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Abstract: Metformin is the most commonly prescribed glucose-lowering drug for the treatment
of type 2 diabetes. The aim of this study was to investigate whether metformin is capable of
impeding the oxidation of LDL, a crucial step in the development of endothelial dysfunction and
atherosclerosis. LDL was oxidized by addition of CuCl2 in the presence of increasing concentrations
of metformin. The extent of LDL oxidation was assessed by measuring lipid hydroperoxide and
malondialdehyde concentrations, relative electrophoretic mobilities, and oxidation-specific immune
epitopes. Cytotoxicity of oxLDL in the vascular endothelial cell line EA.hy926 was assessed using the
alamarBlue viability test. Quantum chemical calculations were performed to determine free energies
of reactions between metformin and radicals typical for lipid oxidation. Metformin concentration-
dependently impeded the formation of lipid hydroperoxides, malondialdehyde, and oxidation-
specific immune epitopes when oxidation of LDL was initiated by addition of Cu2+. The cytotoxicity
of oxLDL was reduced when it was obtained under increasing concentrations of metformin. The
quantum chemical calculations revealed that only the reaction of metformin with hydroxyl radicals
is exergonic, whereas the reactions with hydroperoxyl radicals or superoxide radical anions are
endergonic. Metformin, beside its glucose-lowering effect, might be a suitable agent to impede the
development of atherosclerosis and associated CVD. This is due to its capability to impede LDL
oxidation, most likely by scavenging hydroxyl radicals.

Keywords: antioxidants; atherosclerosis; diabetes; copper ions; low density lipoprotein; lipid oxidation

1. Introduction

Metformin is a guanidine derivative and was initially extracted from the plant Galega
officinalis (French lilac). It has been used as a glucose-lowering medication in humans for
more than 60 years. Metformin is highly cost-effective and has proven to be safe. Metformin
is considered as an insulin-sensitizer by virtue of its capability to reduce insulin resistance
and decrease plasma fasting insulin levels [1–3]. In numerous clinical trials, metformin has
been shown to decrease the blood glucose level by decreasing the hepatic glucose output
as well as by inducing greater peripheral glucose uptake [4].
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Metformin plays an important role in pharmacologic therapy for adults with type
2 diabetes. The American Diabetes Association recommends that metformin should be
continued upon initiation of insulin therapy (unless contraindicated or not tolerated) for
ongoing glycemic and metabolic benefit [5]. Metformin is effective, safe, inexpensive,
and available in an immediate-release form for twice-daily dosing or in an extended-
release form that can be given once daily. Because type 2 diabetes is a progressive disease,
combination therapy might be required. Stepwise addition of medications to metformin
is recommended to maintain glucose levels at target. More extensive initial combination
therapy for more rapid attainment of glycemic goals and later combination therapy for
longer durability of glycemic effect are required [5–8].

The principal side effects of metformin use are gastrointestinal intolerance due to
bloating, abdominal discomfort, diarrhea, and lactic acidosis. Metformin may be safely
used in people with reduced estimated glomerular filtration rates [5]. Moreover, metformin
use could be associated with vitamin B12 deficiency and worsening of neuropathy [9].
These side effects occur very rarely.

Several additional beneficial properties have been attributed to metformin. For ex-
ample, metformin affects the aging process [10] and exerts anti-inflammatory as well
as anticancerous effects [11,12]. Moreover, metformin is capable of minimizing the ele-
vated risk of cardiovascular disease in diabetic patients [13]. The capability of metformin
to reduce atherosclerosis progression in individuals with type 1 diabetes has been con-
firmed by carotid artery intima–media thickness measurements, a surrogate outcome for
atherosclerotic cardiovascular disease [2,14–17].

However, the mechanisms of action through which metformin exerts its antiatheroscle-
rotic effects are not fully understood. Low-density lipoprotein (LDL), not atherogenic in
its native state (nLDL), might become subject to oxidation in the subendothelial space of
arteries by mechanisms involving free radicals and/or lipoxygenases.

