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Abstract: Nanosystems-based antifungal agents have emerged as an effective strategy to address
issues related to drug resistance, drug release, and toxicity. Among the diverse materials employed for
antifungal drug delivery, polymers, including polysaccharides, proteins, and polyesters, have gained
significant attention due to their versatility. Considering the complex nature of fungal infections
and their varying sites, it is crucial for researchers to carefully select appropriate polymers based
on specific scenarios when designing antifungal agent delivery nanosystems. This review provides
an overview of the various types of nanoparticles used in antifungal drug delivery systems, with a
particular emphasis on the types of polymers used. The review focuses on the application of drug
delivery systems and the release behavior of these systems. Furthermore, the review summarizes the
critical physical properties and relevant information utilized in antifungal polymer nanomedicine
delivery systems and briefly discusses the application prospects of these systems.

Keywords: antifungal; drug delivery; polymers; nanometer

1. Introduction

Fungi comprise millions of species on earth, with approximately 400 causing human
diseases [1–3]. These infections can affect various parts of the body, including the skin,
nails, soft tissues, lungs, blood, and brain [4–8]. Pathogenic fungi cause approximately
100 million infections worldwide every year, resulting in more than 60,000 deaths [9,10].
Unlike bacterial pathogens, fungal infections are mainly treated with five classes of drugs,
namely, azoles (for systemic and superficial fungal infections) [11,12], polyenes (for severe
systemic fungal infections) [13], echinocandins (for intractable fungal infections) [14,15],
allylamines (which inhibit squalene epoxidase activity and disrupt the ergosterol synthesis
pathway) [16], and antimetabolites (which inhibit fungal RNA and DNA synthesis) [17].

Although currently available antifungal drugs have demonstrated high efficacy in
treating superficial and invasive fungal infections, their usage is often associated with side
effects and limitations. Allylamines, for example, are mostly used for treating superficial
fungal infections [18], while resistance to azoles is becoming increasingly prevalent [19,20].
Additionally, polyenes may cause infusion-related reactions [21]. Furthermore, these
drugs may exhibit higher levels of toxicity when administered in vivo, which is a common
challenge associated with antifungal drug therapies.

In addition to exploring new antifungal drug species, researchers are investigating the
potential applications of nanotechnology in antifungal drug delivery [22]. Nanosystems-
based drug delivery can achieve high local drug concentrations at the targeted site, thereby
facilitating antifungal effects through various mechanisms, such as interfering with fungal
membrane integrity through charge interactions, promoting the formation of reactive
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oxygen species (ROS), and altering the permeability of fungal cell membranes [23–25]. As
a result, drug delivery nanosystems have emerged as an ideal mode of drug delivery [26].

Nanosystems typically exhibit submicrometer-sized structures, and their behavior
can be influenced by several factors, such as the mode of administration, blood circulation
time, and human immunity. Furthermore, the physicochemical properties of nano-drug
delivery systems play a critical role in the release behavior of drugs. Researchers have
conducted numerous studies on the matrix of antifungal drug delivery nanosystems, which
include liposomes and lipoid vesicles [27], microemulsions, polymers [28], dendrimers,
and inorganic materials (e.g., silicon-based [29], carbon materials, and metals [30]). These
structures have been explored for their potential to enhance drug delivery efficiency,
specificity, and safety.

Currently, there are several reviews available that discuss the research on antifungal
nanosystems. Some researchers have summarized the application of nanosystems for the
treatment of specific fungal infections [31–33]. Additionally, other scholars have introduced
different types of nanosystems, such as metal-based, liposomal, and polymer-based sys-
tems, for antifungal therapy [34,35]. However, the main objective of these reviews is to
introduce different types of nanoparticles, and they do not provide an in-depth summary
of the various polymer types used in antifungal nanosystems. While some researchers have
provided overviews of nanosystems based on chitosan [36,37], liposomes [38,39], and mag-
netic [40] nanoparticles for antifungal drug delivery, there is currently no comprehensive
review or detailed introduction specifically dedicated to the different polymer types used
in constructing antifungal nanosystems.

This review focuses on a comprehensive analysis of polymeric materials commonly
used in antifungal drug delivery systems, including chitosan (CS), sodium alginate (SA),
gelatin, dextran (Dex), cellulose, and polyester. Although other polymer materials, such as
heparin, chitin, and hyaluronic acid, can also be used to design antifungal drug delivery
nanosystems, we did not discuss them in this review due to limited research in this area.

