
Citation: Rowland Yeo, K.; Hatley, O.;

Small, B.G.; Johnson, T.N.

Physiologically Based

Pharmacokinetic Modelling to

Predict Imatinib Exposures in Cancer

Patients with Renal Dysfunction: A

Case Study. Pharmaceutics 2023, 15,

1922. https://doi.org/10.3390/

pharmaceutics15071922

Academic Editors: Im-Sook Song and

Alicia Rodríguez-Gascón

Received: 7 May 2023

Revised: 22 June 2023

Accepted: 7 July 2023

Published: 11 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

pharmaceutics

Article

Physiologically Based Pharmacokinetic Modelling to Predict
Imatinib Exposures in Cancer Patients with Renal
Dysfunction: A Case Study
Karen Rowland Yeo *, Oliver Hatley , Ben G. Small and Trevor N. Johnson

Certara UK Limited, Simcyp Division, Level 2-Acero, 1 Concourse Way, Sheffield S1 2BJ, UK;
oliver.hatley@certara.com (O.H.); ben.small@certara.com (B.G.S.); trevor.johnson@certara.com (T.N.J.)
* Correspondence: karen.yeo@certara.com; Tel.: +44-(0)-114-460-0181; Fax: +44-(0)-114-478-5600

Abstract: Imatinib is mainly metabolised by CYP3A4 and CYP2C8 and is extensively bound to
α-acid glycoprotein (AAG). A physiologically based pharmacokinetic (PBPK) model for imatinib
describing the CYP3A4-mediated autoinhibition during multiple dosing in gastrointestinal stromal
tumor patients with normal renal function was previously reported. After performing additional
verification, the PBPK model was applied to predict the exposure of imatinib after multiple dosing
in cancer patients with varying degrees of renal impairment. In agreement with the clinical data,
there was a positive correlation between AAG levels and imatinib exposure. A notable finding was
that for recovery of the observed data in cancer patients with moderate RI (CrCL 20 to 39 mL/min),
reductions of hepatic CYP3A4 and CYP2C8 abundances, which reflect the effects of RI, had to be
included in the simulations. This was not the case for mild RI (CrCL 40 to 50 mL/min). The results
support the finding of the clinical study, which demonstrated that both AAG levels and the degree of
renal impairment are key components that contribute to the interpatient variability associated with
imatinib exposure. As indicated in the 2020 FDA draft RI guidance, PBPK modelling could be used
to support an expanded inclusion of patients with RI in clinical studies.

Keywords: renal impairment; cancer; PBPK modelling; inclusivity

1. Introduction

The US Food and Drug Administration (FDA) 2010 draft guidance document [1]
indicated that the assessment of the pharmacokinetics (PKs) of drugs in patients with
impaired renal function (RF) should be conducted for most small molecule drugs intended
for chronic use, irrespective of their elimination pathways. On September 4, 2020, the
FDA published a revised draft guidance which was made available for public comments
prior to its finalization [2]. Along with the current European Medicines Agency (EMA)
2015 guideline [3], this revised draft of the FDA Guidance [3] describes the approaches
that pharmaceutical companies should consider when developing strategies for assessing
the impact of varying degrees of RI (mild, moderate and severe) on the PK of drugs
in development. With respect to other global regulatory authorities, it appears that the
Pharmaceutical and Medicines Devices Agency from Japan and the National Medical
Products Administration from China support the FDA Guidance while the Therapeutic
Goods Administration from Australia has formally adopted the EMA guidelines [4].

The main objective of conducting an RI study is to inform a dose recommendation for
the specific population on the drug label. If RI is expected to significantly alter the PK of
the drug or metabolite, i.e., renal excretion is the main route of elimination for the drug or
metabolite, a clinical PK study in patients with RI is recommended. A reduced clinical study
design can be applied initially in non-dialyzed end-stage renal disease (ESRD) or patients
with severe RI for drugs mainly cleared by nonrenal routes. Depending on the results,
further investigation may be required in other RI classes. The absorption, distribution,
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metabolism and excretion (ADME) of drugs can change because of accumulated uremic
toxins which affect specific processes such as hepatic metabolism, transporter-mediated
uptake and efflux, and protein binding [5,6]. The proposed mechanisms have clinical
relevance in patients with RI and have been discussed in detail by Nolin et al. [7].

