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Abstract: Nanotechnology has been investigated for treatments of hair follicle disorders mainly
because of the natural accumulation of solid nanoparticles in the follicular openings following
a topical application, which provides a drug “targeting effect”. Despite the promising results
regarding the therapeutic efficacy of topically applied nanoparticles, the literature has often presented
controversial results regarding the targeting of hair follicle potential of nanoformulations. A closer
look at the published works shows that study parameters such as the type of skin model, skin sections
analyzed, employed controls, or even the extraction methodologies differ to a great extent among the
studies, producing either unreliable results or precluding comparisons altogether. Hence, the present
study proposes to review different skin models and methods for quantitative and qualitative analysis
of follicular penetration of nano-entrapped drugs and their influence on the obtained results, as a
way of providing more coherent study protocols for the intended application.
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1. Introduction

Cutaneous topical administration of drugs and cosmetic actives presents numerous
advantages for the treatment of dermatological diseases or conditions, such as fewer
adverse effects related to systemic drug exposure, avoidance of the first-pass metabolism
that impacts bioavailability and dose reduction, and targeted drug delivery [1,2]. However,
topical therapies are always limited by the skin barrier function, mainly provided by
the stratum corneum—the most superficial epidermal layer [3,4]. Following a topical
application, the drug can diffuse through the skin cells or the extracellular matrix that
composes the stratum corneum. Also, it can use the hair follicles as shunt pathways.

The hair follicle wall is an invagination of the epidermis containing a relatively constant
composition of cells in the upper half of the hair follicle, infundibulum, and isthmus [5,6].
The hair follicle undergoes cyclical involution and regeneration throughout life. It is
characterized as an epithelial organ consisting of two main parts: an epithelial cylinder
composed of keratinocytes and the mesenchymal cells of the dermal papilla and dermal
sheath. Structurally, the hair follicle is divided into four regions from top to bottom:
infundibulum, isthmus, supra bulbar region, and medulla [7–9]. The composition of the
lower region of the hair follicle is much more variable, including differentiated epithelial
cells, hair matrix, and dermal papilla [10,11]. The hair bulb is situated at the base of each
hair follicle and contains the growing hair cells. These cells are in a constant division
that pushes upwards and gradually harden, reaching the highest part of the bulb and
is organized by six concentric layers (three inner layers make up the hair, composed of
the cuticle, the cortex, and the medulla and three outer layers make up the lining of the
follicle) [12–14].

The follicular route as a shunt pathway was considered irrelevant in the past because
of the limited surface area the hair follicles represent (0.1%) [15,16], with the maximum
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area of coverage found on the forehead (1.28%) and minimum on the forearm (0.09%) [17],
apart from the scalp, where it represents 10% of the total area [18]. Nevertheless, this
conception of being an irrelevant penetration route has completely changed with the advent
of nanotechnology and the observation that solid nanostructures naturally accumulate into
the hair follicles, opening valuable opportunities for topical treatments of diseases that
precisely affect the follicles [6], such as hair growth disorders (areata and androgenetic
alopecia) and other inflammatory processes that affect the follicular region, like acne or
hidradenitis suppurativa [19,20]. In addition, other cutaneous diseases could be treated
more effectively by targeting the hair follicles, such as hirsutism and hypertrichosis, as well
as disorders like seborrhea, eczema, and rosacea [21].

Nanoparticulate systems have proved efficient in overcoming the skin barrier by di-
verse mechanisms, depending on their composition. Solid lipid nanoparticles, for instance,
allow an efficient skin occlusion [22], with a consequent increase in the permeability of
lipophilic drugs [23] or an increase in drug solubility, creating a higher concentration
gradient that drives drug permeation through the stratum corneum [24]. Moreover, the
low or complete absence of toxicity of this kind of nanoparticles [25], and the possibility of
modified drug release make them exciting systems for topical drug delivery [26]. Other
nanostructures, such as liposomes, can exert their function by adsorption and fusion of
vesicles on the skin surface, stimulating the encapsulated drug to diffuse through the skin
layers [27]. Liposomes also promote a drug delivery of much higher concentrations in the
sebaceous glands than conventional formulations [28]. Parallel to this, the nanodroplets
of nanoemulsions surrounded by surfactants operate as cutaneous permeation enhancers,
favoring the skin penetration of topically applied drugs. However, generally, they do
not demonstrate an impact on the follicular penetration of drugs because they are liquid
systems [29,30].

The follicular drug penetration mechanism becomes a structurally complicated process
concerning the factors that interfere with the follicular delivery of drugs [31,32]. The
hair follicle delivery is influenced by the physicochemical characteristics of a drug (size
and/or molecular weight of the drug and the oil–water partition coefficient), the size of the
nanoformulation in which that drug is incorporated, which corroborates with a penetration
into the depth and breadth of follicular delivery systems [33,34]. The nanoformulation can
still present different compositions in its development, have surface loads that interfere with
the interaction with the hair follicles and the skin, or even have a superficial modification
in its structure according to the objective of the study [35,36].

