and plotted these as a scatter diagram (Figure 3).
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Given that the training set, prediction set and true external set, as expected, shared
a similar chemical space, the models derived from the training set should have a broad
applicability domain (AD) and thus a good degree of generalization.

3.3. QSAR Modeling of Potential MGMT Inactivators
3.3.1. Model Selection and Evaluation

According to the criteria recognized by Golbraikh and Tropsha [43], if a QSAR model
meets the following thresholds for different statistical parameters: Q2

LOO > 0.5, R2 and
R2

pr > 0.6; 0.85 ≤ k or k′ ≤ 1.15; |R2
0 − R′20| < 0.3, it should be considered an acceptable

model. R2
0 and R′20 represent the correlation coefficients of regression of the predicted

versus experimental values and experimental versus predicted values through the origin,
respectively. K and k′ represent the slopes of the corresponding regression lines for R2

0 and
R′20, respectively.

Of the three splitting methods, that based on the ORes model had low values of Q2
LOO

and R2 and did not meet the basic standard for an acceptable model [43]. This may be
due to the model (Equation (1), Table 1) containing only three descriptors, and this cannot
adequately simulate the biochemical response endpoint (pIC50).

Although the OStr model (Equation (2), Table 1) is internally robust and stable (Q2
LOO

= 0.6496, R2 = 0.6826), its external predictive performance is compromised (R2
pr < 0.6) ac-

cording to statistical criteria [43]. On the other hand, the OStr model included 13 molecular
descriptors, which complicates the interpretation of the model.

It is remarkable that only the model derived from the Random splitting method (Rnd
model or 2D-QSAR) fulfilled the Golbraikh and Tropsha criteria [43]. Furthermore, the
2D-QSAR model (Equation (3), Table 1) had the best predictivity for the prediction set
(R2

pr = 0.7474, Q2
Fn = 0.7375~0.7437, CCCpr = 0.8530), which met even the higher statistical

standard proposed by Chirico and Gramatica [44], in which the thresholds of Q2
Fn, R2

pr
and CCCpr are 0.7, 0.7 and 0.85, respectively. Low values of Q2

Yscr (−0.0424) and R2
Yscr

(0.0324) indicated that the model was not generated by chance correlation (Figure 4A).
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Table 1. Statistical parameters for the internal and external validation of the developed QSAR models +.

Division Fitting Robustness Chance Correlation External Validation Accuracy

Scheme Ntr Npr R2 Q2
LOO Q2

LMO Q2
Yscr R2

Yscr R2
pr Q2

F1 Q2
F2 Q2

F3 CCCpr RMSEtr RMSEpr MAEtr MAEpr

ORes 278 92 0.5098 0.4968 0.4952 −0.0186 0.0108 0.5319 0.5271 0.5266 0.5658 0.6891 0.8669 0.8151 0.6666 0.6440
pIC50 = 3.9243 + 0.6729F09[O-S] + 0.121SaaN + 1.005MDEN-12 (k = 1.0, |R2

0 − R′20| = 0.4582) (1)

OStr 278 92 0.6826 0.6496 0.6451 −0.0544 0.0432 0.5882 0.5721 0.5712 0.5814 0.7617 0.6917 0.7943 0.5514 0.5982
pIC50 = 7.1639 − 47.2151VE2sign_B(m) + 2.8662MATS6i − 1.5036GATS7p − 0.1826H-048

+ 0.5367O-060 − 0.3698B08[N-O] + 0.3948F06[C-S] − 0.1856SsNH2 + 0.0537minHBint6 + 1.8451MDEN-12 + 0.1755MDEN-22 − 0.8906minaaCH (k = 1.0, |R2
0 − R′20| = 0.1428) (2)

Random (2D-QSAR) 279 91 0.6086 0.5743 0.5648 −0.0424 0.0324 0.7474 0.7377 0.7375 0.7437 0.8530 0.7682 0.6215 0.6114 0.5224
pIC50 = 4.5562 + 2.5829MATS6i − 0.191nCp + 0.3196O-060 + 0.6746B03[O-S]

− 0.2499SsNH2 + 2.4853maxHBd − 2.3712hmin + 1.1784MDEN-12 − 0.6509minaaCH (k = 1.0, |R2
0 − R′20| = 0.2436) (3)

2D-QSAR-Full model 370 — 0.6426 0.6202 0.6127 −0.0309 0.0248 — — — — — 0.7320 — 0.5855 —
pIC50 = 4.7334 + 2.3826MATS6i − 0.2387nCp + 0.3401O-060 + 0.6301B03[O-S] − 0.248SsNH2 + 2.1364maxHBd

