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Abstract: The objective of this work was to investigate, for the first time, the antioxidant effect of
a mixture of natural antimicrobials in an Enterocytozoon hepatopenaei (EHP) shrimp-gut model of
infection and the biological mechanisms involved in their way of action. The study approach included
investigations, firstly, in vitro, on shrimp-gut primary (SGP) epithelial cells and in vivo by using
EHP-challenged shrimp. Our results show that exposure of EHP spores to 0.1%, 0.5%, 1%, and 2%
AuraAqua (Aq) significantly reduced spore activity at all concentrations but was more pronounced
after exposure to 0.5% Aq. The Aq was able to reduce EHP infection of SGP cells regardless of cells
being pretreated or cocultured during infection with Aq. The survivability of SGP cells infected with
EHP spores was significantly increased in both scenarios; however, a more noticeable effect was
observed when the infected cells were pre-exposed to Aq. Our data show that infection of SGP cells
by EHP activates the host NADPH oxidases and the release of H2O2 produced. When Aq was used
during infection, a significant reduction in H2O2 was observed concomitant with a significant increase
in the levels of CAT and SOD enzymes. Moreover, in the presence of 0.5% Aq, the overproduction of
CAT and SOD was correlated with the inactivation of the NF-κB pathway, which, otherwise, as we
show, is activated upon EHP infection of SGP cells. In a challenge test, Aq was able to significantly
reduce mortality in EHP-infected shrimp and increase the levels of CAT and SOD in the gut tissue.
Conclusively, these results show, for the first time, that a mixture of natural antimicrobials (Aq) can
reduce the EHP-spore activity, improve the survival rates of primary gut-shrimp epithelial cells and
reduce the oxidative damage caused by EHP infection. Moreover, we show that Aq was able to stop
the H2O2 activation of the NF-κB pathway of Crustins, Penaeidins, and the lysozyme, and the CAT
and SOD activity both in vitro and in a shrimp challenge test.

Keywords: Enterocytozoon hepatopenaei; natural antimicrobials; shrimp; infection; NF-κB pathway

1. Introduction

Enterocytozoon hepatopenaei (EHP), an intracellular shrimp pathogen, is required to
transfer germinated spores into the cytoplasm of the host cell in order to complete its
life cycle and initiate infection [1]. EHP is responsible for causing hepatopancreatic mi-
crosporidiosis (HPM) in shrimp and, once the infection occurs, has a high capacity to
spread across other farms and sometimes between countries [2]; as a consequence, shrimp
farmers are on constant alert to prevent the emergence of diseases, such as HPM [3]. Hence
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the identification of interventions, designed to reduce spore germination and subsequent
infection, is vital for the industry [4].

The hepatopancreas of shrimp is a critical vital organ involved in the metabolic roles
of energy storage, breakdown, and crustacean moulting processes, including nutrient
accumulation and lipid as well as carbohydrate metabolism [5]. The EHP infects the
hepatopancreatic cell basement of shrimp and triggers the detachment of epithelial cells
from the membrane, further utilizing the host’s cell nutrition to reproduce within the
cytoplasm of hepatopancreatic tubules, consequently exhausting the cellular energy, and,
finally, inducing cell fragmentation and death [6]. The infection also affects crustaceans’
hormonal regulation, immune responses, and signal-transduction pathways and is pre-
sumed to increase the sensitivity to other pathogens, such as the Vibrio bacteria [6]. The
consequences do not necessarily lead to death; however, affected shrimp experience an
impaired feed–conversion ratio, which results in retarded growth and enables significant
economic disadvantages and losses for aquaculture sectors [7]. One of the possible biochem-
ical mechanisms of shrimp-growth retardation caused by EHP lies behind the activation of
the ATP sink [7]. However, recent studies have indicated two other possible mechanisms
of induced stunted development [8]. The first is implied in the overstimulation of the
juvenile hormones methyl farnesoate, the expression of a vital enzyme involved in juvenile
hormone biosynthesis, known as the farnesoic acid O-methyltransferase (FAMet), and
decreased expression of the juvenile hormone esterase-like carboxylesterase-1 (JHEC-1),
respectively. Another suggested mechanism was associated with the upregulation of
ecdysteroid-regulated-like protein (ERP) that impairs the ecdysteroid hormone required to
stimulate ecdysis during crustacean moulting [8].