LDL is the most important cholesterol-carrying particle in the circulation. The main
role of LDL is to deliver cholesterol to both peripheral and liver cells. The interaction of
dietary and genetic factors determines the amount of LDL cholesterol in the plasma. The
liver generates very low-density lipoprotein, which is metabolized by lipoprotein lipase
to intermediate-density lipoprotein. Hepatic triglyceride lipase converts intermediate-
density lipoprotein to LDL, which is cleared from the circulation via the LDL receptors
expressed in the liver and other cells [18]. Total cholesterol exceeding 200 mg/dL and
LDL cholesterol exceeding 130 mg/dL are considered abnormal. In overweight people,
lifestyle modifications are crucial (exercise and/or diet control) to lose weight. To decrease
LDL levels, 3-hydroxy-3-methylglutaryl-coenzym-A (HMG Coa) reductase inhibitors are
used. These drugs are capable of inhibiting the conversion of HMG Coa to the choles-
terol precursor mevalonate [19]. Proprotein convertase subtilisin/kexin type 9 (PCSK 9)
inhibitors also significantly decrease serum LDL levels by dampening the degradation of
LDL receptors [20].

LDL lipids undergo peroxidation. Subsequently, certain aldehydes generated during
lipid peroxidation modify the apolipoprotein B100 (apoB100), the protein part of LDL. The
resulting oxidized form of LDL (oxLDL) is readily internalized by macrophages through a
so-called “scavenger receptor” pathway. The macrophages change to foam cells, initiating
processes resulting in atherosclerosis [21]. The liver assembles triglyceride-rich lipoproteins
and secretes them into the circulation. Lipoprotein lipases on the surface of the vascular
endothelial cells hydrolyze these lipoproteins to the cholesterol-rich LDL. These LDL
particles have a rather long life and circulate in the blood for about two days before they
are cleared. The oxidized form of nLDL, oxLDL, has been shown to exert cytotoxic effects
on endothelial cells of the vasculature, leading to endothelial dysfunction [22].

We hypothesized that metformin might be capable of preventing the oxidation of
LDL and thereby the development of endothelial dysfunction and atherosclerosis. Our
assumption is supported by previous reports having shown that metformin attenuates
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superoxide generation as well as oxLDL-induced cell death in human primary coronary
artery endothelial cells [23].

In the present study, we aimed to investigate the capability of metformin to impede the
oxidation of nLDL using a well-established Cu2+ in vitro model. nLDL was preincubated
in the absence or presence of increasing concentrations of metformin and then oxidized
by addition of CuCl2. The degree of oxidation of the lipid part of the LDL particle was
assessed by measuring lipid hydroperoxide levels (LPO) as well as malondialdehyde
(MDA) concentrations. The oxidation of the protein part of the LDL particle was assessed
by quantifying oxidation-specific immune epitopes and by determining the respective
relative electrophoretic mobility (REM) [24]. Additionally, we aimed to assess the cytotoxic
effects of the oxLDL obtained under increasing concentrations of metformin in the vascular
endothelial cell line EA.hy926 cells using the alamarBlue viability test [25,26].

The chemical mechanisms by which copper ions oxidize LDL are so far not completely
understood. Therefore, elucidation of the precise reactions by which metformin impedes
Cu2+-mediated LDL oxidation is somewhat difficult. It has been suggested that copper
ions form initiating radicals by Fenton-type reactions or by transition complexes with
molecular oxygen [20], leading to the formation of hydroxyl radicals (HO•), hydroperoxyl
radicals (HOO•), and superoxide radical anions (O2

•−). By means of quantum chemical
calculations, we assessed the reaction capability of these reactive oxygen species (ROS)
with metformin in order to reveal the possible LDL oxidation attenuation mechanism.