Some studies have reported that the size of the solid nanoparticles influences the
natural tendency of accumulation into the hair follicles, independent of the production
materials. Nevertheless, once into the follicle, the type of material and its interaction
with the drug has been demonstrated to play a role in the distribution process. Some
investigations indicate that micrometer-sized particles [37,38] can permeate the hair follicles
more efficiently than the nanoparticles themselves. Yet other studies demonstrate the
feasibility of follicular absorption of nanosystems in the size range of 300–600 nm [39] or
nanosystems with sizes less than 100 nm [40]. Analyzing this situation, the results seem
controversial regarding the influence of particle characteristics in terms of composition and
size range on the follicle accumulation process, making it difficult to draw conclusions on
the best parameters for a targeted follicular delivery. Several studies cite and point to a
survey of critical factors for greater targeting of follicles [41–43]. Nonetheless, experimental
results often cannot be compared due to different methodologies employed in evaluating
the nanostructured drugs’ follicular targeting.

In this way, this article proposes to review the main skin models that have been
used to evaluate the targeted drug delivery to the hair follicles and the main in vitro
methodologies (either qualitative or quantitative) used to assess the follicular targeting of
drugs by nanostructured delivery systems aiming to obtain a better insight into the data
produced so far.
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2. Skin Models

In vitro and ex vivo skin permeation assays are crucial for developing new formula-
tions for topical use. The first parameter that affects this type of study is the skin model to
be selected, which presents various variabilities and influences on the entire methodological
process. When follicular drug permeation is assessed, this parameter becomes crucial [44].

Human skin is an important model for evaluating topical formulations, obtained
mainly from plastic surgeries or cadavers [45]. However, using human skin in permeability
experiments comes up against limitations.

First, the ethical concern of employing human skin imposes severe restrictions for the
experimental triggering. Additionally, much variability is encountered between specimens
from different body locations, even from the same donor [45,46]. Another issue is the
differences between individuals, possibly due to race, sex, skin thickness, and hydration.
Nevertheless, a crucial point is that after the excision of human skin, the hair follicles
suffer a contraction [47]. Therefore, this great structural change hinders the permeation of
nanoparticle formulations targeting the follicular route, making the in vitro or ex vivo use
of a human skin model inappropriate in such cases.

Parallel to the use of human skin, the skin of other animals has been used for studies,
such as rabbits, snakes, rats, mice, and porcine [48]. Such skin types are more accessible
models and have less variability due to using inbred animal lines [49]. Rabbit back skin has
been tested in vitro for passive permeability. However, rabbit skin is more permeable [50],
possibly due to the high density of hair follicles, of about 8000/cm2 [51].

Due to their availability, small size, and reasonable costs, rodents (e.g., rats and
guinea pigs) are the most used animals for skin supply to in vivo skin permeation studies.
Rat skin, indeed, holds structural similarities with human skin [49,52]. However, rat
skin (stratum corneum thickness of 4.04 µm and viable epidermis thickness of 15.34 µm)
is more permeable than human skin (stratum corneum thickness of 17 µm and viable
epidermis thickness of 47 µm) through different permeants [53,54] due both to its smaller
thickness compared to human skin and to its greater follicular density (1598 per cm2 for
rat skin and 29 per cm2 for human skin) [55]. In addition, the number of appendages is
greater, the intercellular lipid composition of the stratum corneum is different, and the
surface of corneocytes is smaller than that of human skin. Accordingly, rat skin has been
shown to be about 11 times more permeable than human skin, providing about 50 times
greater flux for the relatively lipophilic molecules hydrocortisone and terbinafine [56].
Despite these differences, given the easy access to this type of skin model, rat skin can be
helpful in comparing formulations. In addition, the model can be useful for formulations
intended for application to the scalp for the comparable number of follicular units per
square centimeter, which range between 65 and 85, with a hair density between 124 and
200 [57] and especially for specific protocols. For example, minoxidil penetration into the
hair follicles was quantified in vitro after administering a commercial formulation (5%
minoxidil solution) in rat and porcine skin. The study’s main objective was to evaluate the
impact of wet or dry skin on drug absorption. With such a design, the use of the rat model
made much more sense, as the presence of hair itself was a relevant parameter of the study.
Such a study proved the humidity condition of the hair played a role in drug accumulation,
with about five times greater retention in wet hair conditions [58].

However, porcine skin is perhaps the most used model for in vitro skin permeation
studies [59–64], whether it is in studies considering the follicular route or not. It can be
easily obtained from animals slaughtered for human consumption. An important measure,
however, is to remove the desired skin part before the scalding process to guarantee its
integrity. Also, as the skin would be used in the food process chain, the use for laboratory
experimentation does not entail ethical problems, as with other animal models.

The ideal age for using porcine skin in topical penetration experiments is approxi-
mately six months to obtain a better similarity with human skin structures (Figure 1) [65].
Still, most studies in the literature do not specify this data [66,67]. The resemblance to
functional human skin includes the thickness of the epidermis and dermis, the follicular
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structure, the density of blood vessels, as well as the cellular components [68,69], such as
the presence of structures such as Langerhans cells and rete ridges [70]. The epidermis
is avascular for both skins. Pig skin has an epidermis like human skin, with a compa-
rable thickness (for pigskin, 30–140 mm and human skin, 50–120 mm). The epidermis
of human and porcine skins consists of four layers: stratum basal, stratum spinosum,
stratum granulosum, and stratum corneum. In both models, the epidermis and dermis are
separated by a basement membrane. The rare lamina and the dense lamina of the basement
membrane are clearly visible, together with the anchoring fibrils of the dermis and those of
the hemidesmosomes in the plasma membrane of the cell [67,71].