Managing and monitoring EHP infection regularly is required not only for efficient
disease control and prevention [9] but also to prevent infection-led changes in the gut
microbiomes of shrimp, with further consequences on the nutrition metabolism and im-
munity [10]. In aquaculture, the prevalent methodology for disease management involves
strategically administering chemical substances, such as biocides and antimicrobials, either
prophylactically or therapeutically. Those substances could mitigate the effects of disease
and maintain the aquatic environment’s health within the farming enclosures. Natural
antimicrobials, when used as feed additives, are actually known to improve the growth,
survival rate, and meat quality in shrimp, leading to the conclusion that there might be a
positive impact on the gut microbiome [11]. Moreover, natural antimicrobial molecules and
compounds are known to modulate the activity of the NF-κB pathway [12] which has an
important role during infection in farmed shrimp [13].

In the absence of scientific data explaining how organic acids (natural antimicro-
bials) may influence the virulence of EHP and the downstream impact on host oxidative
stress, such research is vital. Mixtures of natural antimicrobials, such as AuraAqua (Aq),
were previously shown to reduce oxidative stress, prevent infection, and enhance the
immune response in Nematopsis messor-infected shrimp epithelial cells [14]. Also, Aq was
instrumental in improving the gut health of Vibrio parahaemolyticus-infected shrimp gut
primary cells (SGP) by stimulating the growth and development of host probiotics such as
Faecalibacterium prausnitzii [15].

The approach of using antimicrobials in mixtures is justified by their increased efficacy
when applied in combinations [16]. Scientific information on the Enterocytozoon hepatopenaei
mechanisms of infection in shrimp is scarce and regarding the impact of natural antimi-
crobials is effectively nonexistent. With study, we aimed to improve our knowledge of
the EHP infection mechanisms in vitro and in vivo. Moreover, we intended to gather sci-
entific evidence on the biological mechanisms by which natural antimicrobials (Aq) can
prevent EHP infection, in vitro, by using gut primary epithelial cells isolated from shrimp
or, in vivo, in a Penaeus vannamei (P. vannamei) EHP challenge infection model.
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2. Materials and Methods
2.1. Isolation and Survival of Spores

The EHP spores were purified as previously described [17] from locally sourced
Penaeus vannamei shrimp (3–12 g) infected with the microsporidian Enterocytozoon hepatope-
naei (EHP). The purified EHP spores in distilled water were placed in 96-well plates at
2 × 106 spores/well and incubated with different concentrations of AuraAqua (Aq) for
3 h prior to the Phloxin B extrusion assay, as previously described [17]. The natural an-
timicrobial mixture, AuraAqua, contains 5% maltodextrin, 1% sodium chloride, 42% citric
acid, 18% sodium citrate, 10% silica, 12% malic acid, 9% citrus extract, and 3% olive extract
(w/w). The raw materials were supplied by Bio-Science Nutrition Ireland. Experiments
were carried out in triplicates. The most effective concentration was determined by calcu-
lating the percentage of spore extrusion. Spores were suspended in 50 µL of 0.1%, 0.5%,
1%, and 2% Aq and incubated for 24–48 h before washing with distilled water. The spore
extrusion was examined microscopically.

