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Abstract: Poly(ε-Caprolactone)s are biodegradable and biocompatible polyesters that have gained
considerable attention for drug delivery applications due to their slow degradation and ease of
functionalization. One of the significant advantages of polycaprolactone is its ability to attach
various functionalities to its backbone, which is commonly accomplished through ring-opening
polymerization (ROP) of functionalized caprolactone monomer. In this review, we aim to summarize
some of the most recent advances in polycaprolactones and their potential application in drug delivery.
We will discuss different types of polycaprolactone-based drug delivery systems and their behavior
in response to different stimuli, their ability to target specific locations, morphology, as well as their
drug loading and release capabilities.

Keywords: polycaprolactones; ring opening polymerization; catalyst; functional caprolactone monomers;
drug delivery systems; polymeric micelles; targeting; stimuli-responsive polymers

1. Introduction

Aliphatic polyesters, including poly(ε-caprolactone) (PCL), poly(glycolide) (PGA),
poly(lactide) (PLA), and Poly(lactide-co-glycolide) (PLGA), are commonly used for drug
delivery applications owing to their biocompatibility and biodegradability [1–3]. These
polyesters are approved by the US Food and Drug Administration (FDA) due to their
ability to address several challenges that occur during the drug delivery process [4,5].
They demonstrate the potential to optimize pharmacokinetics by precisely controlling drug
concentrations within the therapeutic range, leading to a reduction in adverse effects [4].
PCL, in particular, stands out due to its flexibility in introducing different substituents into
its backbone. PCL has many therapeutic applications, such as tissue engineering scaffolds,
artificial blood vessels, wound dressings, nerve regeneration devices, and drug delivery
devices [6–9]. Due to its good mechanical properties and high permeability to many drugs,
PCL is a great choice for controlled drug delivery applications [1,10]. One of the significant
advantages of PCL over other aliphatic polyester is its ability to fine-tune the physical and
chemical properties. This is achieved by functionalizing their monomers with the desired
substituents. In this way, the properties of PCL can be altered to our advantage and can
be applied to precisely control the loading and release of drug molecules from PCL-based
drug delivery systems [1,4,11–16].

PCL is a semi-crystalline polymer with the ability to adjust its crystallinity based on
its molecular weight [17,18]. When the molecular weight of PCL is increased, it results
in longer chain lengths. Consequently, chain folding can occur, leading to a reduction in
crystallinity [19]. PCL has a relatively lower melting point (60 ◦C) and lower glass transition
temperature (−60 ◦C) when compared to other aliphatic polyesters [17,19–21]. The low
intermolecular interactions and high mobility of chain segments in PCL are responsible
for its very low melting and glass transition temperatures [17]. As a result, PCL shows
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elastic behavior at room temperature and makes it easy to transform into various structural
forms [19]. PCL has gained popularity as a biomaterial due to its exceptional rheological
and viscoelastic properties, making it a valuable material in tissue engineering [20]. It is
widely used in the development of controlled-release contraceptives and matrix implants,
where its slow degradation rate allows for long-term drug release and stable structural
support [22]. Moreover, PCL is also considered a promising material for developing
scaffolds that can mimic the structure and mechanical properties of cardiac tissues. Its
desirable chemical, mechanical, and biocompatible properties and biodegradability make it
a promising candidate for re-engineering and regenerating the myocardium after disease
or injury [23].

2. Synthesis of Poly(ε-Caprolactone)s

PCL can be easily synthesized by the polycondensation of 6-hydroxycaproic acid.
However, the most preferred technique for generating PCLs is through the ring-opening
polymerization (ROP) of ε-caprolactone (CL) monomers (Figure 1) [21]. This method offers
numerous advantages, including higher degrees of polymerization and molecular weight,
superior product quality, and low-dispersity polymers [18,24]. Various mechanisms such
as anionic, cationic, radical, and coordination processes can be employed for the ROP
of PCLs [1,25]. Each approach significantly influences the resulting copolymers’ final
molecular weight, end group composition, molecular weight distribution, and chemical
structure [6,26]. However, the first three methods exhibit drawbacks, such as backbiting
and low polymerization control. Consequently, a metal-based catalyst is employed to
polymerize CL through a coordination-insertion process [18,27,28].
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safe by the FDA and can produce high molecular weight PCLs with low polydispersity
and reduced transesterification [18,27–31]. An overview of the mechanism of ROP of CL
monomers using Sn(Oct)2 catalyst is shown in Figure 2. In this mechanism, the monomer 
is coordinated to the metal center, followed by the insertion into a metal-alkoxide species 
through the acyl-oxygen bond.  

However, Sn(Oct)2 is classified as toxic and found to be less effective for polymerizing 
functional CL monomers [32–36]. The functionalities present in the CL monomer can 
sometimes affect the polymerization kinetics, reducing the reaction rate. The use of 
Sn(Oct)2 often requires longer reaction times and higher temperatures to achieve a reason-
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Figure 1. Synthesis of poly(ε-caprolactone) through ROP or polycondensation [24].

2.1. Ring-Opening Polymerization Using Metal Catalyst

In this polymerization, the presence of an alcohol initiator and a metal catalyst is
necessary. Among the widely used tin-, aluminum-, and zinc-based metal catalysts, Tin (II)
octanoate (Sn(Oct)2) is extensively utilized in the synthesis of PCLs as it was approved
safe by the FDA and can produce high molecular weight PCLs with low polydispersity
and reduced transesterification [18,27–31]. An overview of the mechanism of ROP of CL
monomers using Sn(Oct)2 catalyst is shown in Figure 2. In this mechanism, the monomer
is coordinated to the metal center, followed by the insertion into a metal-alkoxide species
through the acyl-oxygen bond.
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However, Sn(Oct)2 is classified as toxic and found to be less effective for polymer-
izing functional CL monomers [32–36]. The functionalities present in the CL monomer
can sometimes affect the polymerization kinetics, reducing the reaction rate. The use
of Sn(Oct)2 often requires longer reaction times and higher temperatures to achieve a
reasonable polymerization rate [35]. On the other hand, zinc undecylenate (ZU) is an
inexpensive antifungal agent used in pharmaceutical applications and is also a great
ready-to-use catalyst candidate. Zinc catalysts show low toxicity when compared to
tin catalysts and have been shown to provide living polymerization of CL monomers.
Zinc catalysts require no purification before use and can be easily removed after poly-
merization, making them a better choice than Sn(Oct)2 [37,38]. Stefan et al. used a ZU
catalyst to polymerize γ-functionalized CL monomers to develop linear- and star-like
block copolymers. The produced polymers showed monomodal distribution and were
used to study the difference in their size, morphology, thermodynamic stability, and
drug loading capacity [38].