− 2.3442hmin + 1.8332MDEN-12 − 0.6324minaaCH (4)

q-RASAR 279 91 0.6059 0.5957 0.5926 −0.0189 0.0103 0.7528 0.7389 0.7387 0.7449 0.8560 0.7708 0.6201 0.6144 0.4812
pIC50 = −1.1683 + 0.9192RA function (ED) + 0.0718CATS2D_07_AL + 1.2875LLS_02 (5)

q-RASAR-Full model 370 0.6392 0.6322 0.6305 −0.0136 0.0083 — — — — — 0.7354 — 0.5799 —
pIC50 = −1.1089 + 0.9149RA function (ED) + 0.0667CATS2D_07_AL + 1.3166LLS_02 (6)

+ All abbreviations are explained in the text. The bold typefaces indicate the best splitting model and the recalibrated full model using the same descriptors. The q-RASAR model was
also established based on the best splitting model and recalibrated as the q-RASAR-Full model.
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In fact, we also tried to use other dataset splitting methods such as Kennard–Stone
(http://teqip.jdvu.ac.in/QSAR_Tools/) (accessed on 16 August 2023) and other modeling
methods (PLS or stepwise MLR implemented in the Double Cross-Validation v2.0 Software
Tool) [57] for model development. However, the quality of these models was not better
than that of the Ran (2D-QSAR) model.

Figure 5 shows the graph of experimental versus predicted pIC50 values (Figure 5A)
and the Williams Plot (Figure 5B) for the AD analysis of the 2D-QSAR model derived from
the Random splitting method.

We found that the training and prediction set compounds were homogenously dis-
tributed around the trend line, indicating a good predictive ability for query molecules.
Considering the AD of the 2D-QSAR model (Figure 5B), only four compounds in the
prediction set and eleven compounds in the training set had hat values greater than the
warning h* value (0.108). These were identified as structural outliers, and they may thus
be influential in the variable selection in the training set. However, we are not suggesting
that these structural outliers cannot be predicted reliably. For example, compound 348
has the maximum hat value, but its predicted residual was very small (0.1601 log unit)
(see the detailed data in Table S3). The four prediction set compounds (299, 301, 302, 336)
were also predicted accurately since their predicted residuals were also small (Table S3).
Meanwhile, the predicted residuals of compounds 355, 356 and 357 were relatively higher
(~1 log unit) (Table S3). In contrast, only one compound, 257, was identified as a response
outlier because it had standardized residuals greater than 3.0 standard deviation units
(Table S3).

http://teqip.jdvu.ac.in/QSAR_Tools/
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values (C) and the Williams plot (D) for the q-RASAR model defined by Equation (5) (Table 1).

Table 2 described the nine molecular descriptors selected by the GA-VSS that were
present in the model equation along with their relative importance (Std. coefficient) and
physicochemical definitions.

Table 2. Descriptors selected by GA-VSS with the standardized coefficient, range of values and
physicochemical definitions.

Descriptors
Std. Coefficient Range

Definition
(Full Model) Min Max

MATS6i 0.2152 (0.1946) −0.212 0.371 Moran autocorrelation of lag 6 weighted
by ionization potential (DRAGON)

nCp −0.106 (−0.1331) 0 6 number of terminal primary C(sp3)
(DRAGON)

O-060 0.1908 (0.2012) 0 4
Al-O-Ar/Ar-O-Ar/R..O..R/R-O-C=X
(Atom-centered fragments, Basic
descriptors) (DRAGON)

B03[O-S] 0.2623 (0.2452) 0 1 Presence/absence of O-S at topological
distance 3 (DRAGON)

SsNH2 −0.4636 (−0.4582) 0 11.662 Sum of atom-type E-State: –NH2
(DRAGON)

maxHBd 0.2085 (0.185) 0 0.764 Maximum E-States for (strong) Hydrogen
Bond donors (PaDEL)

hmin −0.1766 (−0.1792) −0.447 0.425 Minimum H E-State (PaDEL)

MDEN-12 0.6452 (0.6567) 0 2.515 Molecular distance edge between all
primary and secondary nitrogens (PaDEL)

minaaCH −0.1103 (−0.1063) 1.075 2.329 Minimum atom-type E-State: CH:
(PaDEL)

3.3.2. Full Model

As described above, we have verified the external predictive ability of the 2D-QSAR
model with the best combination of descriptor variables. Subsequently, based on the
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same variables, the model (Equation (3), Table 1) was recalibrated using the entire set of
compounds (Ntr = 370). The new model was called the 2D-QSAR-Full model (Equation (4),
Table 1) and it considered all the available information in the training and test sets.