Figure 1. Representation of the main histological differences and similarities between porcine, rat,
and human skin. Own authorship. Created with Adobe Illustrator®, version 27.7.

The next layer, the dermis, has collagen and elastin fibers. For both species, the
dermis is divided into a papillary layer and a reticular layer. Porcine dermal collagen is
biochemically like human dermal collagen. The next layer, the hypodermis, is thicker in pigs
than in humans. As for appendages, pig skin does not have eccrine glands, and apocrine
glands are distributed over the skin’s surface. In addition, they have less vascularization
compared to human skin (Figure 1). The number of hair follicles in human and porcine
skin is similar. Hair follicles in humans and pigs are accompanied by sacculated sebaceous
glands [71,72].

Another prominent characteristic of similarity between human and porcine skins lies in
the density of hair growth (for porcine, ~20 hairs/cm2; for human skin,
14–32 hairs/cm2) [68]. This feature is crucial when follicular drug permeation is con-
sidered. Nevertheless, as mentioned before, human skin contracts after excision. Therefore,
experimentally, the human skin model underestimates hair follicle accumulation, i.e., the
skin contracts, and when stretched again for mounting in the diffusion cell, the multiple
elastic fibers around the hair follicle remain contracted, which reduces the follicular reser-
voir by up to 90%. [73]. Such a problem of follicular muscle contraction is not reported for
porcine skin as it is for human skin. Yet, regarding follicular contraction, the porcine ear
skin model may probably be the most advantageous model, as the skin is not excised but
attached to the cartilage, which inhibits such a contraction. All these characteristics have
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led to the wide use of the porcine skin model for in vitro studies to evaluate the follicular
penetration of drugs [74].

Accordingly, the applicability of porcine skin in studies that evaluate the follicular
delivery of drugs has already been extensively reported [23,26,75–77], with evidence of
selective hair follicle targeting [78].

Figure 1 summarizes the structural and compositional differences and similarities
between rat and porcine skin compared to human skin.

Finally, it should be noted that, regardless of the skin model to be used in studies
involving follicular penetration of nano-entrapped drugs, depending on the disease to be
managed, the physiological alteration it causes in the skin can also influence the behavior
of the formulation, and the results obtained in vitro cannot reflect what would occur in an
in vivo situation. This is the case of diseases that affect acne-prone skin, for example, in
which the hair follicles may be clogged with excessively produced sebaceous content.

Indeed, a protocol has been recently proposed to mimic the sebaceous skin submitted
to the application of some lipid nanoparticles [79]. In such a protocol, the skin was massaged
with a mixture of sheep tallow and vegetable oil preceding the permeation experiments. In
this adapted model, although the nanoparticles targeted the clindamycin delivery to the
hair follicles in normal porcine skin compared to the free drug control when the sebaceous
content obstructed the follicles, this effect was nullified.

Confirming this evidence, nanostructured lipid carriers containing the drugs used
to treat hidradenitis suppurativa (clindamycin phosphate and rifampicin) were investi-
gated using this protocol for sebaceous skin. In this case, even mimicking the sebaceous
condition, the nanostructured lipid carriers accumulated in the openings of the hair folli-
cles, not changing the amount of accumulated clindamycin compared to the regular skin
model, significantly increasing rifampicin uptake in these structures by 12 times [22]. This
difference between the two studies can be explained by the different composition of the
lipid nanoparticles, which in the first case, had a positive superficial charge [79] and, in the
second case, a negative charge [80]. Thus, not only the skin type is relevant for studying hair
follicle targeting, but also some conditions of this structure relevant for the specific study
design, e.g., as previously mentioned, dry or wet and with low or high sebum content.

3. Methods Involving the Quantification of Nano-Entrapped Drugs

The first methods presented in this section involve quantifying the nano-entrapped
drug after performing the in vitro skin permeation assay. These methods do not show the
location and interaction of nanoparticles after application to the skin. However, they can
generate reliable data regarding the impact of nanoparticles in targeting the drugs they
encapsulate. In this section, the methods of differential stripping, hair follicle occlusion,
and punch technique will be presented, which are the ones that have produced the most
data regarding the follicular penetration of nano-entrapped drugs.

An important experimental limitation of all these methods is the selective drug quan-
tification following skin extraction, as the skin is a complex matrix that provides several
biological interferents that can interfere with the analysis [80–82]. As a rule, chromato-
graphic methods are used to fulfill the selectivity requirement. Usually, the most used types
of detectors are UV or diode array [83–87], fluorescence [88,89], and mass spectrophotome-
try [90–92], depending on the nature of the analyzed drug.