2.2. Ring Opening Polymerization Using Rare-Earth Metal

Most ROP strategies have focused on polymerizing unsubstituted CL monomers
rather than substituted ones. However, a catalytic system that can effectively polymerize
both substituted and unsubstituted ε-CL monomers is desirable for practical applications.
Rare earth metal catalysts have been gaining attention recently due to their high reactivity,
nontoxic nature, and mild reaction conditions [36,39–42]. In particular, Neodymium (Nd)
complexes containing ligands such as—alkoxides, phenolates, and iminophosphoranes
have exhibited excellent catalytic activity in the ROP of cyclic esters [43–45]. Using this
catalytic system, the transesterification of PCL can be reduced by the incorporation of
bulky ligands into the metal center [46]. Stefan et al. used an Nd catalytic system to
polymerize ester-functionalized CL monomers. Here, they studied the catalytic activity of a
newly developed Nd-based catalytic system, NdCl3·3TEP/TIBA (TEP = triethyl phosphate,
TIBA = triisobutylaluminum), to polymerize γ-4-phenylbutyrate-CL, a prodrug monomer
and compared it with the traditional Sn(Oct)2 catalytic system. They observed a relatively
higher conversion rate of the monomer leading to higher molecular weight and relatively
lower transesterification when compared to the polymer synthesized with tin catalyst
(Figure 3) [36].
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2.3. Ring-Opening Polymerization Using Organic Catalyst

A significant challenge in conventional polymerization processes using organometal-
lic catalysts is the intricate and expensive removal of residual metals from the result-
ing polyesters. This issue becomes particularly crucial in biomedical applications, as
medical-grade polymers are required to adhere to strict standards [47]. As an alterna-
tive to metal catalysis, organocatalysis for ROP is also growing fast [48]. Organocatalytic
ROP offers significant advantages, including fast reaction rates, generating polymers with
narrow polydispersity, and performing the reaction under ambient temperature condi-
tions [34]. Commonly used organocatalysts include 1,5,7-triazabicyclo[4.4.0]dec-5-ene
(TBD), 1,8-diazabicycloundec7-ene (DBU), and phosphazene bases [49–53]. DBU exhibits
high catalytic activity for ROP at ambient temperature. However, extended reaction times
with DBU can sometimes lead to transesterification reactions. Moreover, DBU requires
a cocatalyst to polymerize CL monomers, and the monomer conversions are relatively
low [54,55]. In contrast, TBD and phosphazene bases display exceptional catalytic perfor-
mance towards ROP conditions.

2.3.1. Organocatalytic ROP Using Phosphazene Bases

Phosphazene bases are excellent catalysts towards ROP and can carry out polymeriza-
tion at temperatures as low as −78 ◦C. However, they exhibit lower activity regarding the
ROP of lactones [54,56]. Hadjichristidis et al. investigated the ROP of CL monomer using
a phosphazene base (t-BuP2) in different solvents using various protic initiators. They
observed that the dispersity of PCL became broader as the conversion of CL monomers
increased, indicating that transesterification reactions occurred on the polyester chains
in all the cases [56]. However, in their recent study, they compared the catalytic activity
of different organocatalysts for the ROP of a CL derivative, N-Boc-1,4-oxazepan-7-one
(OxPBoc). The study revealed that a binary organocatalytic system consisting of phosp-
hazene/thiourea (t-Bu-P4/TU1) leads to a controlled/living ROP compared to DBU and
TBD. As expected, DBU exhibits the lowest activity for ROP due to its relatively weak
basicity. In contrast, ROP conducted under TBD demonstrates rapid polymerization and
observed 95% conversion within 6 min. Nevertheless, the strong basicity of TBD hinders
control over the molecular weight and dispersity of the resulting polymer compared to the
t-Bu-P4/TU1 binary system [57].

2.3.2. Organocatalytic ROP Using TBD

TBD is recognized as one of the highly efficient organocatalysts for the ROP of cyclic
esters due to its strong basicity [58,59]. TBD as a catalyst for the ROP of CL monomers
was first investigated by Hedrick, Waymouth, et al. and was shown to produce PCL with
narrow dispersity [50,51]. TBD exhibits a bifunctional catalytic mechanism, facilitating the
activation of the monomer and the initiator through hydrogen bonding interactions. TBD
activates the carbonyl group of CL monomer by donating a hydrogen bond, making it more
susceptible to nucleophilic attack by the alcohol. Simultaneously, TBD activates the alcohol
by accepting a hydrogen bond to its imine-like nitrogen. TBD then facilitates the ring-
opening process by hydrogen bonding to the former carbonyl oxygen in the tetrahedral
intermediate and transferring the hydrogen from the alcohol to the ring oxygen adjacent to
the former carbonyl group (Figure 4) [50].