Typically, a single-dose RI study is conducted if the drug in development displays
linear kinetics, and the same dose is given in both the RI and control groups. Although a
multiple-dose study is more appropriate for drugs with non-linear or time-dependent PK,
it is recognised that careful consideration must be given to patient groups with a higher
prevalence of RI such as those with cancer. Despite this, neither the current FDA guidance
(2010) nor the updated guidance (2020) provide clear strategic or decision pathways for
RI studies in oncology patients [1,3]. According to a recent review of new drug approvals
(NDA) for oncology drugs [8], it was concluded that the most appropriate strategy for
carrying out a RI study during clinical development or as a post-marketing study requires
consideration of the totality of evidence with reference to the estimated therapeutic window.
In each of the NDA reviews, population PK (PopPK) analysis was used to assess the impact
of RI on PK and was typically carried out when limited, or no, data were available from
a dedicated RI study to complement the findings from the mass balance studies. This
approach is recommended in the revised 2020 FDA guidance document [3].

High-fidelity PBPK models with a sufficient mechanistic resolution of in vivo human
clearance routes (e.g., biliary, renal and metabolic), are primed for assessing the impact of
RI on drug PK in development [9]. Indeed, the International Consortium for Innovation
and Quality in Pharmaceutical Development predicted the effects of RI on drug exposure
across 50 study arms [10]; verified PBPK models were available for 25 compounds mainly
eliminated by cytochrome P450 (CYP) enzymes with varying contributions of biliary
excretion and renal clearance (20% ≥ 25% renally excreted). The finding that 64% of
predictions were within 1.25 fold of observed data and 84% within 1.5 fold supports
the application of PBPK models for assessment of RI. Recognising that this mechanistic
approach is entirely suited to this purpose, early use of PBPK models to support an
expanded inclusion of patients with RI in clinical studies has been highlighted by the FDA
in the 2020 FDA draft RI guidance [3].

Key changes in physiological parameters reflecting the effects of RI include reductions
of GFR (elevated serum creatinine), inhibition of CYP enzyme or transporter activities
(circulating uremic toxins) and a decrease in albumin and an increase in α-acid-glycoprotein
(AAG) levels. In cases where a drug binds mainly to albumin in plasma, the increased
unbound fraction often reported for patients with renal dysfunction can attenuate the effects
of the reduction of CYP activity on total drug exposures; although higher concentrations
of the drug are available for uptake into the liver, less metabolism may occur due to the
inhibited CYP activity. While AAG represents a relatively small portion (~1–3%) of the total
plasma proteins, compared to ~60% composition of albumin, it can still play a significant
role in drug binding and PK [11]. Since AAG levels increase in most disease states including
RI and cancer, drugs with a high affinity may demonstrate significantly higher binding
(lower unbound fraction) which can augment the effects of the reduced CYP activity leading
to larger than expected increases in total drug exposure.

Imatinib, an anticancer drug and more specifically a tyrosine kinase inhibitor, was
approved by the FDA for the treatment of chronic myelogenous leukemia (CML) and
gastrointestinal stromal tumors (GIST). As a consequence of its high binding affinity to
AAG and its ~55 fold weaker binding affinity to albumin, a non-linear relationship exists
between the free fraction of imatinib and total plasma concentrations [12]. Elevated levels
of AAG in patients have been associated with a delayed or lack of response to imatinib
treatment; accounting for differences in plasma protein binding can lead to the selection
of a dose with improved efficacy in patients [13,14]. A PBPK model for imatinib was
reported previously [15] and was verified using clinical PK data from healthy and GIST
and CML populations with normal renal function and in paediatrics. In this study, we have
extended the application of a PBPK modelling approach to predict drug PK in patients
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with advanced malignancies and varying degrees of renal dysfunction and to elucidate the
impact of comorbidities in a cancer population, using imatinib as an illustrative example.