The endpoint, expressed as pIC50 (−logIC50, mol/L), ranged from 2.22 to 8.74, span-
ning more than six log units and suggesting that the dataset is adequate for QSAR stud-
ies. As shown in Table 1, the 2D-QSAR-Full model showed satisfactory internal fitness
(R2 = 0.6426) and robustness (Q2

LOO = 0.6202, Q2
LMO = 0.6127). Again, the values of Q2

Yscr
(−0.0309) and R2

Yscr (0.0248) were very low, indicating the absence of any chance correla-
tion. The graph of experimental versus predicted pIC50 values (Figure 6A) and the Williams
Plot (Figure 6B) are given below.
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Figure 6. The graph of experimental versus predicted pIC50 values (A) and the Williams plot
(B) for the 2D-QSAR-Full model defined by Equation (4) in Table 1; the graph of experimental
versus predicted pIC50 values (C) and the Williams plot (D) for the q-RASAR-Full model defined by
Equation (6) in Table 1.

Molecular descriptors were calculated from the 2D structural information using
Dragon [36] and PaDEL [37] software. We emphasize that these descriptors capture the
global properties of the molecular structure or encode for some specific groups or frag-
ments, such as electronic accessibility (E-State), spatial autocorrelations (2D autocorrelation)
or the presence or absence of a specific fragment. The scatter plot of each descriptor versus
pIC50 was shown in Figure 7. The value of each descriptor was listed in Table S5 in the
Supplementary Materials.
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According to the model Equation (4) (Table 1) and the standardized coefficients of each
variable (Table 2), the most important descriptors for MGMT inactivation were MDEN-12
(std. coefficient 0.6567) and SsNH2 (std. coefficient −0.4582). It should be noted that
MDEN-12 was positively correlated (Figure 7A), while SsNH2 was negatively correlated
with the MGMT inactivation potency (Figure 7B). MDEN-12 is the molecular distance
edge between all primary and secondary nitrogens [58]; for example, compounds 84 and
134 with high MDEN-12 values (2.144 and 2.490, respectively) were strong inactivators
(pIC50 = 8.04 and 8.20, respectively). Figure S2 showed MDEN-12 descriptor values for
the two benchmark inactivators Lomeguatrib and O6-BG and the selected compounds.
This descriptor also highlights the importance of the presence of –NH2: compounds
without 2′-NH2 (such as 70, 108, 111 and 158) were commonly less effective in MGMT
inactivation. This is consistent with our previous study indicating that the 2′-NH2 of
guanine is essential for inactivation because it plays an important role in hydrogen bond
formation with Cys145/Val148 residues of MGMT (see Figure 1) [3,8,59]. However, MDEN-
12 as a single descriptor did not adequately model the MGMT inactivation potency in
a general model; hence, the GA-VSS selected additional descriptors to obtain a model
with higher predictivity. SsNH2 represents the sum of atom-type electrotopological states
(E-State): –NH2 [58], indicating that the aliphatic primary amino can compromise the
MGMT inactivation potency to a certain extent, especially for the guanine derivatives 193,
199, 214, 221, 222, 241 and 418, which have an aliphatic amino in the N9 position. This was
also supported by a previous study indicating that a large polar group at the N9 position
of guanine was not well tolerated [14]. Figure S3 showed SsNH2 descriptor values for
Lomeguatrib, O6-BG and the selected compounds. Indeed, MDEN-12 and SsNH2 were
two mutually balanced descriptors in the model, as indicated by the compounds 64, 65 and
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66, since they had low values (0) for the two opposite descriptors, but a moderate potency
(pIC50 = 5.72, 6.52 and 4.55, respectively) (see Table S5).

O-060 (std. coefficient 0.2012) and B03[O-S] (std. coefficient 0.2452) are two descriptors
that are related to the presence of a specific group or fragment [58], and on the basis of
these coefficients, they were positive contributors to MGMT inactivation potency. O-060
belongs to the basic descriptors of atom-centered fragments, representing the presence of
Al-O-Ar/Ar-O-Ar/R..O..R/R-O-C=X fragments. In the entire dataset, this descriptor had
discrete values of 0, 1, 2, 3 and 4, respectively. There were nine compounds (283, 292, 330,
369, 373, 405, 420, 421 and 427) that had the maximum O-060 value of four and a relatively
high MGMT inactivation activity (pIC50 = 6.764–8.520) (Figure 7C). The values of the O-060
descriptor for Lomeguatrib, O6-BG, and the selected compounds are shown in Figure S4.
B03[O-S] indicates the presence or absence of O-S at topological distance 3, and it was clear
that the thiophene group substituted on the guanine O6 position in compounds like 112,
401 and 402 (Tables S1 and S5) contributed substantially to their high inactivation potency
(Figure 7D). Figure S5 shows B03[O-S] values for Lomeguatrib, O6-BG and the selected
compounds.