TBD is known for its versatility in synthesizing functional PCL block copolymers,
and when compared to the other amidine bases, TBD showed a relatively higher catalytic
activity [32,34,50]. TBD-catalyzed ROP is reported to provide living polymers from amide-
functionalized CL monomers more efficiently than Sn(Oct)2 catalysts. For example, Lang
et al. studied the ROP kinetics of several amide-functionalized CL monomers utilizing TBD
catalyst [34]. They compared their results with those obtained from γ-ester functionalized
analogs. The study revealed that TBD-catalyzed ROP of amide substituents went through
a controlled and living manner compared to the ester-functionalized CL monomer. This
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was further confirmed through density functional theory, which showed that the enthalpy
of ring-opening of γ-amide CL was more negative than that of γ-ester CL.
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3. Functional PCL

Functionalization of PCL is highly desirable as it can control the mechanical and ther-
mal properties while influencing the kinetics of polymerization [1,60]. By introducing differ-
ent functional groups to the polymer backbone, crystallinity, hydrophilicity, biodegradation
rate, and bioadhesion can be fine-tuned [16,61]. Moreover, functionalized PCLs offer oppor-
tunities for modification by incorporating drugs, bioactive moieties, and stimuli-responsive
components. Most reported functionalized CL monomers are γ-functionalized through an
ether linkage due to ease of functionalization and less interference in ROP [15,62]. Stefan's
group previously reported several γ-ether functionalized CL monomers and studied their
application in drug delivery [11–13,37,63,64]. Subsequently, they also reported γ-ester
functionalized CL monomers and investigated the possibility of ester-functionalized PCLs.
Ester linkages in PCLs are promising as it provides access to many natural substituents
through simple esterification reactions. Nonetheless, the presence of two ester groups
promoted transesterification side reaction during ROP [36,65,66]. Some of the examples of
functional CL monomers that were reported after 2015 are listed in Figure 5.

Functional PCL can be synthesized by two strategies: (i) polymerization of functional
CL and (ii) post-polymerization chemical modification. In the first case, functional groups
can be attached to different positions of CL monomer, with α- and γ-functionalities being
the most observed. In contrast, the second case is mostly used for substituents not amenable
to ROP conditions. Therefore, these substituents are directly attached to the side chain of
PCL after polymerization. PCL-based polymers with pendant functional groups such as
silane, alkoxide, halogen, azide, and unsaturation were reported [67–69].
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3.1. Halogen Functionalized PCLs

As halogens are amenable to ROP conditions, halogen-functionalized PCLs can
be easily synthesized by the ROP of halogen-functionalized CL monomers. Halogen-
functionalized CL offers versatility in its applications, serving as both a monomer for
ROP and an initiator for atom transfer radical polymerization (ATRP) [74,75]. Bexis et al.
demonstrated the potential of this approach by synthesizing a range of bromine (Br) sub-
stituted PCL-based graft copolymers (Figure 6). They achieved this by utilizing Cu(0)
as a catalyst to polymerize methyl acrylate (MA) with Poly(α-Br-CL) homopolymer and
Poly(α-Br-CL-co-ε-CL) copolymers as macroinitiators. Notably, this process produced
polymers with low dispersity (Ð ≤ 1.22) and unique macromolecular topologies and was
conducted under mild reaction conditions. Employing poly halogen-functionalized ε-CLs
as macroinitiators make it possible to generate living grafted polymers with a degradable
poly(ε-CL) backbone in a controlled manner [76].
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3.2. Propargyl Functionalized PCLs

The polymerization of certain functional CL monomers can sometimes be challeng-
ing due to the interference caused by the functional group under ROP conditions. In
that case, the functional groups are often protected before polymerization to reduce the
risk of unwanted side reactions and then deprotected after polymerization to generate
the corresponding polyesters. Polar functional groups like hydroxyl, amino groups, and
carboxylic acid are functionalized to PCL in this manner [62,77–79]. However, the pro-
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tection method is not always suitable for PCL due to the harsh deprotection conditions
that can sometimes degrade the ester backbone of the PCL. Functional groups that do not
demand protection during ROP are available. These groups will not interfere with the
polymerization mechanisms and can be modified to achieve the desired interaction with
the cargo through post-polymerization reactions. For example, Emrick et al. introduced
the propargyl group to the α-position of CL monomers to develop alkyne-functionalized
aliphatic polyesters. They explored using orthogonal click reactions to enable the sequential
functionalization of a diblock polyester [69,80]. The propargyl group can be a versatile
platform for functionalizing biologically relevant substituents through post-polymerization
modification via click chemistry. Propargyl-substituted polyesters were used in click chem-
istry to conjugate drugs, stimuli-responsive moieties, or targeting agents. Other biologically
relevant molecules, such as drugs, peptides, and antibodies that are not tolerated in ROP,
can be tagged in this way [69].

3.3. Amide Functionalized PCLs

Amide functionalized PCL, an area explored recently, has excellent potential to de-
velop advanced materials for drug delivery applications with minimal effort. One of the
significant advantages of amide linkage is that it can accommodate two functional groups,
which doubles the grafting density of the functional group per monomer [32]. For example,
Stefan et al. reported TBD-catalyzed ROP of γ-amide functionalized ε-CL monomers. Their
work demonstrated that TBD could initiate the synthesis of amphiphilic homopolymers as
well as amphiphilic block copolymers (Figure 7) [32,70].
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3.4. Ester Functionalized PCLs

Jayakannan et al. incorporated the carboxylic acid group into PCL with the help
of a protecting group. The butyl ester protecting group of the generated polymers
was removed after polymerization to generate the carboxylic acid functionality. The
produced polymer was hydrophilic in nature and was used to make nanoparticles for
the delivery of Doxorubicin (DOX) [81,82]. Lang et al. developed a more controlled
way of synthesizing carboxylic acid functionalized PCL by tuning the electronic effect
and steric hindrance of the protecting group (Figure 8). The results revealed that the
electron-donating group exhibited greater control over the degree of polymerization and
enabled efficient removal of the protecting groups without causing any degradation to
the polymer backbone [73].
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4. PCL for Drug Delivery

Enhancing the efficiency of a drug is possible by designing biocompatible nanocarriers
that allow the delivery of the drug in a controlled and less toxic manner [63]. Various
drug delivery systems (DDS) have been employed, and most comprise synthetic polymers,
including micelles, dendrimers, nanogels, and nano-capsules [83–89]. PCL are excellent
candidates for drug delivery applications due to their biodegradability, biocompatibility,
and synthetic versatility [90–93]. Effective utilization of PCL as a drug delivery carrier
can be observed in the case of the Capronor implant, enabling an extended release of the
drug for two years [94,95]. PCL offers several other advantages as a drug delivery material,
such as a slower degradation rate, shorter in vivo adsorbable time, and the generation of
a minimal acidic environment during degradation [93]. These properties make PCL an
attractive choice for controlled and efficient drug delivery.