3.1. Differential Stripping

Differential stripping is a derivation of the tape stripping technique, which uses a
certain amount of adhesive tape that is successively applied to a region of the skin that
has undergone the skin permeation process for separation of the stratum corneum and
subsequent analysis of the drug accumulated in this first layer of the epidermis [59,93].
This technique (tape stripping) has been used in vivo and in vitro both in humans, mice,
and porcine skin over the years [94–96].
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Differential stripping was initially described by Lademann et al. [97] and consists of
introducing a step to remove the hair follicles after removing the stratum corneum from the
skin using adhesive tapes. After applying a formulation on the skin for a predetermined
experiment time, the formulation is removed and the skin is cleansed, dried, and placed on
a flat surface. The stratum corneum layers are removed with about 10–15 pieces of adhesive
tape in the same area with duly applied constant pressure and speed of application, named
tape stripping (Figure 2). Afterward, a drop of cyanoacrylate glue is dripped by placing
tape over the glue and pressing lightly for approximately 1–2 min to ensure the polymer is
completely dry. The same procedure can be repeated to guarantee that the entire contents
of the hair follicle are removed from the surface of the skin under study [98]. In the end,
the pieces of tape containing the stratum corneum or the follicular casts are collected, and a
liquid drug extraction is performed using extractor solvents. The solvent used is previously
chosen through solubility studies for extracting the substance and the technique used for
extraction. Then, the samples are taken for analytical analysis [15].

Figure 2. Schematic representation of the differential stripping method. (a) Skin is treated with a
topical drug formulation; (b) the skin is cleaned and dried; (c) the stratum corneum is removed
with 10–15 adhesive tapes, which are taken to drug extraction and analysis; (d) the follicular casts
are removed with one or two drops of cyanoacrylate glue and an additional tape, which is taken
to drug extraction and analysis; and (e) the remaining skin without the stratum corneum and hair
follicles is (f) cut in small fragments and taken to drug analysis. Own authorship. Created with
Adobe Illustrator®, version 27.7.

This methodology not only differentiates the path by which the drug reaches the
deeper layers of the skin (viable epidermis and dermis)—either by permeation through the
stratum corneum or penetration through the hair follicles—but also allows a comparison
between formulations. As an example, such a protocol showed caprolactone nanocapsules
improved latanoprost accumulation in hair follicles when topically applied to the skin
and massaged, delivering 30% more drug to these skin structures than the control solu-
tion [98]. It further demonstrated that some chitosan nanoparticles doubled the minoxidil
accumulation in the hair follicles in comparison with a control solution of the free drug
(5.9 ± 0.6 µg/cm2 vs. 2.9 ± 0.8 µg/cm2) [76].

Furthermore, the performance of different-sized nanosystems could be compared,
with lipid nanosystems of 500 nm resulting in greater penetration of entrapped propranolol
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(19.5 ± 0.6 µg cm−2) compared to some 900 nm particles (12.7 ± 0.6 µg cm−2). Indeed,
particle size is likely to impact the interaction between the nanoparticles and the stratum
corneum [99]. The differential stripping technique was also demonstrated upon topical
application of some 320 nm nanoparticles containing a dye, and a depot in the hair follicles
for up to 10 days was created, while the nonparticulate form could only be detected for
up to 4 days [100]. This finding is specifically helpful for some diseases that affect the hair
follicles and need a long-term drug delivery to be treated or even diseases that affect the
deeper layers of the skin, and that a drug reservoir in the hair follicles would allow for
more prolonged treatment since the drug deposited in these structures tends to have a
radial permeation to other layers of the skin over time.

Another fundamental approach that this type of study can show is the concomitant
delivery of two co-encapsulated drugs for treating some skin diseases. In this way, nanos-
tructured lipid carriers containing latanoprost and minoxidil showed to preferentially
deposit in hair follicles, causing a considerable increase in the penetration of the two drugs
in comparison with the control (composed of the free compounds), benefiting the topical
treatment of alopecia [25]. A similar finding was recently obtained by lipid nanoparticles
co-entrapping the antibiotics clindamycin and rifampicin, designed for the treatment of
severe infections of the hair follicles, called hidradenitis suppurativa [22].

Yet some parameters are crucial for obtaining success with the employment of this
technique, e.g., the quality and quantity of cyanoacrylate glue used to remove the follicular
casts must be standardized to remove all follicular contents before the drug is recovered
from the remaining skin. Similarly, the previous step of tape stripping must ensure that
almost 100% of the stratum corneum is separated to avoid misinterpretations.

Performing the differential stripping technique also allows the calculation of the
“follicular targeting factor”. This factor determines the ratio between the amount of drug
accumulated in the hair follicles by the total amount of drug that penetrated all layers of the
skin (stratum corneum + hair follicles + remaining skin), as described in Equation (1) [79]:

FT = HF/TS (1)

where FT is the follicular targeting factor, HF is the amount permeated into the hair follicles,
and TS is the amount of drug permeated into the total skin.

In practical terms, this factor can compare the formulation’s potential for targeting
the hair follicles instead of only considering the effect of a greater or lesser drug entry.
Such a factor is extremely useful in comparing different formulations, e.g., one formulation
containing a penetration enhancer can provide a higher penetration into the hair follicle but
concomitant to a higher penetration in all the other skin layers, while another formulation
can provide lower follicle retention than the first but a much lower penetration into the
other layers. In this case, FT would be higher for the latter, meaning a hair follicle targeting
that could prevent adverse effects.