MATS6i (std. coefficient 0.1946) is the Moran autocorrelation of lag 6 weighted by the
ionization potential [58]. It indicates the relative charge distribution of a molecule, i.e., the
electron cloud, and thus may enhance charge or hydrogen bond interactions with the target.
Because base analog-mediated MGMT inactivation is absolutely dependent on the ability
to donate a carbocation to the active site of MGMT [1,3,6], MATS6i is generally a positive
contributor to the response endpoint (Figure 7E). Figure S6 showed MATS6i values for
Lomeguatrib, O6-BG and the selected compound 407, which had a high MATS6i value
(0.352) and a high inactivation potency (pIC50 = 8.523) (Table S5).

The descriptor maxHBd (std. coefficient 0.1850) indicates the maximum E-States for
(strong) hydrogen bond donors and clearly contributes to increasing the inactivation activity
(Figure 7F). For example, compounds 411 and 90 were strong inactivators (pIC50 = 8.55 and
8.52, respectively) with high maxHBd values (0.629 and 0.637, respectively) (see Table S5).
Figure S7 shows the values of the maxHBd descriptor for Lomeguatrib, O6-BG and the
selected compounds.

The last three descriptors were nCp (−0.1331), hmin (std. coefficient −0.1792) and
minaaCH (−0.1063) (see Table 2), the latter two being E-state descriptors [58]. Individ-
ually, these three descriptors were less important in defining the model equation but
supported the six main descriptors. The descriptor hmin indicates a minimum H E-State,
which encodes for the minimum E-State of hydrogen atoms. The minaaCH descriptor
represents the minimum atom-type E-State aromatic-CH-aromatic, in which atom-type
E-state indices are computed by summing the E-state values of all atoms of the same atom
type in a molecule [58]. These descriptors characterize the information related to the elec-
tronic accessibility of an atom and hence the probability of intermolecular interactions [60].
In our model, the two E-state descriptors were negatively correlated with the response
endpoint, which was consistent with the aquatic toxicity models of pesticide and phar-
maceuticals [41,61]. The nCp descriptor represents the number of terminal primary sp3
carbons [58], and this was also inversely related to the response according to its equation
coefficient. The values of the three descriptors for Lomeguatrib, O6-BG and the selected
compounds are shown in Figure S8.

The developed model was derived from multivariable combinations based on a statis-
tically driven procedure (i.e., GA-VSS-based selection). Thus, none of the descriptors can
independently explain the distribution of the modeled endpoint, and only the combination
of all selected descriptors can accurately model the response to be studied.

3.4. q-RASAR Analysis

After the development of the 2D-QSAR model, the same training and test set files were
used as inputs for quantitative Read-Across predictions using three different similarity-
based functions, namely, the Euclidean Distance, Gaussian Kernel function and Laplacean
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Kernel function [47,48]. For the predictions of prediction set compounds, a default sigma
value (σ) of 1 for the Gaussian kernel function and a default gamma value (γ) of 1 for
the Laplacian kernel function were used, and the distance threshold value and similarity
threshold value were set as 1 and 0, respectively. The number of the closest training
compounds for activity prediction was six. It was found that the external validation
parameters like Q2

F1 (0.7401), Q2
F2 (0.7399), RMSEpr (0.6187) and MAEpr (0.4802) from

quantitative Read-Across using the Euclidean Distance (see Table S6) were better than those
of 2D-QSAR.

To establish QSAR-based Read-Across predictions, we performed the q-RASAR mod-
eling [49,50]. The equation of the q-RASAR model (Equation (5)) is listed in Table 1. In
Equation (5), the RA function (ED) variable was a Euclidean Distance-based Read-Across
prediction function obtained from the original 2D descriptors. It can be accessed by the
free online tool RASAR-Desc-Calc-v2.0 (https://sites.google.com/jadavpuruniversity.in/
dtc-lab-software/home) (accessed on 1 April 2023). The low difference between R2 and
Q2

LOO indicated the robustness of the model and the higher values of R2
pr, Q2

F1, Q2
F2 and

Q2
F3, and the lower MAEpr value suggested the good predictivity and transferability of

the q-RASAR model. Due to the good internal robustness and external predictivity, we
also constructed the q-RASAR-full model (Equation (6) in Table 1) using all the available
information. Low values of Q2

Yscr and R2
Yscr (0.0324) indicated that the q-RASAR model

and q-RASAR-Full model were not generated by chance correlation (Figure 4C,D).
The linear correlations for the q-RASAR and q-RASAR-Full models are shown in

Figures 5C and 6C, respectively. Meanwhile, the AD analysis of the q-RASAR and q-
RASAR-Full models is shown in Figures 5D and 6D. We found relatively fewer outliers in
q-RASAR modeling compared to 2D-QSAR modeling.