4.1. Types of Drug Delivery Systems Based on PCL
4.1.1. Polymeric Micelles

Polymeric micelles formed by the self-assembly of amphiphilic block copolymers
of PCLs can be used as drug delivery vehicles. These amphiphilic block copolymers
are composed of a hydrophilic and a hydrophobic segment which can self-assemble
in aqueous media to form micelles with a hydrophobic core and a hydrophilic shell.
Hydrophobic drug molecules can be encapsulated within the hydrophobic core of the mi-
celle (Figure 9). The hydrophilic shell can provide enhanced solubility for the micelle and
its cargo; it also shields against opsonization and helps the particles stealthily circulate in
the bloodstream [96–102]. Moreover, the hydrophilic shell can be modified by attaching
targeting ligands and markers that can aid the particles in selectively interacting with
specific diseased cells. Polymeric micelles, ranging from 10–100 nm, remain “stealthy” by
avoiding kidney-mediated excretion and bypassing spleen filtration [22,103]. Moreover,
the nanosize allows them to take advantage of passive targeting through the EPR effect
and is amenable to active targeting [101,104].
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Tuning the properties of the PCL block copolymer by altering the pendant group
present on the CL monomer is the classic approach to obtain the micelles with desired
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properties. Amphiphilic PEG-b-PCL copolymers with PCL block bearing either carboxyl
(-COOH), hydroxyl (-OH), or amine (-NH2) group were reported by Jundi et al. [105].
The distinct functional group present at the PCL block impacted the solubility of the
block, swellability, and thermodynamic stability of the micelles. Similarly, the Jayakan-
nan group [82] synthesized amphiphilic random and block copolymers from carboxyl
functionalized CL and native CL (PCL-b-CPCL). The CPCL block afforded hydrophilicity
to the polymer and allowed these copolymers to self-assemble into nanosized micelles.
Both these polymers were able to encapsulate the anticancer drug DOX and were able
to internalize it into the cell nucleus. Researchers have also attached biologically active
moieties as a pendant group to abet the efficiency of the encapsulated drug. For example,
valproic acid pendant group-containing poly(ethylene glycol)-b-poly(g-2-propylpentanoate-
e-caprolactone) amphiphilic copolymer released a histone deacetylase (HDAC) inhibitor,
valproic acid after 72 h incubation in PBS [66].

Polysaccharides are copiously available molecules in nature. These naturally occurring
molecules are, apart from inherently biodegradable and biocompatible, inexpensive, highly
stable, nontoxic, hydrophilic, and possess an excellent life in the body [106,107]. These
lucrative properties of polysaccharides make them ideal materials for drug delivery appli-
cations. Hemmati and Ghaemy [108] grafted PEG-b-PCL-b-PDMA triblock copolymer on
Tragacanth Gum via alkyl-azide click reaction. The micelles obtained from these comb-type
graft polymers rapidly released the drug in the acidic environment, making them suitable
for oral drug delivery applications. Almeida et al. [109] utilized carbodiimide chemistry to
obtain amphiphilic chitosan-grafted-polycaprolactone (CS-g-PCL) copolymers. The CMC
analysis suggested that these polymers are thermodynamically stable and could load up to
5% of Paclitaxel (PTX). In another approach reported by Youssouf et al. [110], enzymatically
degraded k-carrageenan to obtain oligocarragenan and subsequently grafted with PCL
chains to obtain nanospherical micelles with a critical micellar concentration of 4 × 10−5 M.
Furthermore, in vivo, and in vitro studies showed the micelles of these benign polymers
are internalized into cells via endocytosis and are mainly taken up by the liver.

Although micelles obtained by linear copolymers are advantageous, they often lack
high loading capacity and require higher polymer concentrations to form micelles. Poly-
mers having non-linear architecture are sought to tackle these shortcomings [19,111]. Com-
parison of micelles obtained from multiarmed copolymers with their linear analogs evi-
denced the superior performance of these micelles as a DOX carrier. The increment in the
number of arms in polymers resulted in compact micelles with low CMC values and encap-
sulated more drugs. Similarly, in another study, [112] star-shaped PCL-b-PEG polymers
were prepared by ROP using porphyrin as an initiator. Apart from encapsulating high
DOX concentration, porphyrin moiety in the polymer generated singlet oxygen (1O2)—a
molecule playing an important role in photodynamic therapy.