2.2. In Vitro Impact of EHP Infection and AuraAqua Exposure on Shrimp Primary Gut Epithelial
Cells (SGP) Survival

The SGP cells were prepared [14] and characterised [18] as previously described.
Briefly, the SGP cells were grown in 24 plastic well plates (Analab, Lisburn, UK) in the
presence of 0.1% DMSO (Thermo-Fischer, Gloucester, UK) media supplemented with
20% fetal bovine serum (FBS), 100 µg penicillin, 8% shrimp head extract, 6% salt solu-
tion, 20 ng epidermal growth factor (Sigma-Aldrich, Gillingham, UK), and 10 U/mL
human recombinant interleukin 2 (Sigma-Aldrich, Gillingham, UK). Two experimental
approaches were taken: (i) exposure of SGP cells to 0.1%, 0.5%, 1%, and 2% Aq prior
to EHP spore infection’ and (ii) inclusion of 0.1%, 0.5%, 1%, and 2% Aq after infection
and coculture for 24 additional hours. The SGP cell survival rate was measured by the
3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT) assay (Roche, East
Sussex, UK; Sigma-Aldrich, Gillingham, UK). Following exposure to EHP, either by using
approach (i) or (ii), the plates were incubated under the same conditions (37 ◦C with 5%
CO2) and finally washed with 100 µL of the fresh medium prior to measurements. Cell
survival was evaluated by adding 10 µL of the MTT reagent (0.5 mg MTT/mL) to each well
and incubating for an additional 3 h. This medium was then removed and 100 µL of the
solubilization solution was added to dissolve the MTT formazan. The plate was incubated
overnight at 37 ◦C with 5% CO2. The absorbance of the MTT purple colour was measured
on a multiwell plate reader (FLUOstar Omega, BMG Labtech, UK) using a 570 nm filter.
Cell viability was expressed as a percentage of control. To investigate the effect of actin
polymerization on H2O2 release and parasite adhesion, stock solutions of 1 mg/mL of the
actin inhibitor cytochalasin D (Sigma-Aldrich, Gillingham, UK) (actin inhibitor) (CytD)
were made and diluted to the final concentrations using DMEM culture medium. SGP cells
were incubated with 1 µg/mL cytochalasin D for 1 h at 37 ◦C.

2.3. Quantitative PCR

Firstly, for the quantification of EHP adherence to SGP cells, we have carried out a
real-time PCR quantification of EHP, as previously described [19]. Infected SGP cells (in
24-well plates) were snap-frozen in liquid nitrogen until use. RNA was isolated using an
RNeasy Plus Mini Kit (Qiagen, Manchester, UK). The RNA was reverse transcribed using
Transcriptor First Strand cDNA Synthesis Kit (Roche, East Sussex, UK) according to the
manufacturer’s protocol. The mRNA levels were determined by quantitative RT-PCR using
QuantiNovaSYBR Green PCR Kit (Qiagen, UK) on a LightCycler 96 (Roche, East Sussex,
UK). For EHP quantification by real-time PCR, primers F:157 (5′-agtaaactatgccgacaa-3′) and
R:157 (5′-ttaagcagcacaatcc-3′), and a TaqMan probe (5-FAM-tcctggtagtgtccttccgt-TAMRA-3′)
were used. The real-time PCR protocol included a 20 s initial denaturation at 95 ◦C followed
by 40 cycles of denaturation for 1 s at 95 ◦C. Annealing and extension took place for 20 s at
60 ◦C. Secondly, for the mRNA levels of PEN 2, PEN 3, PEN 4, lysozyme, crustin 1, and
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crustin 2, the primers and the protocol used are as previously described [20] and included
in Table 1.

Table 1. PCR primers used to determine the mRNA levels of PEN 2, PEN 3, PEN 4, lysozyme,
crustin 1, and crustin 2.

AMP Primer Name Primer Sequence (5′-3′)

Lysozyme Lysozyme-F AAGACACCGAACGATGGAAG
Lysozyme-R TGGGGGACTCGTTCTTTATG

Crustins

Crustin1-F GTCGCAGTGCAGGTACTGGT
Crustin1-R TAGTCGTTGGAGCACGTCTG
Crustin2-F ATCAGCAGGGGAACAAGAGA
Crustin2-R CGGACTCGCAGCAATAGACT

Penaeidins

PEN2-F GCATCAAGTTCGGAAGCTGT
PEN2-R ACCCACATCCTTTCCACAAG
PEN3-F CTCTGGCTTGTGGAATGGAT
PEN3-R GCATGGATTCACTTCCTCGT
PEN4-F ATGCTACGGAATTCCCTCCT
PEN4-R ATCCTTGCAACGCATAGACC