2. Methods
2.1. Software

The Simcyp population-based PBPK Simulator (Version 21 Release 1; Certara UK
Limited, Sheffield, UK) was used to generate plasma concentration-time profiles of imatinib
in healthy subjects and cancer patients with varying degrees of renal impairment. The
default SV-ketoconazole file was used in simulations of the drug interaction with imatinib.
Clinical study data from the literature were digitized with GetData Graph Digitizer (version
2.22, http://getdata-graph-digitizer.com, accessed on 24 April 2023). Unless specifically
stated, default population files were used in simulations.

2.2. Reported Clinical Data

Fourteen healthy subjects (13 male, 1 female) aged 35–59 years and weighing 64–103 kg
were recruited into a drug interaction study between imatinib and ketoconazole [16].
Subjects received a single oral dose of imatinib 200 mg alone and a single oral dose of
imatinib 200 mg co-administered with a single oral dose of ketoconazole 400 mg according
to a two-period crossover design. Blood samples for determination of plasma imatinib
concentrations were obtained up to 96 h after dosing.

Data from 49 GIST patients (51% female) aged 25 to 88 years with acceptable renal
function (CrCL ≥ 60 mL/min), receiving imatinib at daily oral doses ranging from 200 to
800 mg were collected over a period of 2 years [17]. Most blood samples were drawn at
1–6-month intervals on follow-up visits as part of an observational clinical PK study. The
median number of measurements for each patient was 3 (range 1–11) and was obtained
under steady-state conditions. Observed concentrations in patients at steady state were
scaled for 400 mg once daily dosing.

Sixty cancer patients (52% female) aged 16 to 84 years with advanced malignancies
and varying degrees of renal dysfunction were recruited into a clinical study to determine
the safety, dose-limiting toxicities, MTD, and pharmacokinetics of imatinib and to develop
dosing guidelines for imatinib in such patients [18]. Fourteen patients were entered into
group A (normal renal function, creatinine clearance (CrCL) ≥ 60 mL/min), 22 patients
were entered into group B (mild dysfunction, CrCL 40 to 59 mL/min), 22 patients were
entered into group C (moderate, CrCL 20 to 39 mL/min) and two patients were entered in
group D (severe, CrCL < 20 mL/min). The patients received daily imatinib doses of 100
to 800 mg (Table 1). An average daily dose was estimated for each group weighted using
the number of patients on each dose (Table 1). Pharmacokinetic sampling was performed
on the first day and day 15 after initiation of treatment. Although no concentration-time
profiles were available, dose normalised PK parameters were.

Table 1. Patient characteristics and dose escalation schema for imatinib and estimated average dose
for each group.

Patient Characteristics
CrCL ≥ 60 mL/min CrCL 40 to 59 mL/min CrCL 20 to 39 mL/min CrCL < 20 mL/min

Normal Mild Moderate Severe
Group A Group B Group C Group D

Male, n (%)
Female, n (%)

29 (48%)
31 (52%) Dose (mg) No. of subjects Dose (mg) No. of subjects Dose (mg) No. of subjects Dose (mg) No. of subjects

Age, median
(range)

63 y
(16–84) 400 4 400 4 200 8 100 2

Race/Ethnicity 600 4 600 9 400 4 200

White 54 (90%) 800 6 800 9 600 10 400

http://getdata-graph-digitizer.com
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Table 1. Cont.

Patient Characteristics
CrCL ≥ 60 mL/min CrCL 40 to 59 mL/min CrCL 20 to 39 mL/min CrCL < 20 mL/min