Nanoscale fibers formed by electrospinning, mostly used in dressings, are also in-
cluded in This review, and nanostructures have a larger specific surface area and enable
more rapid release at sites such as wounds, mucous membranes, etc. Therefore, we attribute
them to antifungal drug delivery nanosystems.

In addition to presenting some interesting and important research works, our review
includes a table summarizing antifungal drug delivery nanosystems in recent years, follow-
ing the introduction of each polymer material. As mentioned earlier, the toxic side effects of
current antifungal drugs cannot be ignored, especially for in vivo administration, and anti-
fungal drug delivery nanosystems can help address this issue. The table provides a general
overview of how drugs are involved in fungal drug delivery nanosystems, as well as the
physical properties (such as the role of polymers, size, potential, mode of binding, release
behavior, etc.) of these nanosystems. The “in vivo study” section in the “Administration
route/in vivo study” column indicates whether the article includes experimental results
from in vivo studies (Y) or not (N). The ‘/’ or ‘N’ in tables indicate that the corresponding
data is not mentioned in the paper. We hope that these works will inspire researchers to
design nanosystems for fungal drug delivery.

2. Polymers for Antifungal Drug Delivery Nanosystems

Polymers have been extensively studied and applied in biomedicine and are gener-
ally divided into two categories: degradable and non-degradable. The degradability of
certain polymers can allow for different release requirements of drug delivery systems.
Nanopolymer systems offer many advantages in antifungal drug delivery, such as the
ability to improve drug loading, the ability to chemically bond drugs to functional groups
on the polymer surface, and some polymers even possess inherent antifungal proper-
ties [41]. Herein, we will introduce the key roles of some representative polymer materials
in antifungal drug delivery nanosystems.
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2.1. Chitosan

CS is a chitin-derived polysaccharide with high biocompatibility and biodegradabil-
ity [42,43]. Researchers have extensively studied the antibacterial properties of CS due to its
amino and positive electrical properties. The antibacterial activity of chitosan and its deriva-
tives may originate from the interaction between positively charged chitosan molecules and
negatively charged residues on the surface of fungal cell walls. The methods for preparing
CS nanoparticles (CSNPs) include ion crosslinking of low-concentration CS acid solution
and tripolyphosphate by ultrasonic and mechanical stirring, 1-(3-Dimethylaminopropyl)-3-
ethyl carbodiimide hydrochloride(EDC)/N-Hydroxy succinimide(NHS) crosslinking and
redox with metal ions [44]. These methods can be used to prepare antifungal drug delivery
nanosystems.

As a drug-releasing nanosystem, CS can deliver a variety of antifungal factors (such
as essential oil [45], fluconazole [46], ceftriaxone, imidazolium zinc [47], berberine [48],
enzyme, etc.). CS-based nanospheres (CSNPs) can encapsulate poorly water-soluble drugs
to improve their solubility. For example, Su Ma et al. encapsulated curcumin (Cur) into
CSNPs. Positively charged NPs tend to bind to negatively charged surfaces [49] (such as
many biofilms on the surface of microorganisms). Therefore, positively charged CSNPs
can deliver Cur to the biofilm and release the drug, thus directly affecting the internal
cells. Thus, CSNP-Cur exhibits higher anti-biofilm activity than free Cur and improves its
delivery efficiency.

Yasser A. et al. [47] obtained a nanosystem encapsulating several essential oils through
CSNPs. In addition to delivering imidazolium, this drug delivery nanosystem can also
deliver O. syriacum essential oil (OSEO) containing multiple essential oils and a new
active complex, Zn (II) Salen. CSPNs significantly enhanced the antibacterial activity of
Zn (II) Salen and OSEO. This study demonstrates the applicability of CSNPs as drug-
delivery nanosystems for multiple types of drugs. In addition, chitosan exhibits good
delivery performance for metal nanoparticles. Biao et al. obtained electrons from silver
ions through amino groups in CS to form silver nanoparticles [50]. More interestingly,
there are differences in the morphology of Ag-CS produced by the system at different pH
values. The reaction system obtained triangular nanosheets at pH = 4.0, while nanoparticles
with monodispersity and stability were obtained at pH = 5.0. Recent studies have shown
the potential of the morphology of nanosheets in antifungal applications. Sanchari Saha
et al. peeled off MoSe2/CS nanosheets with synergistic antibacterial effects in the liquid
phase [51]. MoSe2/CS nanosheets cause fungal cell death through membrane damage,
membrane depolarization, metabolic inactivation, and cytoplasmic leakage without re-
quiring more complex modifications and external NIR-assisted photothermal action, as
shown in Figure 1. In addition to its excellent antifungal activity, MoSe2/CS nanosheets
have a high degree of biocompatibility with mammalian cells. The excellent antifungal
performance of MoSe2/CS nanosheets indicates that they are a promising new type of
antifungal agent with potential applications in various biomedical applications. These
applications are particularly important given the threat of fungal pathogens.