4.1.2. Hydrogels

Polymeric hydrogels are three-dimensional, physically or chemically crosslinked poly-
mer networks capable of swelling by absorption of large amounts of water or biological
fluid. The presence of significant water content imparts the hydrogel’s excellent biocom-
patibility [113–116]. PEG-b-PCL-b-PEG triblock copolymers were prepared by combining
PEG-b-PCL block copolymer with hexamethylene diisocyanate (HMDI). The aqueous so-
lution of this block copolymer displayed a temperature-dependent sol-gel transition. It
showed sustained release of hydrophilic drug for up to 168 h and hydrophobic drug for
more than 13 days in vitro [117]. The inclusion of hydrophilic PEG block in amphiphilic
Agarose-PCL co-network gels enhanced equilibrium water swelling as well as mechanical
properties [118]. The PEG moiety improved the miscibility of the phases of this non-
cytotoxic, hemocompatible, and injectable hydrogel. This phase compatibility results
in higher drug encapsulation (~35%) and zeroth order release of 5-Fluorouracil was ob-
served. In addition to this, the hydrogels prominently released the drug at the tumor
site, reduced tumor growth, and reduced the toxicity of the drug in vivo [119]. In a sim-
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ilar approach, PTX-loaded PCL-b-PEG-b-PCL polymers were freeze-dried to obtain the
powdered nanoparticles, which upon dispersion in water, gelated at 37 ◦C. The in vivo
pharmacokinetic evaluation of the hydrogel evidenced significantly improved half-time of
the drug compared to the commercial formulation Taxol© [120].

4.1.3. Micro/Nanospheres

Micro/nanospheres refer to an emulsion of cell or solid particles in a continuous
phase. These particles possess unique advantages in drug delivery and can be prepared by
various methods [121,122]. Kim and group [122] reported a one-pot method using ionic
liquid to obtain PCL microspheres containing water-soluble carbon nanotube (w-CNT)-
taxol complexes. Trioctylammonium chloride, an ionic liquid, was eliminated by selective
extraction with 100% ethanol to obtain a gray powder. The scanning electron microscopy
analysis of these microspheres showed uniformly formed homogeneous microspheres with
a mean diameter of 3.24 ± 1.72 µM (Figure 10). Although the loading capacity of these
microspheres was low, the in vitro studies showed a sustained release of the drug for up
to 60 days. Magnetic Fe3O4 nanoparticles and DOX-embedded PCL microspheres, on the
other hand, were able to encapsulate 36.7% of the drug and are also shown to have super
magnetic behavior. Due to their magnetic nature, these microspheres could be directed
toward the pathological site by applying a magnetic field [123].
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Figure 10. Scanning electron micrographs of (a) pure PCL microspheres and (b) w-CNT/taxol-
containing PCL microspheres (PCTx-1). In the insets: (i) photos of pure PCL microspheres (the left
upper inset, white color) and of w-CNT/taxol-containing PCL microspheres (the left lower inset,
gray); (ii) the red arrows indicate projected portions of w-CNTs (the right lower inset) [122] (Printed
with permission from Elsevier©).

4.1.4. Drug Conjugates

In polymer-drug conjugates, a drug is chemically connected to the polymer backbone
via a cleavable linker. This prodrug is then delivered to the pathological site by active or
passive targeting, and the degradation of the linker results in drug release [96]. Since the
drug is chemically bonded, the problems associated with pre-release and low loading can
be circumvented. Lipid and membrane-coated PCL-(7-ethyl-10-hydroxy-camptothecin)
prodrugs were developed and assessed in vitro and in vivo for their application as nanofor-
mulations. The membrane coating improved the cell adhesion and enhanced the cellular
uptake of the drug. Moreover, membrane-coated nanomedicine outperformed free and
lipid-coated drugs in vivo pharmacokinetic assays [124]. In another study, the anticancer
drug Paclitaxel (PTX) was bonded to PEG-b-PCL polymer using acetal linkage (Figure 11) to
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generate drug delivery carriers with on-demand release of the drug by cleavage of the bond
at the lower pH [125]. Similarly, methotrexate conjugate PCL-b-PEG micelles passively
target the tumor cells and show zeroth order release kinetics [126].
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5. Strategies to Target PCL-Based Drug Delivery Carriers

At its core, the drug delivery carriers are designed to improve the drug’s efficacy
by increasing its concentration at targeted sites while decreasing its toxicities at the other
sites [127–130]. In the context of tumors, this is achieved either through active [131] or
passive [132] targeting. Some delivery carriers may transpire complex targeting mecha-
nisms and can be designed to release the drug upon temperature variation, pH, light, etc.,
to release the cargo after accumulation at the pathological site [129,131,133,134]. Such
materials are called smart- or stimuli-responsive materials, and Section 6 of this article will
discuss them in detail.

5.1. Active Targeting

In active targeting, the carrier is embellished with tumor-recognizing moieties, such
as ligands or antibodies, to deliver a drug at the pathological site [135,136]. For example,
Zhou et al. dedicated their efforts to developing a particular type of polymeric micelle that
exhibited a response to both enzymes and redox, with active targeting capabilities [137].
This research aimed to formulate an effective mechanism for the quick release of drugs
inside cells as part of an overall cancer treatment strategy. However, one of the major issues
encountered was the encapsulation of the hydrophobic drug Camptothecin (CPT), which
proved to be quite challenging due to its planar structure and moderate polarity [138,139].
To deal with this obstacle, CPT was chemically bonded to mPEG, using a redox-responsive
linker, to create polymeric prodrugs. The attachment of Phenylboronic acid (PBA) at
the terminal of the PEG segment was performed to give the nanocarriers the ability to
actively target specific tumor cells, such as hepatoma carcinoma cells, that overexpress
sialic acid (Figure 12) [140–142]. Rigorous in vitro and in vivo testing has confirmed that
this nanocarrier is capable of selectively delivering therapeutic agents to target cells, thus
providing highly effective cancer treatment [137].
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Li et al. have developed a cutting-edge solution to deliver doxorubicin and cypate to
cancer cells [143]. Here, they improved the solubility of cypate by linking it to the polymeric
micelles and targeting cancer cells by binding to biotin-avidin and then being taken up
through endocytosis [144,145]. Additionally, by using biodegradable photoluminescent
polymers (BPLPs), they have made the micelles photoluminescent, which has helped track
their movement within the body. The developed micelles have shown excellent biodegrada-
tion, photodegradability, and photocytotoxicity. These properties make them an ideal candi-
date for cancer treatment. In another study, Wang et al. prepared Pyridine-grafted diblock
copolymer poly(caprolactone-graft-pyridine)-block-poly(caprolactone) [P(CL-g-Py)-b-PCL]
by combining ring-opening polymerization and Cu(I) catalyzed azide-alkyne cycloaddition
(CuAAC) reaction [146,147]. They were able to create core-shell nanoparticles (CSNPs)
by self-assembling transferrin (Tf) and P(CL-g-Py)-b-PCL, where the PCL block helped
to encapsulate DOX (with a 10% loading capacity) through hydrophobic-hydrophobic
interaction [148–150]. The drug-loaded Tf/P(CL-g-Py)-b-PCL CSNPs exhibited effective
targeting of MCF-7 cancer cells by binding to transferrin receptors (TfR) through Tf [147].