2. Materials and Methods
2.1. Preparation of nLDL

The appropriate institutional review board (ethics committee of the Medical University
of Graz; 27-320 ex 14/15) approved this study. Written informed consent was obtained from
all participants. Human LDL (1.020 to 1.063 g/mL) was obtained from the plasma of four
normolipemic (Lp(a) < 5 mg/dL), fasting (12 to 14 h) male young individuals by sequential
ultracentrifugation with potassium bromide [27,28]. Pefabloc (50 µM, Sigma Aldrich, Vi-
enna, Austria), EDTA (1 g/L, Merck, Darmstadt, Germany), and butylated hydroxytoluene
(BHT, 20 µM, Sigma, St. Louis, MO, USA) were present during all steps of lipoprotein
preparation in order to prevent lipid peroxidation and apolipoprotein B (apoB) cleavage
by proteinases and possible contaminating bacteria. The samples were sterile filtered and
stored at 4 ◦C in the dark until use. The Lowry method was applied to measure the protein
content of LDL [29]. Total cholesterol of the isolated LDL was determined enzymatically
using the CHOD-iodide test kit (Boehringer-Mannheim, Mannheim, Germany).

2.2. nLDL Oxidation Using Cu2+ Ions

nLDL (1.5 mg/mL) was preincubated with increasing concentrations of metformin
(0–2500 µg/mL) for 30 min at 37 ◦C (pH = 7.4) in 0.01 mol/L phosphate buffer contain-
ing 0.154 mol/L NaCl. Subsequently, nLDL oxidation was triggered by adding CuCl2
(10 µmol/L, final concentration) for up to 8 h as described previously [25,27].

2.3. Determination of Lipid Hydroperoxides (LPOs)

The amount of LPO present in LDL of arterial or venous origin was determined with
a spectrophotometric assay for lipid hydroperoxides in serum lipoproteins [25,27]. In
principle, lipid peroxides are capable of converting iodide to iodine. Briefly, 100 µL of LDL
solution (containing 1.5 mg/mL of total LDL) was mixed on a vortex mixer with 1 mL of
a color reagent taken from a commercially available kit for enzymatic determination of
cholesterol (CHOD-iodide; Merck; Darmstadt, Germany). The samples were allowed to
stand for 30 min in the dark at ambient temperature. The absorbance was measured at
365 nm against the color reagent only as the blank, and the concentration was calculated
using the molar extinction EM = 2.46 × 104 M−1cm−1 [25].
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2.4. Determination of MDA

MDA was determined according to a previously described HPLC method after deriva-
tization with 2,4-dinitrophenylhydrazine (DNPH) [30]. Protein-bound MDA was hy-
drolyzed and deproteinized as described previously [25]. The supernatant was mixed
with 12.5 µL DNPH solution and injected into the HPLC system (injection volume: 40 µL).
The MDA standard was prepared as previously described [31,32]. The DNPH derivatives
(hydrazones) were isocratically separated, and the utilized HPLC consisted of an L-2200
autosampler, L-2130 HTA pump, and L-2450 diode array detector (all: VWR Hitachi; Vi-
enna; Austria). Detector signals (absorbance at 310 nm) were recorded, and the EZchrom
Elite software (VWR) was used for data acquisition and analysis.