2.4. Measurement of H2O2 Production and SOD and CAT Activity in EHP-Infected SGP Cells in
the Presence of AuraAqua

The impact of AuraAqua on superoxide dismutase (SOD) and catalase (CAT) in EHP-
infected SGP cells was measured as previously described [21]. Briefly, infected cells, with
or without 0.5% Aq treatment, were washed with PBS before the treatment with Trypsin
PBS solution. Digested cells were centrifuged for 10 min at 1400× g, and the pellet was
resuspended in lysis buffer containing protease inhibitors. After 30 min of incubation on
ice, the extraction mixture was centrifuged at 12,000× g at 4 ◦C for 30 min and the super-
natant was transferred to a fresh tube. SOD activity was determined using a commercially
available SOD colourimetric activity kit (Thermo Fisher, Horsham, UK) and CAT by using
a catalase activity kit (Abcam, Trumpington, UK, ab83464). The procedures were followed
as per manufacturer instructions. NADPH inhibitors including diphenyleneiodonium
chloride (DPI, Sigma; 15 µM, 45 min preincubation and wash out) and bovine liver cata-
lase (Sigma-Aldrich, Gillingham, UK; 300 U/mL) were used during the 24 h measuring
interval. The gut tissue of challenged shrimp was disrupted by sonication for 60 s (4×)
at 4 ◦C (in ice) in 1% saline solution followed by centrifugation at 2500 rpm at 4 ◦C for
5 min (Ultrawave DP200-00, Ultrawave Ltd., Cardiff, UK). The supernatant was used to
determine the superoxide dismutase (SOD) and catalase (CAT) activity in EHP-challenged
shrimp. All experiments were performed in triplicates. For H2O2 measurement, the cells
were routinely grown in 75 cm2 tissue-culture flasks (Sigma-Aldrich, Gillingham, UK) in
a humidified incubator at 37 ◦C with 5% CO2. The H2O2 production from infected and
uninfected SGP cells, in response to treatment with AuraAqua, was measured using the
PeroxiDetect™ Kit (Sigma-Aldrich, Gillingham, UK), following manufacturer guidelines
and the previously described procedure [22].

2.5. NF-κB Activation Assay

The level of NF-κB p65 activation was measured in the EHP-infected SGP cells after
24 h of infection, after LPS stimulation, or after infection and exposure to 0.5% Aq, as
previously described [23]. Briefly, nuclear proteins were extracted using a Nuclear Ex-
traction kit from Abcam (London, UK) and the NF-κB p65 activation in the supernatants
was measured using an NF-κB p65 Transcription Factor Assay Kit (Colorimetric) from
Abcam according to the manufacturer’s instructions. The level of NF-κB p65 activation was
expressed as the ratio of the measured absorbance (OD 450 nm) expressing the quantity
of NF-κB p65 activation per 1 mg of total nuclear protein. Colourimetric changes were
measured using absorbance at 550 nm and were read using a FLUOstar Omega plate reader
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(Premier Scientific, Belfast, UK). NF-κB was also measured in the supernatants obtained
from the gut tissue of challenged shrimp after disruption by sonication for 60 s (4×) at 4 ◦C
(in ice) in a 1% saline solution followed by centrifugation at 2500 rpm at 4 ◦C for 5 min.

2.6. Western Blotting

For Western blot, the cells were infected, as described above, and lysed by 1× RIPA
lysis buffer containing a protease and phosphatase inhibitor cocktail (Thermo Fisher, Hor-
sham, UK). The cell lysates were centrifuged at 12,000× g for 10 min at 4 ◦C and, then,
supernatants were collected as previously described [24]. Briefly, prior to separation in 10%
SDS polyacrylamide gels, the protein concentration was measured (Thermo Fisher, Hor-
sham, UK) and denatured in 1× Laemmli buffer (Sigma-Aldrich, Gillingham, UK). Proteins
were separated on and transferred to 0.45 µm nitrocellulose membrane (Sigma-Aldrich,
Gillingham, UK) and blocked in 3% BSA + 0.05% Tween for 30 min. The membranes were
blocked with 5% dried milk in Tris-buffered saline and Tween-20 (TBST, 20 mM Tris HCl,
150 mM NaCl, 0.05% Tween-20) for 6 h at room temperature. Subsequently, the membranes
were incubated overnight in specific primary antibodies Phospho-NF-κB p65 (Ser536)
monoclonal antibody (MA5-15160, 1:500, Thermo Fisher, Horsham, UK) and NF-κB p65
polyclonal antibody (PA5-e16545, 1:200, Thermo Fisher, UK). After extensive washing, the
membranes were then incubated with an HRP-conjugated secondary antibody solution for
1 h at room temperature (goat antirabbit IgG (324,300, 1:2000, UK for Phospho- NF-κB p65
and NF-κB p65, Thermo Fisher, Horsham, UK). The membranes were washed three times
with TBST; the blots were detected by using enhanced chemiluminescence reagent (ECL)
and exposed to photographic films (Kodak, Thermo Fisher, Horsham, UK). Images were
collected using the E-Gel Imager from Thermo Fisher, Horsham, UK.