Functionalized PCL has also been studied recently for active targeting. For example,
Rezaei group developed a polymer-drug conjugate that can effectively deliver PTX to
target cells [151]. They used a PEG-b-PCL-based amphiphilic block copolymer scaffold
with functional disulfide linkages, which was prepared using a controlled ring-opening
polymerization method with modifications (Figure 13). PTX was chemically linked to this
scaffold through a DCC-catalyzed esterification reaction. The folate-poly(ethylene glycol)-
b-poly((α-paclitaxel-SS-caprolactone)-co-caprolactone) (FA-PEG-b-P((PTXSS-CL)-co-CL))
micelles conjugates exhibited apparent targetability to folate receptor-overexpressing HeLa
cells. The resulting FA-PEG-b-P((PTX-SS-CL)-co-CL) micelles were stable, had a narrow
size, and had a low CMC value of 5.21 mg L−1. The micelles showed high intracellular
uptake and drug release in the tumor intracellular environment, leading to improved
cytotoxicity compared to free PTX.

Another study led by de Paiva et al. on modifying the surface of polymeric mi-
celles to improve the delivery and specificity of a new inhibitor of polynucleotide ki-
nase/phosphatase (PNKP) to colorectal cancer (CRC) tumors [152]. To achieve this, a
peptide called GE11 was used to target the epidermal growth factor receptor (EGFR) that is
commonly overexpressed in about 70% of CRC tumors. The micelles were modified with
GE11 and labeled with a near-infrared fluorophore, resulting in enhanced internalization
by CRC cells that overexpress EGFR, as observed in vitro and a trend towards increased
primary tumor homing in an orthotopic CRC xenograft in vivo. These results suggest the
potential benefit of EGFR-targeted polymeric micellar formulations as monotherapeutics
for aggressive and metastatic CRC tumors. However, they also highlight the need for
the development of EGFR ligands with improved physiological stability and binding to
EGFR [152].
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5.2. Passive Targeting

Passive targeting primarily relies upon the distinct pathophysiological characteristic
of tumors compared to normal cells. The hyperpermeable nature of the tumor allows
macromolecules to internalize. At the same time, the impaired lymphatic drainage
system limits their clearance- the effect is very well known as the enhanced permeability
and retention (EPR) effect [132,153,154]. For example, Zhang et al. successfully devel-
oped a novel polymeric micelle that can passively target cancer cells and alter their shape
in response to pH levels [155,156]. The developed micelles have been found to be highly
effective in transporting anticancer drugs, such as Gambogenic acid (GNA), with an
impressive loading efficiency of 83.67% and 15.20% drug loading capacity. Moreover,
the bioavailability of their GNA-loaded micelles was almost four times higher, and the
peak concentration (Cmax) value was close to three times higher than that of free-GNA,
indicating the protective nature of the loaded micelles. By slowing down the metabolism
of GNA, these micelles help to ensure that the drug remains in circulation for longer peri-
ods of time, ultimately promoting its effectiveness and improving its overall therapeutic
impact [157].

In 2015, Tang et al. utilized PTX-functionalized PCL to passively target cancer
sites [158]. The PTX-PCL conjugate displayed slightly higher drug efficacy than free
PTX in MCF-7 cells after 72 hrs of incubation at concentrations between 0.31 and 5.76 mg
PTX equiv·mL−1. In another study, Yin et al. used TBD to prepare ester-functionalized
PCL block copolymers, specifically with conjugated phenylboronic acid (PBA) formate
pendant group (Figure 14) [159]. Incorporating the PBA pendant group significantly
increased the interaction between the polymeric carriers and DOX. Consequently, the
drug-loading capacity of the micelles was increased with the use of PBA-modified PCL
block copolymers with an encapsulation efficiency of over 95%. These micelles have also
been observed to maintain a consistent particle size for up to a week, which makes them
a reliable drug carrier.
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6. Stimuli-Responsive PCL for Drug Release

Even though targeting disease site in the body help minimizes the side effect of
anticancer drug, the ability to control when and where drugs are released is impor-
tant [12,13,15,160,161]. Moreover, the therapeutic effect of a drug that is loaded in a
DDS cannot be established until it is released, even if the DDS is present at the intended
site. This challenge has revolutionized the design of “smart” delivery systems. The
term “smart” contextually means the ability of the DDS to respond to stimuli and
consequently release their payload. This has been accelerated by advanced studies on
the differences between the pathology of healthy and diseased tissues. For instance,
Solid tumors are reported to have lower pH, elevated reactive oxygen species (ROS)
and reductive compounds such as glutathione, and ester hydrolyzing enzymes such
as esterase [162–166]. Upon such differences, researchers have designed materials that
can respond to these internal stimuli to initiate an autonomous release of the payload
from the DDS into solid tumors. Materials that respond to external triggers, such as
temperature, light, magnetic field, and ultrasound, have also been studied [163,167].