2.5. Determination of Oxidation-Specific Immune Epitopes

Monoclonal antibodies raised against modified apoB were used to monitor the for-
mation of oxidation-induced epitopes on apoB by means of a solid-phase dissociation-
enhanced lanthanide fluorescence immunoassay (DELFIA®) as described previously [24].
The anti-ox-apoB (OB 04) was a monoclonal antibody raised against copper-oxidized LDL
and characterized to react specifically with oxidized apoB-containing lipoproteins [24]. The
anti-apoB was a rabbit polyclonal antibody purchased from Behring (Marburg, Germany).
Both were used as detecting antibodies. Eu3+-labeled rabbit antimouse IgG (for OB/04)
or Eu3+-labeled sheep antirabbit IgG (for anti-apoB) were used as reporting antibodies.
The microtiter plates (Nunc-MaxiSorpR) were coated with LDL (200 µL at a concentration
of 10 µg LDL/mL in a coating buffer containing 1 g/L EDTA) and incubated overnight
at 4 ◦C. The plates were washed after coating three times with washing buffer contain-
ing 0.05% Tween-20 using a microplate washer (Gemini, Apeldoorn, The Netherlands).
The remaining binding sites were blocked with 250 µL of blocking buffer for 1 h at room
temperature. Each plate was washed again as described above. The monoclonal antibody
MAB/OB 04 (200 µL/well diluted 1:200 in PBS) against oxidatively modified LDL and a
polyclonal rabbit antihuman apoB100 (200 µL/well, 1:10,000 in PBS) were used as detection
antibodies. The plates were subsequently incubated at room temperature for 1 h and
washed as described above. Then, 200 µL of a goat antimouse IgG (1:1000 in PBS for MAB
OB/04 detection) and 200 µL of a goat antirabbit antibody (1:4000 in PBS for antihuman
apoB100 detection) were added to each well and incubated at room temperature for 1 h.
After incubation, the plates were washed six times. In order to release Eu3+, 200 µL of
the enhancement solution was added to each well and incubated for five minutes while
shaking. The fluorescence in each well was measured using a DELFIA research fluorometer.
The amount of oxidation-specific epitopes on the LDL particle was expressed as the ratio of
oxidatively modified LDL counts to nLDL counts as described previously [25,30].

2.6. Determination of REM

An agarose gel (1%) was used for the electrophoretic runs, and phosphotungstate-
Mg2+ reagent was utilized to precipitate the lipoproteins on the gel. Electrophoresis was
run in 0.05 M barbital buffer at 100 V for 50 min. REM was defined as the ratio of the
migration distance of oxLDL and that of nLDL as described previously [25].

2.7. Cell Culture

EA.hy926 cells originate from the American Type Culture Collection (ATCC) and
were kindly gifted by Dr. C.J.S. Edgell (University of North Carolina, Chapel Hill, NC,
USA) [32,33]. EA.hy926 cells were generated by fusing primary human umbilical vein
endothelial cells and a thioguanine-resistant clone of the human A549 cell line [32,33].
It has been shown that EA.hy926 cells behave in many aspects like primary endothelial
cells [33–35]. EA.hy926 cells were cultured as described recently [25]. nLDL as well as
oxLDL (prepared by oxidizing nLDL with Cu2+ in the presence of increasing concentrations
of metformin) were applied to the EA.hy926 cells at a concentration of 0.4 mg/mL for up to
8 h.
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2.8. Cell Viability (AlamarBlue Assay)

In order to assess the cytotoxic effects of oxLDL on EA.hy926 cells, we used the
alamarBlue assay according to the manufacturer’s instructions. AlamarBlue uses the
natural reducing power of living cells to convert resazurin to fluorescent resorufin. The
amount of fluorescence produced is proportional to the number of living cells and cell
viability [26]. Fluorescence was detected with a fluorescence plate reader (POLARstar
OPTIMA, BMG Labtech, Offenburg, Germany) with filter set Ex544/Em590 prior to and
during incubation (37 ◦C, 5% CO2) as described previously [26].

2.9. Quantum Chemical Calculations

Density functional theory (DFT) calculations were conducted using Becke’s three
parametric density exchange functional with the correlation function by Lee, Yang, and
Parr (restricted for neutral species and unrestricted for radical species). All computations
included geometry optimizations and vibrational analyses in order to determine the thermal
contributions to free energies. Calculations were performed using the 6–311 + G (2d,p) basis
set. The calculations were conducted by simulating either a polar (water) or a nonpolar
environment (benzene); here, the SMD model was employed [36]. Changes of Gibb’s
free energies (delta G0-values) were computed for the reactions considered at standard
conditions (298.15 K, 101.325 kPa). For all the molecular structures studied, electron
densities, electrostatic potentials, and spin density distributions (in the case of open shell
systems) were obtained. All quantum chemical calculations and analyses of the results were
conducted employing the GAUSSIAN suite of quantum chemistry programs (GaussView
6.0 and Gaussian G16 W, Gaussian Inc., Pittsburgh, PA, USA).