Normal Mild Moderate Severe
Group A Group B Group C Group D

African
American 5 (8%) 800 0 600

Other 1 (2%) 8800 14 14200 22 9200 22 800

200 2

629 645 418 100

2.3. Virtual Populations

Derivation of a virtual North European Caucasian population (default values for
physiological parameters including liver volume, blood flows, and enzyme abundances)
has been described in detail previously [19]. The Sim-Cancer population was developed
previously using this population as the baseline, and data from solid tumour patients were
included wherever possible; parameters relating to this population have been described
in detail [20]. In summary, key changes in physiological parameters reflecting the effects
of cancer include reductions of GFR (elevated serum creatinine), a decrease in albumin,
and an increase in AAG levels. Following analysis of relevant data in the literature, no
changes in CYP enzyme expression were included relative to the baseline population. For
simulations in cancer patients, the mean plasma concentrations of AAG were modified
from the default values of 1.48 g/L (coefficient of variation [CV] 34.3%) to AAG values
recorded in the actual clinical studies [17,18]. The default female-to-male ratio in AAG
concentrations of 0.9 was maintained throughout the simulations. For cancer patients with
normal renal function, a value of 1.06 (CV-50%) was used for males. For cancer patients
with mild and moderate renal function, values of 1.77 (CV-50%) and 1.64 g/L (CV-39%),
respectively, were used.

In the cancer study [18], patients were assigned to normal renal function
(CrCL ≥ 60 mL/min), mild dysfunction (CrCL 40 to 59 mL/min), moderate dysfunction
(CrCL 20 to 39 mL/min) and severe dysfunction (CrCL < 20 mL/min) categories. Three
RI populations are available within the Simcyp Simulator; mild (CrCL 60 to 89 mL/min),
moderate (CrCL 30 to 59 mL/min) and severe (CrCL 15 to 29 mL/min). Key changes in
physiological parameters reflecting the effects of RI include reductions of GFR (elevated
serum creatinine), reductions of CYP enzyme abundances, a decrease in albumin and an
increase in AAG. Although the populations were not used directly in simulations, changes
in CYP3A4 enzyme expression because of RI (values of 118, 95.2 and 87.3 pmol/mg micro-
somal protein for mild, moderate and severe RI versus 137 in healthy adults with normal
renal function) [21,22] were evaluated in simulations of cancer patients with varying de-
grees of renal dysfunction. Although changes in CYP2C8 are not currently accounted for
in the RI populations within the Simcyp Simulator, published data indicate that CYP2C8
model drugs showed a consistent decrease in unbound CYP2C8-mediated clearance with
increasing severity, with an average of 39% reduction within the severe RI group [6]. Given
that the moderate RI category within the cancer study (CrCL 20 to 39 mL/min) appears
to be a combination of the moderate (CrCL 30 to 59 mL/min) and severe RI (CrCL 15 to
29 mL/min) categories implemented within the Simcyp Simulator, a CYP2C8 abundance of
14.6 pmol/mg protein (39% reduction from the baseline of 24) was applied in simulations.

2.4. Imatinib PBPK Model

A PBPK model for imatinib published previously was used for the simulations [15].
Drug-related input parameters and key assumptions relating to the development of the
model were described in detail; a summary is provided here. As a basic compound,
imatinib binds extensively to AAG [12]. The unbound fraction in plasma (fup) of 0.05 used
for imatinib was based on the reported value in healthy European populations. Within
the Simcyp Simulator, generated AAG levels ([P]) for a cancer population are used against
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a reference value assigned for healthy subjects ([P]pop) to calibrate the fu (fupop) from a
healthy population value (fu) to that of a disease population, according to Equation (1) [23].

f u =
1

1 +
[

[P]
[P]pop

× (1− f upop)
f upop

] (1)

It should be noted that this equation only accounts for changes in fu due to changes in
AAG levels and does not consider changes in the binding affinity of a drug that may occur
due to accumulated uremic toxins [17]. Furthermore, a value is calculated for each virtual
individual based on their assigned AAG levels which are generated from the mean and
CV that are used as inputs for each of the populations. Only unbound drug is available
for uptake into the liver to undergo transformation. The conversion of imatinib to N-
desmethyl imatinib and other metabolites via CYP3A4 and CYP2C8 based on in vitro data
is also considered within the model along with an undefined metabolic component that
is required to scale the in vitro data to a clearance that is consistent with observed data.
Mechanism-based inhibition (MBI) of CYP3A4 is also integrated within the model and
auto-inhibition occurs during multiple dosing.