2.7. Challenge Tests (Counting Living Larvae)

The impact of Aq on EHP infection was also tested by a challenge test using healthy
P. vannamei postlarvae, following a procedure previously described and modified for para-
sitic infection [25]. Our protocol included 120 shrimp postlarvae per replicate, plated in
sterile petri dishes and exposed to 2 × 106 spores/well for 24 h. The antimicrobial mixture,
Aq, was applied at the time of infection in the concentration of 0.5% and the survival rate
was determined 24 h postinfection. A positive and a negative control (±antimicrobial
mixture or ±larvae) was also included in the challenge at 0% of the antimicrobial mixture.
Measurements of NF-κB, CAT, and SOD were also performed in the gut tissue, as described
above. The gut tissue of infected shrimp was also used to quantify by qPCR the mRNA
expression levels of AMPs (PEN 2, PEN 3, PEN 4, lysozyme, crustin 1, and crustin 2). The
experiment was performed in triplicate.

3. Results
3.1. The Effect of Aq on EHP Spore Activity and the Survivability of Spore-Infected SGP Cells

To determine the impact of Aq on spore activity, EHP spores were exposed to 0.1%,
0.5%, 1%, and 2% Aq, as described in the material and methods. Exposure of EHP spores
for either 24 h (Figure 1A) or 48 h (Figure 1B) significantly reduced spore activity at all
concentrations, but was more pronounced after exposure to 0.5% Aq. Next, we investigated
the impact of Aq during the infection of gut cells and, in doing so, we have infected Aq
pre-exposed SGP cells (Figure 1C) or infected cells cocultured with Aq (Figure 1D). The
survivability of SGP cells infected with EHP spores was significantly increased in both
scenarios; however, a more evident effect was observed when the infected cells were pre-
exposed to Aq (Figure 1C). These results suggest that Aq can reduce the EHP spore activity
and increase the survivability of EHP-infected SGP cells.
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Figure 1. Inhibition of EHP spore activity by Aq after 24 h (Panel (A)) and 48 h (Panel (B)). The
spore activity was evaluated by percentage of extrusion after the addition of Phloxin B. SGP cell
viability after exposure to different concentrations of Aq by MTT assay is presented in panels (C)
(prior infection) and (D) (during infection). Cell viability is expressed as a percentage of control cells
(assigned as 100%). All experiments were performed in triplicate and the results are represented as
means ± standard deviation (SD). Student’s t test was performed to assess significance with the p
values being indicated on graphs.

3.2. Quantification of EHP in Infected SGP Cells

To further clarify the antimicrobial effect, we have next investigated the impact of Aq
on the EHP spores’ survival by RT-PCR, as described in the material and methods. The
number of spores followed a significant decremental pattern (p < 0.0001) regardless of Aq
being used to pretreat SGP cells prior to infection (Figure 2A) or if Aq was present in the
culture media after infection (Figure 2B). However, it is noticeable that the number of EHP
copies/infected well was lower if the SGP cells were pretreated with Aq prior to infection.
The addition of CytD and of 0.5% Aq, individually or as a dual treatment, suggested that
EHP infection requires host action polymerization.
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throughout infection (panel (B)) during the 24 h infection period. All experiments were performed in
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3.3. EHP Spore Infection and Oxidative Stress Impact of the Natural Antimicrobial Mixture in
SGP Cells

Our next aim was to investigate if EHP spore infection impacts on H2O2 release upon
EHP spore adherence to SGP cells. In this experiment, we have used 0.5% Aq only as
previously identified to have a significant impact on adherence or spore extrusion. As
our results show (Figure 3A), there is an increase in the amount of H2O2 released by the
infected cells, which is subsequently reduced in the presence of DPI from ~3.8 nmol to
below 2.5 nmol (p < 0.05) in infected SGP cells, indicating the activation of host NADPH
oxidases upon infection. A similar significant decremental effect was observed in the
presence of 0.5% Aq (p < 0.05) when the levels of H2O2 were reduced to below 2 nmol.
When both DPI and 0.5% Aq were used, a further decrease was observed but with no
difference in significance. Moreover, it became obvious that the reduction in H2O2 is
associated with a significant increase (p < 0.05) in catalase production (Figure 3B) and
superoxide dismutase (Figure 3C). Both catalase and superoxide dismutase production
were lower when CytD was used to block infection of SGP cells, an effect reversed when
CytD was used in combination with 0.5% Aq. These results indicate that EHP infection of
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SGP cells triggers the activation of host NADPH oxidases, an effect which is reversed by the
addition of 0.5% Aq. Furthermore, these results indicate that the activation of catalase and
superoxidase dismutase activation is not dependent on the physical interaction between
EHP spores and the SGP cells. This outcome prompted our next experiment aiming to
investigate the involvement of the NF-κB signalling pathway in controlling CAT and
SOD production.
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Figure 3. The effect of Aq on EHP-infected SGP cells oxidative stress. Panel (A) shows the H2O2