We present the statistics in Table 1 for the research of chitosan for antifungal drug
delivery nanosystems in recent years. The amino groups carried by chitosan endow
the antifungal delivery system prepared from chitosan with natural antibacterial effects.
Although most studies have shown the great potential of chitosan-based drug carriers, the
research on their post-administration effects is still in the exploratory stage. Most studies
lack in vivo antifungal results.
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Figure 1. MoSe2/Chitosan Nanosheets, Reprinted with permission from [51]. Copyright 2022
American Chemical Society.

2.2. Alginate

SA is a widely studied biopolymer with non-toxic, biocompatible, nonimmunogenic,
biodegradable, and mucus adhesive properties [52–55]. SA can be chelated with Ca or
other divalent cations to form a gel through the side carboxylic acid part of the G unit. This
gel structure is called an ‘egg-box’ structure [56,57]. Therefore, alginate biopolymers can be
used to stabilize inorganic metal nanoparticles, and this delivery method is not toxic [58].
That makes SA widely used in antifungal drug delivery nanosystems [57,59].

Abid S et al. prepared SA microspheres with calcium chloride as a crosslinking
agent through ion gel technology and used them to coat MgO-CuO nanoparticles loaded
with nystatin [60]. Microspheres reduce the specific surface area and reactivity of metal
nanoparticles in the human body, providing a safe and improved release mechanism,
thereby reducing the toxicity of nanoparticles in direct contact with the human body. At the
same time, the nystatin composite loaded microspheres system enables the sustained release
of the antifungal agent, which helps to prevent or minimize the occurrence of infection.
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Table 1. Chitosan for antifungal drug delivery nanosystems.

Loaded Drugs Role of
Chitosan

Other
Components Fungal

Zeta
Potential

(mV)
Diameters

(nm)
Loading

Content (LC)
Encapsulation
Efficiency (EE)

Drug
Release PDI Antifungal

Efficacy In Vitro
Administration
Route/In Vivo

Study
Ref.

O. syriacum
essential oil
(OSEO) and

imidazolium-
Zn(II)Salen

matrix / Candida albicans +58.39 120.15 ± 62.65 22.41% 35.17% 80% (50 h) 0.31–0.39
ZOI:

29.48 ± 1.26 mm;
MIC;

3.25–45.25 µg/mL
N/N [47]

Iron oxide
nanoparti-

cles/chlorhexidine
(CHX)

matrix /
Candida albi-

cans/Aspergillus
flavus

+18.10 ± 0.82 33.6 ± 10.7 / / / 1.25 ± 0.06 MIC: 400 µg/mL topical adminis-
tration/N [49]

Cinnamic acid
grafted CS matrix

cinnamic
acid grafted

chitosan
M. canis −69.74 263.0 ± 81.4 / 84.93% / /

inhibition:
53.96%, MIC:
200 µg/mL

vaginal adminis-
tration/N [45]

Metronidazol coating
layer / C. albicans +10.6 ± 1.3 188.7 / 12 µg/mg 63% (8 h) / MIC: 18 to

36 µg/mL N/N [61]

Fluconazole (Flu) matrix / C. albicans +3.36 82 60.2% 78.7% 8.12%
(94 h) /

MIC: 1.25
mg/mL, ZOI:
22.3 ± 1.6 mm

N/N [46]

Ceftriaxone matrix / / +32 ± 2.4 56 54.37% 79.43% 8.12%
(94 h) / ZOI: 19.5 ±

0.6 mm N/N [62]

Carvacrol matrix /
C. albicans, C.

glabrata, C.
krusei, C.
tropicalis

/ 281.6 ± 2 25.5% 56% 50% (72 h) 0.235 ±
0.03 MIC: 24 µg/mL N/N [63]

AmB matrix / C. albicans +15.84 ± 1.41 174.47 ± 5.12 3.05 ± 0.13% / 80.6%
(25 h) 0.17 MIC: 1 µg/mL N/N [64]