6.1. pH-Responsive PCL

Normal physiological environment, such as the blood, tightly regulates the pH around
7.4, while solid tumors have a slightly acidic pH [82,151]. Solid tumors such as breast cancer
are known to have restricted blood perfusion and high glycolytic cancer cell metabolic
activity, leading to decreased pH [87,168]. Hence, this low pH can be targeted to release
anticancer drugs from DDS (Figure 15).
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Recently, Yin et al. [169] synthesized two PCL-derived amphiphilic polymers for the
delivery of paclitaxel (PTX) and doxorubicin (DOX). PTX was covalently attached to the
polymer, while DOX was physically encapsulated with loading capacities of 11.6% and
12.4% for each polymer, respectively. The acid hydrolyzable ester backbone and amide
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bonds make this polymer pH-responsive, as the highest drug (DOX and PTX) released was
recorded at a pH of 5 relative to the pH of 7.4. Niknejab et al. [151] also designed a novel
folate-poly(ethylene glycol)-b-poly((a-paclitaxel-SS-caprolactone) ε-caprolactone) (FA-PEG-
b-P(PTX-SS-CL)-co-CL)) amphiphilic polymer to deliver PTX. Since the PTX was attached
to an acid-cleavable β-thiopropionate group, the release of PTX at low pH was determined.
About 79% of PTX was released at a pH of 5.0, while only 6% release was observed at neutral
pH. The effect of different chemical compositions and polymer topology (random and block
copolymer) of aliphatic polyester on the pH-responsive behavior was investigated by
Jayakannan et al. [82]. Three amphiphilic random copolymers made up of unsubstituted
CL and carboxylic-functionalized polycaprolactone (CPCLn) (n represents the number of
the carboxylic functionalized CL repeat unit)—were synthesized as CPCL30, CPCL50, and
CPCL70 and loaded with DOX. It was observed that the highest DOX release of 50% was
observed at a pH of 4.0 from CPCL70 polymer, while only 18% DOX release was observed
for both CPCL30 and CPCL50 at the same pH. However, DOX release from the block
copolymer, PCL50-b-CPCL50, was only 25% at the acidic condition. The DOX release from
CPCL70 polymer was because of the larger number of ester hydrolyzable bonds from both
carboxylic acid pendants and the ester polymer backbone, implying that the composition
of amphiphilic polymer needs to be tuned to achieve the most pH-responsive polymer.

6.2. Thermo-Responsive PCL

Materials with thermal properties can be tailor-made so that their incorporation in
amphiphilic polymers intended for drug delivery can retain the integrity of the DDS at
a certain temperature range but release the loaded drug at another range of temperature.
These materials are generally known to be thermo-responsive. Thermo-responsive poly-
mers reported as DDS are known to undergo phase transition between a hydrated state
and a dehydrated state above or below their critical solution temperature (CST) [170],
as represented in Figure 16. These thermo-responsive polymers become globular in a
hydrated state and coil-like once dehydrated [13,70,171]. The temperature above which
thermo-responsive polymers are insoluble in aqueous solution is termed lower critical
solution temperature (LCST) and is often determined as the temperature at which there
is a 50% drop in the transmittance as the polymer solution is heated [12,13,160,161]. The
temperature below which thermo-responsive polymer transitions from coil-to-globular
shape is also known as upper critical solution temperature (UCST). The application of
such a concept has found application in DDS where the DDS remains intact (drugs are not
released) at physiological temperature (37 ◦C) but rapidly releases the loaded drug by either
raising the temperature (in polymers with LCST) or reducing the temperature (in polymer
with UCST) at the local area where the drug is intended to be released [12,13,160,161,170].
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Over the last decade, Stefan et al. [12,13,160,161] have reported several thermo-
responsive amphiphilic polymers to prepare micelles to deliver anticancer drugs. In one of
the recent reports [160], linear, four-armed, and six-armed star-like amphiphilic polymers
named poly(γ-benzyloxy-ε-caprolactone)-b-poly(γ-2-[2-(2-methoxyethoxy)ethoxy]ethoxy-
ε-caprolactone) (PBCL-b-PMEEECL) were synthesized to determine the effect of topology
on the LCST. The LCST for the linear, 4-armed, and 6-armed amphiphilic polymers was
selected to be 38.9, 40.1, and 40.4 ◦C, respectively. The drug release profile shows a high
DOX was released above the LCST (42 ◦C) than at 37 ◦C for all the polymers, with the
highest release associated with the linear polymer and comparable release from both four-
and six-armed polymers. However, the six-armed DOX-loaded micelles had the highest
HeLa cell death. Stefan et al. [171] also demonstrated the effect of polymer composition
on LCST by synthesizing four PCL-based polymers (P1,P2,P3,P4) with varying ratios of
tri(ethylene glycol) (ME3) content (Figure 17A). They achieved LCST in the range of 29.9 ◦C
to 54.2 ◦C for the four polymers and observed that the LCST increases as we increase the
tri(ethylene glycol) content in the polymer composition (Figure 17B). This indicates that
the LCST of thermo-responsive polymers can be fine-tuned by varying compositions to
achieve the desired LCST for biological application.
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of the polymer decreases as we go from P1 to P4 due to the decrease in ME3 content [171] (Printed
with permission from the Royal Society of Chemistry).

Stefan et al. [64] also demonstrated the effect of oligo(ethylene glycol) (x) length on the
LCST by synthesizing poly(γ-oligo(ethylene glycol)-ε-caprolactone-b-poly(γ-benzyloxy-ε-
caprolactone) (PMExCL-b-PBnCL, x = 2, 3 and 4). The LCST for PME2CL-b-PBnCL PME3CL-
b-PBnCL and PME4CL-b-PBnCL were 15, 41, and 59 ◦C respectively. An increase in the
length of oligo(ethylene glycol) increases the solubility of the polymer hence increasing
the LCST. In another study, they demonstrated the effect of concentration on the LCST
of PCL-based homopolymers [32]. The data reveals that the LCST of the homopolymer
decreases as we increase concentration. It is imperative to note that thermo-responsive
polymers with LCST far beyond physiological temperature are not desirable for biological
application as such elevated temperature has the propensity to damage cells.