2.10. Statistics

The GraphPad Prism package (v. 8.0) was used for statistical evaluation. One-way
ANOVA and Bonferroni post tests were used for statistical evaluation of the effects of
increasing concentrations of metformin on indicators of LDL oxidation and on cell viability.
Statistical significance was set at p ≤ 0.05. * p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001.

3. Results
3.1. Effect of Metformin on the Oxidizability of the Lipid Part of the LDL Particle

nLDL preparations were oxidized by addition of 10 µmol/L CuCl2 for up to 8 h
in the absence or presence (100, 250, 500, 1000, and 2500 µg/mL) of metformin. The
respective LPO content of LDL, indicating the oxidative status of the lipid part of the LDL
particle, time-dependently increased and reached a maximum between four and eight
hours of incubation. The time course of LPO formation in the absence of metformin is
shown in Figure 1A. Metformin concentration-dependently suppressed the Cu2+-triggered
oxidation of the lipid part of the LDL particle; formation of both LPOs (Figure 1B) and
MDAs (Figure 1C) concentration-dependently decreased in the presence of increasing
concentrations of metformin.
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Figure 1. Cu2+-induced oxidation of the lipid part of the LDL particle. The LPO content of LDL
significantly increased in the course of Cu2+-triggered oxidation (p < 0.0001, ANOVA) (A). Metformin
significantly (p < 0.0001, ANOVA) suppressed LPO (B) and MDA (C) formation after 2 h of incu-
bation time. Data represent mean ± SD from four separate measurements. * p ≤ 0.05, ** p ≤ 0.01,
*** p ≤ 0.001.

3.2. Effect of Metformin on the Oxidizability of the Protein Part of the LDL Particle

As stated above, nLDL preparations were incubated with CuCl2 for up to 8 h in the
absence or presence of metformin. The amount of oxidation-specific epitopes concentration-
dependently decreased in the presence of increasing concentrations of metformin (Figure 2A),
indicating that metformin is capable of suppressing the oxidation of the protein part of the
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LDL particle. REM values decreased only slightly, but not significantly, in the presence of
increasing concentrations of metformin (Figure 2B).
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Figure 2. Cu2+-induced oxidation of the protein part of the LDL particle. Metformin significantly
(p = 0.0031, ANOVA) suppressed the formation of oxidation-specific epitopes on the LDL particle
(A) after 6 h incubation time. REM values were numerically decreased albeit not reaching statistical
significance ((B), p = 0.069). Data represent mean ± SD from four separate measurements. * p ≤ 0.05.

3.3. Cytotoxicity of oxLDL Formed under Increasing Concentrations of Metformin in
EA.hy926 Cells

The cytotoxicity of oxLDL in EA.hy926 cells concentration-dependently decreased
when it was formed in the presence of increasing concentrations of metformin during
Cu2+-triggered oxidation of LDL (Figure 3). Cell viability was significantly reduced in
oxLDL-incubated cells but was restored when using oxLDLs formed under increasing
concentrations of metformin.
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Figure 3. Metformin during LDL oxidation mitigated the cytotoxic effects of oxLDL. nLDL was
preincubated with 0, 500, 1000, or 2500 µg/mL of metformin and then oxidized with CuCl2 until
LPO levels reached 100 nmol/mg of LDL protein. Subsequently, the EAhy.926 cells were incubated
with the thus obtained oxLDLs (0.4 mg/mL). Cell viability concentration-dependently increased with
oxLDLs formed under increasing levels of metformin. Data represent mean ± SD of four separate
measurements. * p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001.

3.4. Reactions of Metformin with Hydroxyl, Hydroperoxyl, or Superoxide Radical Anion

Gibbs’s free energies for the abstraction of one hydrogen atom from metformin by
the hydroxyl (to yield water), hydroperoxyl (to yield hydrogen peroxide), or superoxide
(to yield hydroperoxide anion) radical anion were calculated as described above and are
shown in Table 1.

Table 1. Gibb’s free energies of reaction. Negative values of Gibb’s free energy mark exergonic
reactions (abstraction of one hydrogen atom from metformin). Positive values mark endergonic
reactions.