2.5. Simulations

The demographic (including age and gender) characteristics and dose regimen used
in the simulations were matched to the clinical studies and the number of virtual subjects
was based on 10 trials of the number of subjects used in the corresponding clinical study.

In order to verify the contribution of CYP3A4 to the base model (prior to auto-
inhibition), we assessed the DDI with ketoconazole in healthy subjects. It should be
noted that this had not been done or reported previously for the initial model develop-
ment [15]. Ten virtual trials of 14 healthy subjects (13 male, 1 female) aged 35–59 years and
aged 18 to 44 years receiving a single oral dose of imatinib 200 mg co-administered with a
single oral dose of ketoconazole 400 mg were generated, and the simulated and observed
plasma concentrations [16] and pharmacokinetics of imatinib were compared.

Thereafter, we ran simulations of GIST patients with normal renal function where
observed plasma concentration data were available for verification [17]. The model de-
veloped previously [15] was verified using single-dose PK data in healthy subjects and
multiple-dose PK data in GIST and CML patients with normal renal function. Given
that the simulations were conducted using the North European Caucasian population
and that only the AAG levels were changed to represent GIST and CML populations
(despite the different age–sex distribution versus healthy), we performed some additional
verification of the imatinib PBPK model using the Sim-Cancer population. Ten virtual
trials of 14 cancer patients (51% female) aged 25 to 88 years receiving daily oral doses of
400 mg were generated and the simulated and observed plasma concentrations of imatinib
were compared.

It should be noted that the combination of the elevated AAG levels with the baseline
value fu of 0.05 (in healthy adults) led to a fu that was significantly lower than the measured
value in GIST patients (0.062). Significant interlaboratory variability has been reported
previously for measurements of the unbound fraction of imatinib [12]. For calibration
purposes, the baseline value was increased to 0.07 in patients with normal renal function;
this allowed recovery of the observed fu (0.062) using the relevant AAG level in GIST
patients. Going forward, this value (0.07) was applied in all simulations involving cancer
patients and their respective AAG levels to allow recovery of the observed fu values in the
clinical study.

Finally, simulations were run in cancer patients (52% female) aged 16 to 84 years with
varying degrees of renal dysfunction. Simulations were not performed for severe RI due to
the small number of patients recruited into the clinical study (n = 2). Ten virtual trials of
14 cancer patients (normal renal function) receiving daily oral doses of 629 mg for 15 days,
22 cancer patients (mild renal dysfunction) receiving daily oral doses of 645 mg for 15 days
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and 22 cancer patients (moderate renal dysfunction) receiving daily oral doses of 418 mg
were generated and the simulated and observed PK of imatinib [18] were compared. In each
of these three sets of simulations, apart from the AAG levels, the Sim-Cancer population
was applied initially without any modification. Thereafter, changes in CYP enzymes to
reflect the impact of RI were applied for patients with moderate renal dysfunction. Firstly,
simulations were run using reduced levels of CYP3A4 only and were then repeated using
reduced levels of both CYP3A4 and CYP2C8 to determine whether there was improved
recovery of the observed data.

3. Results
3.1. Verification of Imatinib PBPK Model

Mean simulated and observed plasma concentrations of imatinib following a single
oral dose of 200 mg in the absence of and co-administered with a single dose of ketoconazole
(400 mg) are shown in Figure 1. The predicted change in the exposure of imatinib was
consistent with observed data (within-1.25-fold) as indicated by the Cmax and AUC ratios
(Figure 1), thus confirming that assignment of approximately 40% of the metabolism to
CYP3A4 is appropriate at baseline.
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Figure 1. The schematic illustrates the verification of the imatinib PBPK model. Step 1: The con-
tribution of CYP3A4 to the clearance of imatinib was verified using the clinical DDI study with
ketoconazole in healthy volunteers. Simulated (lines) and observed (data points) total plasma
concentration-time profiles of imatinib (200 mg) in the absence (solid line; black squares) and pres-
ence of ketoconazole (400 mg) (dashed line; open squares) are shown. Step 2: Then, the model was
verified in GIST patients following multiple oral daily doses of 400 mg. Simulated (black line) and
observed (data points) total plasma concentration-time profiles of imatinib are shown, along with
the 5th and 95th percentiles of the total virtual population (dashed lines). Active CYP3A4 activity is
significantly reduced during multiple dosing of imatinib due to autoinhibition of CYP3A4-mediated
metabolism (right-hand figure).