The detailed information about the q-RASAR model is listed in Table S7 in the Supple-
mentary Materials. The values of each variable in the q-RASAR-Full model are listed in
Table S8 in the Supplementary Materials.

3.5. Application of the 2D-QSAR-Based Full Model and q-RASAR-Full Model

We constructed a true external set consisting of 66 unknown molecules. After calculat-
ing their descriptors, the 2D-QSAR-Full model was applied to predict their pIC50 values.
As shown in Figure 8A, 12 of 66 true external compounds lay outside the model’s AD,
since their h values are greater than h* (0.081), suggesting >80% prediction coverage. In
particular, compound 36 has the highest h value (0.2664 >> h*). If we defined the AD of
the model using the PCA approach (Figure 8B), only one compound (again, compound
36) in the true external set falls outside the AD, resulting in a more significant prediction
coverage (98.5%).

Similarly, the q-RASAR-Full model was also applied to the true external compounds.
As shown in Figure 8C, only one true external compound (436) lay outside the model’s AD,
suggesting >98% prediction coverage. In fact, compound 436 only has a slightly higher
h value (0.0387) compared to the threshold value h* (0.0324). Using the PCA approach
(Figure 8D), only one compound (compound 308) in the true external set falls outside the
AD, also showing a considerable prediction coverage.

Subsequently, we also used the “Prediction Reliability Indicator” tool (http://dtclab.
webs.com/software-tools) (accessed on 22 December 2022) [62] to check the prediction
quality for each true external compound. Each compound is scored (composite score of 3, 2
or 1) based on the absolute prediction errors that correspond to “Good”, “Moderate” or “Bad
or Unreliable” prediction quality, respectively. As shown in Table S9, we found 56 “Good”
compounds, 10 “Moderate” compounds and no “Bad or Unreliable” compounds derived
from the 2D-QSAR-Full model. As for the q-RASAR-Full model, we found 61 “Good”
compounds, 5 “Moderate” compounds and no “Bad or Unreliable” compounds (Table S10).
The results suggest that our Full models, especially the latter, have a wide and reliable
prediction scope and that they can be used to forecast the MGMT inactivation potency of
untested compounds. A priori designed compounds would be identified by our validated

https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/home
https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/home
http://dtclab.webs.com/software-tools
http://dtclab.webs.com/software-tools
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model and the most potent prioritized so that, time, money and resources would be saved.
Of course, the multi-objective optimization modeling is also very important, especially
when simultaneously considering the bioactivity, bioavailability and toxicity [63,64].
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Figure 8. Insubria graph of the 2D-QSAR-Full model (A) and principal component analysis (PCA)
plot based on the selected nine descriptors shown in Table 2 (B); Insubria graph of the q-RASAR-Full
model (C) and PCA plot based on the three variables shown in Equation (6) (D). The four plots show
the applicability domain (AD) when the two Full models are applied to true external compounds
without experimental values.

4. Conclusions

In this study, using the experimental IC50 values for a total of 370 MGMT inactivators,
we developed QSAR models using a GA-MLR method, and Dragon and PaDEL software
were combined to calculate molecular descriptors for model establishment. Three splitting
models were assessed for robustness, reliability, fitness and predictivity. After selecting the
best splitting model, a 2D-QSAR-Full model was then recalibrated using all the available
experimental information (370 compounds). The mechanistic interpretation indicated
that the status of nitrogen atoms, aliphatic primary amino groups, the presence of O-S at
topological distance 3, the presence of Al-O-Ar/Ar-O-Ar/R..O..R/R-O-C=X, the ionization
potential and hydrogen bond donors are the main factors controlling MGMT inactivation
potency. Using the selected features in the 2D-QSAR and chemical Read-Across technique,
we developed the q-RASAR model, which exhibited better external predictive ability. The
AD analysis showed that the splitting 2D-QSAR model and 2D-QSAR-Full model had a
significantly high coverage for the test set and true external set. In summary, the QSAR
Full model developed in this study can be used for optimizing the design of novel MGMT
inactivators. Thus, for novel untested compounds, we can predict their IC50 if they are
located at the applicability domain, focus on compounds with a high inactivation potential
and, hence, reduce unnecessary chemical synthesis.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/pharmaceutics15082170/s1. Figures S1–S8 and Tables S1–S10.
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