Radical Position of
H-Abstraction Gibbs’ Free Energy (kcal/mol)

Water Benzene

1 −25.25 −23.95
2 −25.19 −20.78

Hydroxyl radical 3 −21.89 −19.05
4 −20.37 −18.43
5 −20.51 −18.34
6 −27.35 −26.60
7 −28.55 −28.07

1 24.01 31.22
2 24.07 34.38

Superoxide radical anion 3 27.37 36.11
4 28.89 36.73
5 28.74 36.83
6 21.91 28.57
7 20.70 27.10

1 8.24 9.53
2 8.30 12.70

Hydroperoxyl radical 3 11.60 14.42
4 13.12 15.04
5 12.98 15.14
6 6.14 6.88
7 4.94 5.41
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The abstraction of each of the five N-centered hydrogens as well as of two methyl-
hydrogens were studied according to the scheme shown in Figure 4.
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Figure 4. Chemical structure of metformin. Large dark spheres: nitrogen; large light spheres: carbon;
small spheres: hydrogen.

Only the reactions of metformin with HO• were exergonic. This is indicated by the
negative values for the respective Gibb’s free energies in both polar (water) and apolar
(benzene) milieus, with abstraction of the C-centered hydrogen atom (number 7) resulting
in the highest negative energy values. Therefore, HO• is the most suitable candidate for
scavenging through metformin. Reactions of both HOO• and O2

•− with metformin were
endergonic (positive values of the respective Gibb’s free energies) and are therefore unlikely
to occur spontaneously.

4. Discussion

In the present study, we show that the hypoglycemic agent metformin is capable of
attenuating the oxidation of nLDL. Oxidized LDL results from modification of LDL by
lipidperoxidation and plays a crucial role in the development of endothelial dysfunction
and atherosclerosis [37,38].

Using a well-established in vitro model in which nLDL oxidation is accomplished by
addition of Cu2+ ions [39], we found that metformin concentration-dependently impeded
the formation of LPOs and MDA in the LDL particle. Thus, metformin is apparently
capable of impeding the oxidation of the lipid moiety of the LDL particle. We also found a
concentration-dependent decrease in the number of oxidation-specific immune epitopes on
the LDL particle in the presence of increasing concentrations of metformin during oxidation,
indicating impeded oxidation of the protein moiety of the LDL particle. Correspondingly,
we also found a decrease in oxLDL-induced cytotoxicity in EAhy.926 cells with oxLDL
formed under increasing concentrations of metformin.

The antioxidant efficacy of metformin is comparable to that of ethyl pyruvate, as
shown in our previous study [25]. For example, the formation of LPOs in the LDL particle
was halved in the presence of 500 µg/mL of metformin and ethyl pyruvate.

The chemical events responsible for copper-induced oxidation of nLDL are still some-
what elusive. Lipid hydroperoxides, often present in LDL preparations, become decom-
posed by Cu2+ to alkoxyl and peroxyl radicals, which are believed to initiate oxidation
of polyunsaturated fatty acids through abstraction of a hydrogen atom. The oxidation
becomes propagated via oxygenation [22]. Additionally, it has been suggested that lipid
peroxidation is initiated by the hydroxyl radical (HO•), which is formed via sequential
reduction of oxygen (via hydrogen peroxide and superoxide) by Cu+ [40]. Superoxide
(O2

•−) can become partially protonated to yield the hydroperoxyl radical (HOO•), which
is very stable and, due to its uncharged nature, might diffuse to the core of the LDL particle
and initiate the peroxidation of polyunsaturated fatty acids [25,41].

The attenuating effect of metformin on the oxidation of nLDL shown in our study
suggests that metformin may react with at least one of the three radicals mentioned above,
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i.e., HO•, HOO•, or O2
•−. Our calculations of reaction free energies identified the hydroxyl

radical as the most likely candidate to be scavenged by metformin. Therefore, we propose
that the capability of metformin to impede oxidation of nLDL is attributable, at least
partially, to its capability to scavenge hydroxyl radicals.