Such a “follicular targeting factor” is also useful in determining the influence of other
parameters on the follicular accumulation process besides formulation characteristics,
which has been demonstrated in vitro when the same nano lipid systems could deliver 89%
clindamycin to the hair follicles but only 17% of rifampicin, showing that drug solubility
characteristics may play a critical role in this targeted release effect [22]. Such a factor also
facilitates data comparison. In another study, a commercial formulation of clindamycin
targeted 25.6 ± 9.6% of the drug to the hair follicles, while chitosan nanoparticles increased
follicular deposition to 52.9 ± 20.5%, and hyaluronic acid nanoparticles almost tripled this
drug accumulation (77.0 ± 8.6%) [17].

The follicular targeting factor can also differentiate nanoparticles of different sizes.
Poly-ε-caprolactone polymeric nanoparticles containing 180 nm spironolactone provided
delivery of the drug to the hair follicles of about 40%, five times more than the free drug
solution. Furthermore, polymeric poly-ε-caprolactone nanoparticles of 126 nm nearly
doubled the follicular targeting of spironolactone compared to the control. However, the
smallest nanoparticles did not differ from the control in terms of drug-targeting ability [23].
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3.2. Hair Follicle Occlusion

The hair follicle occlusion method indirectly measures the importance of the hair
follicles’ penetration pathway for drug permeation from different formulations.

The hair follicle occlusion technique consists of applying enamel to each follicular
orifice to selectively block the hair follicles (Figure 3). The method requires that two cu-
taneous permeation experiments be implemented with the same formulation so that in
comparing the results, the impact of the lack of the follicular route on the permeation of
the drug from a given formulation is indirectly evaluated. In other words, it is possible to
selectively analyze the penetration of substances through the skin by the intercellular and
follicular pathways [101].

Figure 3. Schematic representation of the hair follicle occlusion method. (a) The hair follicles are
occluded with enamel or resin, and the skin is then treated with a drug formulation, followed by
drug extraction and quantification from the skin layers. (b) The results of drug retention in stratum
corneum and remaining skin are compared to those from the non-pretreated skin. Own authorship.
Created with Adobe Illustrator®, version 27.7.

The type of material that blocks the follicular cavities must do so adequately. Notably,
the standard enamel has shown secure follicular sealing, while solvent-free nail varnish
was not able to prevent follicular penetration in an earlier conducted study [102].

The method was first applied in vivo with a caffeine formulation [101]. The formula-
tion was applied on the thorax of the volunteers, and two experiments were carried out;
the first consisted of applying the formulation to the skin with the obstructed follicles,
and the second experiment was carried out one week after the first experiment with the
nonobstructed hair follicles. Blocking hair follicles showed a significant difference between
interfollicular and follicular penetration of topically applied caffeine. In this case, the drug
was not nanostructured, but it was found that caffeine penetration via hair follicles was
faster and more remarkable compared to other routes [101].

This experiment with caffeine was repeated in vitro using diffusion cells and it cor-
roborated the previous study. Caffeine reached the receptor compartment of the diffusion
cell with open hair follicles more quickly than in the case of the experiment with closed
hair follicles [103]. Similarly, just five minutes after the topical application of minoxidil
foam, minoxidil was detected in blood samples when follicles remained open. In contrast,
with closed follicles, it took 30 min [104], demonstrating the importance of this pathway for
minoxidil delivery.
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This relevance of the appendageal pathway for drug penetration is evidenced by the
use of polymeric nanoparticles since, for the commercial formulation of clindamycin, the
closure of hair follicles did not significantly change the amount of clindamycin that reached
the stratum cornea and remaining skin. For chitosan nanoparticle formulations, the closure
of follicles resulted in a significant increase in penetration of the drug into the stratum
corneum and a significant reduction in the drug penetration into the rest of the skin [26].

Hair follicle occlusion has proven to be the preferred way to determine the role of
the follicular route on drug delivery by nanostructured lipid carriers [79]. Confirming
this, nanostructured lipid carriers containing clindamycin and rifampicin demonstrated a
follicular preference after comparing closed and open hair follicles versus free drugs. In
other words, when the nanostructured lipid carriers were applied on the skin with the
follicles blocked, the drug is prevented from interacting with the follicular region, and thus,
the dynamics of penetration are modified, causing a penetration in the stratum corneum
to occur [22]. Accordingly, through the follicular blockage, doxorubicin-loaded liposomes
resulted in a significant reduction in the extent and intensity of fluorescence observed
within the skin layers, evidencing that hair follicles were the main permeation route used
by liposomes [105]. In contrast, ibuprofen nanoparticles demonstrated that the hair follicle
plays less than 5% of the role in the total penetration of the nanostructured drug into the
skin, as the levels of ibuprofen in the skin and the receptor compartment of the apparatus
achieved were not significantly different when hair follicles were open or closed [106].

The hair follicle closure technique represents an adequate in vitro method for obtaining
critical information in technological developments. However, this technique has some
limitations related to the guarantee that all follicles are entirely sealed and to the interference
that the enamel or varnish can pose in the quantification of the drugs.

3.3. Punch Test

The punch method has its origin and basis in a follicular unit removal technique for
hair transplants. Through this technique, the entire follicular structure is removed from a
location that remains viable and, thus, is reimplanted in the diseased region [107]. Thus,
an optimized way to quantify drugs directly in hair follicles is through a biopsy of each
hair follicle through the punch test. The study is based on applying the test formulation
on the skin for a determined time. Then, each hair follicle is collected using a typically 1
mm punch; the hair shaft is cut 1 mm above the skin’s surface (Figure 4). Samples can be
collected in individual Eppendorf tubes or put together in only one tube. The drug is then
quantified according to assays previously validated [107].