After multiple oral doses of 400 mg imatinib in GIST patients, accumulation of
the drug occurred; the simulations indicated that only 20% of the assigned CYP3A4-
mediated metabolism (40%) remained at a steady state due to autoinhibition of this pathway
(Figure 1). Despite the significant variability, the observed data were captured reasonably
well using the virtual cancer population (visual inspection). Indeed, more than 90% of the
total drug concentrations fell within the prediction interval (5th to 95th percentile of the
PBPK model predictions), as shown in Figure 1. Furthermore, the predicted mean CL/F
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at steady state was consistent with the reported value; values were 14.0 versus 13.5 L/h,
respectively.

3.2. Prediction of Imatinib Exposures in Cancer Patients with Varying Renal Impairment

Using the AAG levels measured clinically for each group, predicted fu values were
0.062, 0.042 and 0.042 for cancer patients with normal renal function, mild renal dysfunction
and moderate renal dysfunction, respectively. Corresponding observed values were 0.062,
0.061 and 0.047. Predicted plasma total exposures of imatinib were within 1.25 fold of
observed data in cancer patients with normal renal function and mild RI after multiple
oral doses of imatinib (Table 2). Although the predicted exposures also appeared to be
reasonably well predicted for patients with moderate RI (Table 2), this was not the case
for the relative change in exposure when compared to patients with normal renal function
(Table 3). Thus, the simulations were repeated initially using a lower hepatic CYP3A4
abundance and then lower CYP3A4 and CYP2C8 abundance values simultaneously. CYP
reductions to reflect changes in expression for patients with moderate RI led to improved
predictions (Table 2). Although the CYP changes did not appear to have a significant impact
on the predicted imatinib exposures at steady state (Figure 2), there was an improvement
in the relative change in total exposure when compared against patients with normal
renal function (Table 2); predicted versus observed AUC ratios were 1.43 versus 2.01
(no CYP changes) and 1.71 versus 2.01 (CYP changes). Not surprisingly, for the cancer
patients with mild renal dysfunction, where the fu was underpredicted compared with the
observed value, the unbound exposures of imatinib were less well predicted than in the
other categories.

Table 2. Predicted and observed dose normalized total and unbound exposures and CL/F of imatinib
at steady state following multiple oral doses of imatinib in cancer patients with varying degrees of
renal impairment.

Normal Mild Moderate Moderate *

TOTAL Cmax AUC CL/F Cmax AUC CL/F Cmax AUC CL/F Cmax AUC CL/F

ng/mL/mg (ng/mL*h)/mg L/h ng/mL/mg (ng/mL*h)/mg L/h ng/mL/mg (ng/mL*h)/mg L/h ng/mL/mg (ng/mL*h)/mg L/h

Predicted 8.14 126 11.2 11.3 198 7.57 12.1 216 6.39 10.5 180 7.91

Observed 6.52 114 10.3 10.6 173 7.50 14.6 229 5.60 14.6 229 5.60

P/O 1.25 1.11 1.09 1.07 1.14 1.01 0.83 0.94 1.14 0.72 0.79 1.41

UNBOUND Cmax,u AUC,u CL/F,u Cmax,u AUC,u CL/F,u Cmax,u AUC,u CL/F,u Cmax,u AUC,u CL/F,u

ng/mL/mg (ng/mL*h)/mg L/h ng/mL/mg (ng/mL*h)/mg L/h ng/mL/mg (ng/mL*h)/mg L/h ng/mL/mg (ng/mL*h)/mg L/h

Predicted 0.48 7.18 181 0.41 6.95 181 0.47 8.16 150 0.41 6.78 186

Observed 0.40 7.07 166 0.65 10.55 123 0.69 10.76 119 0.69 10.76 119

P/O 1.19 1.02 1.09 0.63 0.66 1.47 0.68 0.76 1.26 0.60 0.63 1.56

* No reductions of CYP3A4 and CYP2C8 were considered in simulations.