levels in EHP-infected SGP cells in the presence of Aq or the NADPH inhibitor diphenyleneiodonium
chloride (DPI). Panel (B) shows the impact on CAT activity and panel (C) indicates the SOD activity
in infected SGP cells. The impact of Aq on H2O2 production is shown in panel (D) and the role in
NF-κB p65 pathway activation is shown in Panel (E). Panel (F) presents the Coomassie-stained gel of
SGP cells lysate (F1), panel F2 shows the anti-p-serine immunoblot of phospho-NF-κB p65 on SGP
cells lysate and panel F3 the NF-κB p65 (S536) immunoblot. Data are presented as means (SD) of
three independent experiments. p values are indicated on graphs.

This effect will lead to reduced H2O2 production in infected and Aq-treated SGP cells
(Figure 3D). The results presented in Figure 3E clearly indicate that the activation of the
NF-κB p65 signalling pathway observed in EHP-infected SGP cells is significantly reduced
in the presence of 0.5% Aq and is correlated with loss of P-ser phosphorylation of p65
(Figure 3F). In summary, this data shows that, upon infection and destabilization of the
actin cytoskeleton, EHP triggers the host NADPH oxidases to produce H2O2 responsible
for the oxidative activation of the NF-κB pathway via the P-ser phosphorylation of p65. The
impact is further cascaded by increasing the production of the CAT and the SOD enzymes
in the presence of 0.5% Aq.

3.4. Challenge Trial to Determine the In Vivo Effect of Aq

The results observed so far, in vitro, necessitated the implementation of an in vivo
challenge experiment to confirm the observed effect of Aq against EHP infection. P. van-
namei shrimps infected with EHP with or without Aq treatment were observed for the
impact on mortality rates, CAT, and SOD production. The results presented in Figure 4A
show that 0.5% Aq reduced to less than 20% of the mortality rates in EHP-infected shrimp
at 24 h exposure. Figure 4B indicates that catalase followed had a tendency of increased
activity (p < 0.0001) in the presence of 0.5% Aq in the infected group. The SOD (Figure 4C)
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was also significantly increased (p = 0.001) in the infected and treated gut tissue. Next, we
aimed to determine if the in vitro observed effect on the NF-κB is also mirrored in vivo
by measuring the NF-κB pathway-mediated antimicrobial peptides (AMPs) PEN2, PEN4,
PEN4, lysozyme, crustin 1, and crustin 2 (Figure 5). As shown in Figure 5, EHP-infected
shrimp treated with 0.5% Aq produced mRNA levels, of all these AMPs, significantly
reduced (p < 0.05) compared to the infected control, apart from PEN4 and lysozyme where
the decrease was not significant. Conclusively, these data confirm that Aq can reduce the
negative effects of EHP infection and increase the survivability of P. vannamei shrimps by
blocking the proinflammatory events triggered via the activation of the NF-κB pathway.
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Figure 5. The mRNA expression levels of PEN2 (A), PEN3 (B), PEN4 (C), Lysozyme (D), Crustin1 (E), and
Crustin2 (F) in the gut of the infected following exposure or nonexposure to 0.5% Aq of EHP-challenged
shrimp, as determined by qPCR. Triplicate independent samples and experiments were conducted.
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4. Discussion

Shrimps infected with Enterocytozoon hepatopenaei (EHP) will develop hepatopancreatic
microsporidiosis (HPM), an infection known for its impact on the on-farm growth and
performance of crustaceans [26]. Enterocytozoon hepatopenaei (EHP) is an intracellular
pathogen characterised by the transfer of germinated spores into the cytoplasm of the
host cell to complete its life cycle and initiate infection [1]. As such, the identification of
interventions designed to reduce spore germination and subsequent infection and cell
death is vital for the industry [4].