Figure 4. Schematic representation of the punch biopsy technique, which specifically removes each
hair follicle followed by drug extraction and quantification. Own authorship. Created with Adobe
Illustrator®, version 27.7.

This technique consists of using a biopsy device. However, it requires extreme at-
tention because it is practiced manually, removing one by one the follicular units with
several samples of at least 15 follicular units. The crucial points of the punch test are
the difficulty in removing each hair follicle as well as the need for a more accurate and
sensitive analytical method for drug quantification in small concentrations, as when each
hair follicle is analyzed separately. With the biopsy, the drug is quantified in the entire
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follicular unit [98], making the punch method sometimes more precise than the differential
stripping method.

Such a method verified the follicular penetration of polymeric micelles containing
retinoic acid compared to the commercial formulation Retin-A® Micro in human skin [107].
The results showed the most significant follicular deposition of the drug in the follicles
was obtained with the nanoformulation (10.4 ± 3.2% vs. 0.6 ± 0.2% of the applied dose,
respectively). In general, biopsy studies provide a targeted analysis of the behavior of the
formulation in hair follicles [108].

4. Qualitative Methods

Different from quantitative methods, in which the follicular deposition of nanostruc-
tures is determined considering the quantification of the nano-entrapped drug, qualitative
methods usually show a microscopic visualization of the exact nanoparticles’ location after
skin application.

In general, these techniques guarantee an explanation of the penetration mechanism
or even infer important data on the spatial distribution of the drug inside the different
layers of the skin [109]. These studies can be carried out in parallel with the quantitative
studies for a more complete picture of the mechanism of follicular-targeted drug delivery
provided by nanoparticles.

These methods depend, of course, on imaging techniques like fluorescence microscopy,
confocal microscopy, or tomography. These nondestructive techniques can be applied both
in vitro and in vivo.

Fluorescence microscopy is based on a laser excitation source, which can be single-
photon or two-photon [110]. Some biocompatible nanoparticles composed of ABA triblock
copolymer PEG5K-b-oligo-(desaminotyrosyl-tyrosine octyl ester suberate)-b-PEG5K were
used for the preparation of TyroSpheres for follicular administration of adapalene and were
displayed in vivo within the hair follicle after being labeled with a fluorescent dye (Nile
red) [111].

This technique also helped our understanding of the mechanisms of follicular penetra-
tion of nanoparticles functionalized with methoxy polyethylene glycol maleimide (PEG).
PEG 5000 Da functionalized nanoparticles penetrated deeper into hair follicles than PEG
750 Da functionalized ones. In this study, the fluorescence analysis was crucial to conclud-
ing that PEGylation can increase nanoparticle-targeted delivery into hair follicles [35]. The
images obtained in such studies are reproduced in Figure 5 below.

Confocal laser scanning microscopy is recognized for being noninvasive, i.e., the tech-
nique enables optical cuts of the analyzed tissues, allowing the nonprocessing of samples
with vitro assays. Furthermore, the technique can be adapted for in vivo analysis. In addi-
tion, higher-resolution images are obtained compared to fluorescence microscopy [112]. For
this reason, even though the equipment is more expensive than fluorescence microscopes,
its use is more common for local analysis of labeled nanoparticles [113]. This technique
emits a laser source in a monochromatic single beam, exciting the fluorescent markers.
The images produced make it possible to characterize the skin in depth in various focal
planes [15,114]. The principle of the technique causes differentiation of the light coming
from different planes of the specimen to occur, thus being able to capture images of samples
in complex biological tissues, such as skin, with high resolution. Thus, this technique has
been employed in different studies and has helped to understand the behavior of different
nanosystems [15,115].

Fluorescence and confocal laser scanning microscopy are performed after labeling the
nanostructure with a fluorescence substance before application on the skin [116]. The tech-
niques’ most-used fluorescent markers are fluorescein, Nile red, and 5-bromodeoxyuridine.
These components are generally placed in nanostructured systems during their prepa-
ration to characterize the permeation profiles of these fluorescent markers through the
skin appendages [109]. The red fluorescence labeling of three polystyrene nanoparticles of
different sizes allowed us to see the location of the nanoparticles in the stratum corneum
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and hair follicles without penetrating the epidermis/dermis. In addition, using variables,
we observed that changing the barrier with strip removal and changing the incubation
temperature did not induce deeper penetration [117].

Figure 5. Representation of qualitative methods. Fluorescence microscope images of porcine skin
sections after application of thiolated nanoparticles (a), sodium fluorescein (b), PEGylated 750 Da
nanoparticles (c), and PEGylated 5000 Da nanoparticles (d). Scale bar 100 µm. The images are
reproduced from [35] with permission provided by Copyright Clearance Center’s RightsLink® (order
number: 5590291425611).