Table 3. Predicted and observed relative changes in total and unbound exposures and CL/F of
imatinib at steady state following multiple oral doses of imatinib in cancer patients with varying
degrees of renal impairment.

Mild/Normal Moderate/Normal Moderate */Normal

TOTAL Cmax AUC CL/F Cmax AUC CL/F Cmax AUC CL/F

Predicted 1.39 1.57 0.68 1.49 1.71 0.57 1.29 1.43 0.71
Observed 1.63 1.52 0.73 2.24 2.01 0.54 2.24 2.01 0.54

P/O 0.85 1.04 0.93 0.66 0.85 1.05 0.58 0.71 1.30
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Table 3. Cont.

Mild/Normal Moderate/Normal Moderate */Normal

UNBOUND Cmax,u AUC,u CL/F,u Cmax,u AUC,u CL/F,u Cmax,u AUC,u CL/F,u

Predicted 0.85 0.97 1.00 0.98 1.14 0.83 0.85 0.94 1.03
Observed 1.60 1.49 0.74 1.70 1.52 0.72 1.70 1.52 0.72

P/O 0.53 0.65 1.35 0.58 0.75 1.16 0.50 0.62 1.44

* No reductions of CYP3A4 and CYP2C8 were considered in simulations.
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Consistent with the observed data, there was a positive correlation between AAG
concentrations and total dose-normalised imatinib AUC on day 15 and an inverse corre-
lation between AAG concentrations and total imatinib CL/F (Figure 3). The simulations
support the significant impact that AAG has on the PK of imatinib in cancer patients with
elevated AAG levels. It should be noted that when unbound concentrations of imatinib
were applied, there was no correlation between AAG levels and AUC or CL/F.
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4. Discussion

A PBPK model for imatinib describing the CYP3A4-mediated autoinhibition during
multiple dosing in GIST patients with normal renal function was reported previously [15].
After additional verification was conducted in this study, the model was applied to predict
the exposure of imatinib after multiple dosing in cancer patients with varying degrees of
renal impairment. In agreement with the clinical data [18], there was a positive correlation
between AAG levels and imatinib exposure (Figure 3A). The increased AAG levels lead to
lower unbound fractions in the plasma which then reflects in a lower clearance (Figure 3B).
Of particular note was the finding that to recover the observed data in cancer patients
with moderate RI (CrCL 20 to 39 mL/min), reductions of hepatic CYP3A4 and CYP2C8
expression, which reflect the effects of RI, had to be included in the simulations. This did
not appear to be the case for mild RI (CrCL 40 to 50 mL/min). It is important to note
that in addition to being altered by the increased AAG levels in cancer patients with renal
dysfunction, the fu of imatinib could also be affected by a change in the AAG binding
affinity of the drug [17] due to competition from circulating uremic toxins which accumulate
in patients with renal dysfunction. One of the key limitations of our study is that this
was not considered in the simulations. Despite this, fu values for the cancer patients with
normal renal function and moderate renal dysfunction were accurately predicted when
based on AAG levels in these patients alone.

For drugs of intermediate to low hepatic extraction with a high degree of protein
binding such as imatinib, a change in plasma AAG levels or AAG binding affinity can lead
to altered total plasma concentrations, with free drug concentrations remaining largely un-
changed. However, an increased free fraction can modify the apparent total concentration-
effect relationship, confounding the interpretation of therapeutic drug monitoring data
which are based on total plasma concentrations [17]. Thus, for drugs such as imatinib,
it is important to be able to predict the effects of certain pathophysiological conditions
competing with normal binding, as free drug concentrations may be significantly elevated
despite total concentrations remaining within the therapeutic range [17]. Going forward,
once the binding affinities of imatinib in the absence and presence of uremic toxins are
available, the effects of elevated AAG levels versus changes in the binding affinity can be
reassessed.