6.3. Redox-Responsive PCL

Reactive oxygen species (ROS) is a group of unstable oxygen-containing radicals,
molecules, and ions that react rapidly with nucleophilic compounds. ROS include singlet
oxygen, hydroxyl radicals, peroxides, etc. Under normal physiological conditions, ROS
are produced in low amounts, and tightly regulated to prevent cellular damage, as they
have the potential to react with biomolecules like DNA, proteins, and lipids [164,166].



Pharmaceutics 2023, 15, 1977 17 of 26

The amount of ROS spikes in events such as inflammation caused by microbial infections,
cancer, mechanical injury, and immunological response [172]. It is documented that ROS,
particularly hydrogen peroxide, and superoxide, stimulates the proliferation of several
types of cancer cells, such as breast cancer cells [165]. The high metabolic activities in
many tumors produce excess ROS. Cancer cells also produce reductive species, primarily
reduced glutathione (GSH), to quench these ROS to minimize its lethal effect [173]. It is
known that many cancer cells have elevated amounts of both ROS and GSH than in normal
healthy cells. This has also become an interesting stimulus upon which DDS is designed
for tumor-specific drug release [164,166].

Li et al. [174] designed an injectable hydrogel, poly(ethylene glycol)-b-poly(ε-
caprolactone-co-1,4,8-trioxa[4.6]spiro-9-undecanone) that can be triggered by GSH to locally
deliver PTX into tumor sites. In the presence of GSH, about 70% PTX was released at
pH (7.4) and only 40% without GSH. A similar trend of drug release was reported by
Niknejab et al. [151]. The report demonstrated that amphiphilic polymer can be designed
to be both pH- and redox-responsive towards drug release. Here, they synthesized a
PTX-conjugated PCL-based amphiphilic polymer to release the covalently attached PTX in
the presence of GSH. About 97% and 79% of PTX were released at pH of 5.0 and 7.4 in the
presence of GSH but close to 40% and 5% at pH of 5.0 and 7.4, respectively, in the absence
of GSH (Figure 18). A similar observation was reported by Yin et al. [159] where three
amphiphilic polymers, mPEG-b-P(CL40-co-BCCL15) (PBCCL), mPEG-b-P(CL40-co-CCL15)
(PCCL) and mPEG-b-P(CL40-co-CCL15)-g-PBA (PPBA), and the effect of the presence of
hydrogen peroxide (ROS) on the release of DOX from the PPBA micelle was determined.
Interestingly, this polymer was both pH and redox responsive as 50% DOX was released at
a pH of 5.5 and only 10% at a pH of 7.4. In the presence of radicals (hydrogen peroxide),
a relatively higher amount of DOX was released at all pH, with the highest at the pH
of 5.5. This indicates that amphiphilic polymers can be designed to possess multiple
stimuli-responsive behaviors to release both covalently attached and encapsulated drugs.
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6.4. Enzyme-Responsive PCL

Enzymes secreted by cancer cells that break down DDS to release anticancer drugs are
available. As such, the polymer composition of the DDS exhibiting enzyme-responsiveness
is invulnerable as they are protected from degradation by other enzymes during circulation
and biodistribution until they reach the targeted site where the targeted enzyme initiates
hydrolysis of the polymer to release the payload [175] (Figure 19). Moreover, the degraded
polymer fragments can then be easily excreted out of the body to minimize any potential
toxicity associated with the polymer [175].
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Jayakannan et al. [176] synthesized a fully biodegradable PCL-based star-shaped
polymer with three (SB3) and six-armed (SB6) block copolymers. The six-armed polymer,
SB6, had the highest drug loading capacity of 15.2%. At acidic pH, both polymers had about
30% DOX released. However, in the presence of esterase, an enzyme known to hydrolyze
ester bonds, there was a drastic release of DOX, with the highest release of about 90% from
both polymers. Similarly, in another work, they studied the enzyme-responsive behavior
based on polymer topology [81]. Here, two highly luminescent triblock copolymers, A-B-A
comprising biodegradable PCL and B is cationic oligo-phenylenevinylene (OPV), were
synthesized. The micelles obtained from BPCL60 and BPCL100 reported a DOX loading
capacity of 6.5% and 6.3%, respectively. It was observed that 80% of DOX was released
in the presence of esterase, while only 15% was observed in its absence. Jayakannan and
co-coworkers [177] also synthesized perylenebisimide (PBI) tagged PCL, PBI-CPCL40, that
self-assembles in aqueous media to form red-fluorescent micelles and nanofiber in organic
solvents. The red-fluorescent micelles were <150 nm in diameter with fluorescent quantum
yield (φ) from 0.25 to 0.30, which is desirable for bio-imaging. The formation of multimodal
from monomodal distribution in the presence of esterase indicates the cleavage of the ester
backbone of the amphiphilic polymers. This was also confirmed through size exclusion
chromatography, where the molecular weight of the polymer decreased with increasing
incubation time.

7. Conclusions and Future Outlook

PCL has emerged as a valuable tool in biomedical research due to its biodegradable
and biocompatible properties. Its synthetic versatility allows for tuning of its properties to
suit specific applications. One significant challenge still faced by researchers in this field is
the ROP of multi-functional CL monomers. While some progress has been made, including
the ROP of ester and amide functionalized CL monomers, there is still a need to develop
an efficient catalytic system for the ROP of functional CL monomers. Ongoing research
aims to further design and attach novel functionalities to PCL-based systems to achieve
precise control over drug delivery and enhance therapeutic outcomes. Integration of PCL
with other biopolymers, such as polysaccharides, opens up new possibilities with tailored
properties and functionalities. Continued advancements in the synthesis, functionalization
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techniques, and a deeper understanding of the drug release mechanism are expected to
drive the development of effective PCL-based drug delivery systems.
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