The Nile red marker is used to locate and quantify lipids, particularly neutral lipid
droplets within cells. Nile red undergoes increased fluorescence and significant absorption
and emission changes to blue in nonpolar environments but is almost nonfluorescent in
water and other polar solvents. Images obtained by confocal laser-scanning microscopy
also determined that polymeric micelles loaded with cyclosporin A labeled with Nile
red were preferentially deposited between corneocytes and in the intercluster regions
(i.e., between clusters of corneocytes) with more profound skin penetration in these struc-
tures [118]. Similarly, the micelle formulation with benzoyl peroxide also demonstrated
approximately threefold higher drug deposition (3.63 ± 1.23 µg·cm−2) in porcine skin than
a commercial gel preparation (1.36 ± 0.77 µg·cm−2), proving to be more effective than the
conventional commercial gel preparation to deliver the drug to the skin. Here, the confocal
microscopy images confirmed the penetration of Nile red-labeled nanoparticles into the
hair follicles [119].

The rhodamine 6G marker is commonly used as an in-water marker to determine the
rate and direction of flow and transport. Rhodamine dyes fluoresce and can therefore be
detected easily and inexpensively with fluorometers. The marking of the nanosystem and
the technique of confocal laser-scanning microscopy provides an analysis of the location of
the nanosystem in each layer of the skin under study. Dermal penetration nanostructured
lipid carriers containing rhodamine-labeled 17-α-estradiol showed that in cross-sections, the
fluorescence indicates that the nanostructured lipid carriers’ formulation accumulates less
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on top of the skin and more in the hair follicles [120]. The aqueous solution of rhodamine 6G
was distributed in the stratum corneum and the shallow part of the hair follicles. In contrast,
the suspension of PLLGA nanoparticles encapsulated in rhodamine 6G was distributed in
the stratum corneum and the deep part of the hair follicles [121].

Fluorescein markers are fluorescent and mostly used in research with biological sam-
ples due to their high absorptivity, excellent fluorescence quantum yield, and good solubil-
ity in water. Fluorescein isothiocyanate-labeled bovine serum albumin hydrogel nanocarri-
ers loaded with the model drug and fluorescent dye tetramethylrhodamine-dextran were
applied topically to porcine ear skin. Confocal laser-scanning microscopy shows a slightly
but statistically significant deeper follicular penetration of fluorescent signals correspond-
ing to fluorescent dye tetramethylrhodamine-dextran instead of fluorescence corresponding
to fluorescein isothiocyanate-labeled particles [122].

Confocal microscopy also enables the analysis of hair follicles’ role as reservoirs
for dermal drug delivery, as in the case of polystyrene and poly-(methyl methacrylate)
nanoparticles that were in the skin “grooves” and around hair follicles [123].

Also, confocal microscopy can observe the depth with which the nanoparticles can
reach the follicular casts upon topical application. A thermoresponsive nano gel labeled
with indodicarbocyanine (189 nm) showed a significant increase in mean follicular pen-
etration of the carrier to a depth of 298.8 ± 85.8 µm after incubation at 37 ◦C compared
to samples incubated at 21 ◦C and 32 ◦C with mean follicular penetration depths of
202.7 ± 81.7 µm and 219.4 ± 52.9 µm, respectively [78]. Similarly, curcumin-loaded
lipid nanoparticles demonstrated that these nanosystems show penetration reaching
235 µm ± 48 µm in hair follicles [124].

Employing the laser scanning confocal microscopy technique, an increase in the
amount of permeation of the hair follicles is observed through the evaluation with lipophilic
dye and with the use of the vehicle (surfactants-propylene glycol) in the application of
lipophilic dyes in fresh human scalp skin [125].

In each phase of development, the ability to predict the proper condition of their
use ensures the credibility of new nanoformulations. To demonstrate this, polymeric
nanoparticles of poly(q-caprolactone)-block-poly-(ethylene glycol) containing minoxidil
were applied to the skin of a guinea pig. The confocal microscopy technique demonstrated
that the nanoparticles containing solutes penetrated mainly via bypass pathways, such as
hair follicles, resulting in the absorption of solutes through the skin [126].

In some cases, the technique made it possible to determine the permeation of nanopar-
ticles in the skin over time. As demonstrated, at 4 h they were more concentrated on the
skin’s surface as fluorescence was more significant in the stratum corneum. Then, after 6 h,
total fluorescence decreased in the stratum corneum and increased in the follicular cells,
indicating the movement of the nanoparticles [127].

In the construction and development of new nanosystems, preferentially for studies
of the follicular structures, an evaluation of the new nanosystem versus a formulation
already used in the market shows that this new technology guarantees its therapeutic
potential. Skin deposition of tacrolimus using the optimized 0.1% micelle formulation
after application for 4, 8, 12, and 24 h was significantly greater than that from Protopic®

(0.1% w/w; tacrolimus ointment) at each time point. The maximal tacrolimus deposition
was achieved after 24 h (11.51 ± 3.05 µg/cm2 and 0.75 ± 0.23 µg/cm2 for micelles and
Protopic® 0.1% w/w, respectively). The preferential deposition of micelles into the hair
follicle was also confirmed by confocal laser-scanning microscopy [128]. Similarly, the
micelle formulation with benzoyl peroxide demonstrated approximately threefold higher
drug deposition (3.63 ± 1.23 µg·cm−2) in porcine skin than a commercial gel preparation
(1.36 ± 0.77 µg·cm−2), proving it to be more effective than the conventional commercial gel
preparation to deliver the drug to the skin. The confocal microscopy images confirmed the
penetration of Nile red into the hair follicles [119].