The results of our calculations are supported by several studies dealing with the
capability of metformin to react with ROS. Bonnefont-Rousselot et al. have shown that
metformin is able to scavenge hydroxyl radicals but not superoxide radicals and hydrogen
peroxide [42,43]. Collin et al. have shown that metformin reacts with hydroxyl radicals
under the formation of four oxidation end-products, e.g., the hydroperoxide of metformin
or a covalent dimer of metformin [44].

The major cause of premature death in diabetes is cardiovascular disease (CVD), and
arteriosclerosis in turn is a precondition for the development of CVD [45,46]. Prolonged
residence times of highly atherogenic oxLDL is a key feature of diabetic CVD [47], and
numerous studies have shown that oxidation of LDL particularly renders this particle
atherogenic [37].

Apparently, drugs that are capable of attenuating the oxidation of LDL possess an-
tiatherogenic properties and could therefore prevent the development of CVD [48]. Met-
formin is, according to the findings of our present study, such a drug. Numerous obser-
vational studies confirm this assumption. Strong beneficial effects of metformin therapy
concerning combined mortality and cardiovascular events [49], reduced risk for all-cause
mortality for diabetic patients under metformin treatment compared to nondiabetic individ-
uals [50], and reduction in cardiovascular mortality as well as incidence of cardiovascular
events under metformin treatment have been shown [51,52]. However, most of these
studies focused on the correlation between metformin intake and decreased atheroscle-
rotic/vascular events in patients with diabetes without providing any underlying molecular
mechanisms.

Our present study provides one indication for the reduced prevalence of atherosclero-
sis/CVD in patients with diabetes under metformin therapy: the prevention/attenuation of
oxidation of nLDL via inactivation of hydroxyl radicals by metformin. Consistent therewith,
a clinical study has shown decreased oxidative damage in the apoB, the protein moiety of
the LDL particle [45,53].

A limitation of our study is that the antioxidant action of metformin might be at-
tributable to its capability to not only scavenge hydroxyl radicals but to also bind copper,
thereby lowering effective Cu2+ concentrations during the nLDL oxidation procedure [54].
However, efficient oxidation of nLDL occurred even in the presence of a large surplus
of metformin, indicating that this complex formation is of minor importance under our
experimental setting.

Besides impeding the oxidation of nLDL, shown in our present study, several further
modes of action have been reported rendering metformin an antiatherosclerotic drug,
namely, the regulation of oxLDL-provoked endothelial dysfunction through upregulation
of sirtuin 1 expression [55], protection of the vasculature by activation of endothelial nitric
oxide synthase [56], and decreased inflammatory activity in patients taking metformin [57].
Furthermore, it has been suggested that the vasoprotective effects of metformin are at-
tributable to its capability to impede mitochondrial fission in endothelial cells [58], its
antihypertensive effects [59], its capability to improve dyslipidemia [60], and its capa-
bility to reduce the uptake of lipids by macrophages with subsequent apoptosis, all key
steps in atherogenesis [61,62]. Moreover, it has been shown that metformin attenuates
myocardial ischemia–reperfusion injury via the upregulation of antioxidant enzymes and
via involvement of adenosine-monophosphate-activated protein kinase (AMPK) [63]. In
addition, a combined therapy of metformin with the new agents SGLT2 inhibitors or GLP1
receptor agonists has more recently been suggested to be advantageous for patients with
high cardiovascular risk [39].

The unique properties of metformin extend its range of action beyond cardiovascular
protection to age-related diseases, such as cancer and dementia. A decrease in cancer
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incidence, an increase in cancer-specific survival, and a decrease in the incidence of demen-
tia in people with type 2 diabetes under metformin therapy have been shown in recent
meta-analyses [64–66].

5. Conclusions

In summary, our study adds a further mechanism through which metformin acts as
an antiatherogenic agent: its capability to impede oxidation of LDL through scavenging
hydroxyl radicals. Metformin currently plays an important role in the treatment of type 2
diabetes. Our results suggest that metformin could also be used to treat further diseases
that are associated with inflammation/oxidative stress in the vasculature, both in diabetic
and nondiabetic populations [3,67].
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