Our results indicate that the natural antimicrobial mixture (Aq) was able to reduce
spore germination and afterwards improve cell viability in EHP-infected SGP cells. Spores
are also vital in protecting the microsporidia against environmental stress and during
adherence and infection of gut cells [27]. Our results indicated that Aq can significantly
prevent the attachment of spores to SGP cells; however, the most impact was detected
when SGP cells were pretreated prior to infection. These results suggest that a prophylactic
application of such interventions can be most effective and this approach was previously
demonstrated with other infection models [21,28].

Previously it has been shown that mixtures of natural antimicrobials can reduce and
prevent parasitic infections in shrimp resulting in improved survival rates in vivo. The
current antimicrobial mixture using (Aq) was earlier shown to reduce N. messor virulence by
avoiding actin polymerization and improving cell-membrane integrity. The antipathogenic
mechanism includes increased SOD and CAT activity, lower H2O2 levels and inactivation
of the ERK signal transduction pathway [14]. Our study shows that, in the case of EHP
infection, we have also observed increased CAT and SOD activity; however, the regulatory
mechanism involves the inactivation of the NF-κB pathway by Aq, an effect caused by the
reduction in H2O2 production. The involvement of H2O2 in NF-κB activation was previ-
ously described as being mediated through post-translational modifications, specifically
serine phosphorylation of p65 [29]. Our study also indicates that Aq can post-translationally
modify the activity of NF-κB by removing the Ser phosphorylation of p65. Most of the
three major groups of parasites (protozoa, helminths, and ectoparasites) are indeed known
for their role in causing a proinflammatory response in infected eukaryotic cells by ac-
tivating the NF-κB pathway [13]; however, in the case of EHP, this is the first report of
such events taking place. Moreover, natural antimicrobials, such as plant extracts, can
indeed ameliorate or inhibit reactive oxygen production (ROS) and elevate SOD and CAT
levels by decreasing NF-κB activity levels [30]. SOD [31] or CAT [32] are in the first line
of defense against excess H2O2 during infection. Both enzymes play an important role in
balancing the levels of H2O2 produced and natural antimicrobials have been previously
identified to modulate their expression [33]. In this current study, we show that following
an oxidative burst caused by the EHP spore infection, Aq was able to reduce the levels of
H2O2 produced and significantly upscale the production of SOD and CAT. These results
indicate that Aq can reduce the oxidative damage caused by EHP infection and improve
the host response by upregulating the antioxidative mechanisms.

Beyond its role as a responder to the infection oxidative stress described above, the
NF-κB signalling pathway is also important in regulating the expression of antimicrobial
peptides (AMP). In shrimp, WSSV infection activated the NF-κB pathway and triggered
the expression of AMPs (lysozyme, crustins, and penaeidins) [20]. Our study shows that in
the case of EHP infection, the levels of lysozyme, crustins, and penaeidins are significantly
increased in infected shrimp followed by a reduction in the presence of 0.5% Aq. This
reduction could be caused by the ability of Aq to block the activation of the NF-κB signalling
pathway by EHP.

5. Conclusions

Herein, we show, for the first time, that mixtures of natural antimicrobials, such as
Aq, can prevent EHP spore maturation and reduce infection of shrimp-gut epithelial cells
(Figure 6(1)). In vitro, Aq prevented actin polymerisation (Figure 6(2)) and reduced the
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number of EHP spores able to infect SGP cells (Figure 6(3)). The presence of Aq during the
infection of SGP cells prevented the trigger of the NADPH oxidases (Figure 6(4)), increased
the expression of CAT and SOD (Figure 6(5)), and reduced the levels of H2O2 produced
and released (Figure 6(6)). The increase in CAT and SOD production was associated with
NF-κB dephosphorylation (Figure 6(7)). Moreover, the loss of NF-κB dephosphorylation
also led to a decrease in the production of AMPs (lysozyme, Crustin 1 and 2, and PEN2,
3 and 4) (Figure 6(8)). In vivo, a significant decrease in mortality was observed, events
which were corelated with the observations made in vitro, suggesting an increase in the
production of CAT and SOD (Figure 6).
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of infection.

Using blends of natural antimicrobials improves nutrient utilization in diseased shrimp
and are increasing their resistance to bacterial infections with an ultimate positive impact
on the survival rates [34]. Our findings are the first to suggest that natural antimicrobials
have the potential to reduce the devastating impact of EHP infections in shrimp farming.
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