Raman spectroscopy is another technique that is being used to evaluate permeation.
The technique governs the principle of inelasticity of the light scattering with monochro-
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matic characteristics in a single laser beam. Changes in the wavelength of the photons
can identify the samples. An excitation or deactivation of molecular vibrations is related
to the energy variations of the photons, and it provides information about the molecular
structure of tissue components, with the advantage of not having to use fluorescent mark-
ers or chemical dyes. Recently, the technique of confocal Raman microscopy combines
the spectral information from Raman spectroscopy with the spatial filtering of a confocal
optical microscope for high-resolution chemical imaging of samples [129,130].

This method may reveal changes in the components of the skin structure while inves-
tigating drug or nanosystem permeation [131]. As highlighted, this methodology describes
the skin in depth in a noninvasive way [131]. Raman spectra have been used to compare
human and porcine hair follicles [132]. By applying the Raman technique, it was possible
to confirm that after 30 min of permeation, retinol acetate was found at a depth of 20 µm in
the stratum corneum, demonstrating that this technique can determine the location of the
product in the skin in the study [133]. In this case, the drug had sufficient fluorescence to
be located by the technique. In addition, imiquimod-loaded chitosan nanocapsules showed
dynamic transdermal penetration and took about 50 min to penetrate the stratum corneum,
and 24 h after transdermal administration, the drug was in the inner layers of the skin [134].

The combination of techniques also favors a better development of nanoformulations.
Detailed information on molecular composition can be obtained for well-defined regions
by combining confocal and Raman microscopy. This promotes a detailed study of spe-
cific skin structures (sweat canal, sebaceous gland, dermal capillary), which supports the
development of nanoformulations for follicular treatment [135].

Qualitative methods are more advantageous than other techniques because they vi-
sualize permeative processes. Fluorescence methods face a slight difference in resolution
compared to other methods and the need for an extensive cooling system and obtaining
lasers. The confocal technique has overcome these resolution issues due to its high com-
plexity in marking samples and specific detection of nanosystems in follicular structures.
However, regarding permeation studies, it is observed that this technique is not dynamic
and reports only a fraction of the permeation process in question in addition to being
semi-quantitative determinations. The Raman methodology has been widely used for
promoting a specific situational state of the nanoparticles in the matter of depth in the skin.
Nevertheless, during processing, there is an increase in sample temperature, which can
destroy them. Furthermore, it has a substantial analysis limitation due to interference in
the deep layers of the skin.

Table 1 presents some examples of studies evaluating the follicular penetration of
nanostructured drugs using either quantitative or qualitative methods.

Table 1. Examples of studies evaluating the follicular penetration of drugs using different method-
ologies.

Type Technique Skin Model Findings References

Quantitative
methods

Differential stripping

Porcine 30% more drug in hair follicles from nanoparticles
compared to control solution. [98]

Porcine Doubled the minoxidil accumulation in the hair follicles.
Drug are deposited in the hair follicles for up to 10 days. [76,100]

Occlusion of the hair follicle

Porcine
Blocking hair follicles showed a significant difference
between interfollicular and follicular penetration of
topically applied caffeine.

[101]

Human
Caffeine reached the receptor compartment of the
diffusion cell with open hair follicles more quickly
compared to closed hair follicles.

[103]

Human
In just 5 min, minoxidil was detected in blood samples
when follicles remained open compared to 30 min with
closed follicles.

[104]

Punch test Human The most significant follicular deposition of the drug in
the follicles was obtained with the nanoformulation. [108]
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Table 1. Cont.

Type Technique Skin Model Findings References

Qualitative methods

Fluorescence microscopy Porcine
PEG 5000 Da functionalized nanoparticles penetrated
deeper into hair follicles compared to PEG 750 Da
functionalized ones.

[35]

Confocal laser scanning
microscopy

Human
The technique allowed seeing nanoparticles in the
stratum corneum and hair follicles without penetrating
the epidermis/dermis.

[117]

Porcine Micelle promotes threefold higher drug deposition than a
commercial gel preparation. [119]

Porcine Nanostructured lipid carriers’ formulation accumulates
less on top of the skin and more in the hair follicles. [120]

Raman spectroscopy Porcine The drug was in the inner layers of the skin. [135]

5. Conclusions

In conclusion, for in vitro studies, human skin can possibly be replaced by other types
of skin, mainly porcine skin, due to its availability, avoidance of ethical concerns, and
mainly because the hair follicles resemble the human anatomy conditions after extraction
more than the human in vitro model itself. Thus, porcine ear skin has been widely used
as an alternative in studies of follicular penetration. In general, for assessing follicular
penetration, the choice of test methodological conditions must be consistent with the
pathophysiology of the skin to be treated to obtain consistent results. Several tools have
been developed in this regard, such as differential tape stripping, the follicular-blocking
method, and the punch biopsy technique, in addition to the microscopic techniques of
fluorescence, confocal, and tomography, which, if properly used, can finally make it possible
to take advantage of the potential of nanotechnology for hair follicle-targeted drug delivery.
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