During drug development, typically, initial clinical studies only include patients with
normal or only mildly impaired kidney function, as chemotherapeutic agents used to treat
cancer generally have narrow therapeutic indices, along with potentially serious adverse
toxicities. When extrapolating to doses for patients with moderate to severe RI, in addi-
tion to accounting for physiological changes relating to the cancer itself (captured by the
Sim-Cancer population), changes in CYP3A4 and potentially other CYP enzymes may
need to be considered. During the development of the Sim-Cancer population, changes in
CYP abundance were assessed ([20] and references within). A meta-analysis combining
several studies determining the in vitro expression or activity of six hepatic CYP enzymes
(CYP1A2, 2C8, 2C9, 2C19, 2E1 and 3A4) led to inconclusive results for the CYP enzyme
expression/activity in cancer subjects relative to healthy volunteers ([20]; references within).
However, it was reported that inflammatory cytokines which can alter levels of CYP ex-
pression (e.g., IL-6 reduction of CYP3A levels), resulted in a 28% decrease in midazolam
metabolic intrinsic clearance in cancer patients following an oral dose [24]. Simulations
demonstrated that by accounting for age differences alone, there was a 36% decrease in
CL in patients relative to healthy subjects. Furthermore, a meta-analysis of oral clearance
values in healthy volunteers versus cancer patients showed similar elimination across
several CYP3A4 substrates, including imatinib, everolimus, ibrutinib, midazolam, dastanib
and nilotinib [25,26]. Performance verification using probe CYP substrates including mi-
dazolam, caffeine, rosiglitazone, S-warfarin, tolbutamide, dextromethorphan and digoxin
demonstrated the predictability of the population model and supported the decision not to
include changes in CYP abundance values in the Sim-Cancer population [20]. Based on
the findings of our study, this appears to be appropriate. However, potential changes in
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CYP expression should be investigated when accounting for moderate RI in cancer patients.
Assessment of comorbidities in a disease population is a process that can be accommodated
using PBPK models. Despite the uncertainties and knowledge gaps related to key parame-
ters that may influence drugs exposure in various clinical conditions, PBPK models can
be a valuable tool for estimating prospective dose recommendations and efficacy/safety
assessment in special populations when clinical data are lacking [27–29].

A recent landscape analysis of anticancer agents approved from 2015 to 2019 was
conducted to evaluate the inclusion of study participants with CKD and GFR assessment
methods used during drug development and subsequent translation to kidney-related
safety and dosing data in product labelling [30]. Of the 74 pivotal trials (involving 55 drugs),
the median lower limit of GFR required for inclusion was 45 mL/min. Pharmacokinetic
analyses were performed in CKD stages 4–5 for only 29% of drugs. The exclusion of
patients with chronic kidney disease from cancer drug trials remains an unsolved problem,
which prevents the provision of optimal clinical care for these patients, and raises questions
of inclusion, diversity and equity. The case study described here illustrates the strengths
of a PBPK modelling approach where the complex interplay between drug-related and
physiological parameters can be used to assess comorbid conditions in disease populations.
Distributions of AAG concentrations specific to a cancer population reflect the variability in
the unbound fraction of imatinib which then drives the hepatic metabolism. Furthermore,
reductions of CYP enzyme levels, a consequence of RI, can be applied to reflect varying
degrees of renal function. The FDA highlighted the application of PBPK models in the 2020
FDA draft RI guidance, including the early use of this approach to support an expanded
inclusion of patients with RI in clinical studies. Although the precise dosage regimens of the
cancer patients could not be applied in simulations (average doses were used), the PBPK
model was able to capture the observed data (when accounting for additional changes
evoked by RI) and the simulations support the finding of the clinical study where it was
clearly demonstrated that both AAG levels and the degree of renal impairment are key
components that contribute to the interpatient variability associated with imatinib kinetics.

5. Conclusions

In this study, we have extended the application of a PBPK modelling approach to
predict drug PK in patients with advanced malignancies and varying degrees of renal
dysfunction and to elucidate the impact of comorbidities in a cancer population, using
imatinib as an illustrative example.
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