The ‘/’ or ‘N’ in the table indicates that the corresponding data is not mentioned in the paper, while ‘Y’ indicates that there is relevant data.
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The cross-linking properties of SA and divalent cations are commonly used to cross-
link with Ca2+ ions to form microspheres. Microspheres of different sizes can be obtained
through ultrasound and water/oil (W/O) emulsification. The microspheres are directly
used to encapsulate drugs for delivery and release. These microspheres are used to en-
capsulate drugs for delivery and release directly. For example, María J. Martín et al. used
alginate microspheres as nystatin carriers for oral mucosal drug delivery, enabling the
microspheres to come into close contact with the mucosal surface, as shown in Figure 2 [65].
These Nys-loaded microspheres were successfully prepared by emulsification/internal
gelation method, showing a significant inhibitory effect on the growth of Candida albicans,
indicating its potential clinical use without systemic absorption or tissue damage.
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Figure 2. Scanning electron microscope micrographs of the freeze-dried unloaded alginate micro-
spheres (A), unloaded CS-coated microspheres (C), unloaded hydrogel microspheres (E), drug-loaded
alginate microspheres (B), drug-loaded CS coated microspheres (D) and drug-loaded hydrogel mi-
crospheres (F). Published by Elsevier, 2015 [65].
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The (1–4)-linked β-d-mannuronic acid (M Unit) and α-l-glucuronic acid (G unit) of SA
exhibit anionic properties. They provide mucus penetration for nanoparticles through re-
pulsive interactions with negatively charged sialic acid in the mucosal layer [66]. Vaishnavi
et al. coated CS nanospheres with SA, enabling nanoparticles to exhibit better retention
efficiency, loading capacity, release kinetics, and corneal permeability [67]. Due to changes
in the particle size and surface energy of nanoparticles, they can effectively penetrate the
thick mucin layer, which can effectively treat fungal keratitis and deep corneal ulcers.

We present the statistics in Table 2 for the research of alginate for antifungal drug
delivery nanosystems in recent years. Sodium alginate has gained much attention in
the application of drug delivery as a marine source natural polymer. However, in the
construction of nanosystems, current preparation methods mostly use divalent cations to
interact with sodium alginate to become nanoparticles. DPI-related data were also not
available in some studies. The ion-chelating properties of sodium alginate make it easier
to form microspheres. The size of the nanoparticles is not easily controlled, and the size
distribution is wide. Researchers may be able to find more efficient ways of dispersion in
the future. The abundant hydroxyl groups on the molecular chains of alginate can also
serve as an entry point for its modification, thereby endowing alginate with new functions.
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Table 2. Alginate for antifungal drug delivery nanosystems.

Loaded Drugs Role of
Alginate

Other
Components Fungal

Zeta
Potential

(mV)
Diameters

(nm)
Loading

Content (LC)
Encapsulation
Efficiency (EE)

Drug
Release PDI Antifungal

Efficacy In Vitro
Administration
Route/In Vivo

Study
Ref.

Nystatin (Nys)
internal
phase / C. albicans

−37.42 ±
1.07 (pH 7.5);
−35.22 ±

1.40 (pH 5.5)
24,410

Surface 7.63
± 1.81%

/
About 62%

(18 h) /
exhibited a

marked
fungicidal

activity

oral mucosa ad-
ministration/Y [65]

Inside 17.45
± 2.34%

Voriconazole coating
layer Chitosan / −24 ± 0.9 185 ± 1 10.38 ±

0.87% 91.31 ± 1.05% About 68%
(50 h) / / corneal adminis-

tration/N [67]

Miltefosine matrix /
C. albicans

−39.7 ± 5.2 279.1 ± 56.7 / 81.70 ± 6.64% 55.24%
(181 h) / MIC: 0.03 to

2 µg/mL
mucosal and

oral administra-
tion/Y

[68]
/C. gattii.

Sodium selenate coating
layer /

Fusarium
oxysporum

Schltdl
−7.25 80 / / About 60%

(40 h) / / N/N [69]

Miltefosine matrix /
Galleria

mellonella
caterpillars

−39.7 ± 5.2 279.1 ± 56.7 About 80% 81.70% ± 6.64 55.24% (181
h) / MIC: 0.03 µg/mL

mucosal and
oral administra-

tion/Y
[68]

Ketoconazole matrix
poloxamer

407, carbopol
940

Candida albicans +82.2 ± 64.94 34.8 ± 73.34 / 97.5 ± 41.95% 43.75 ±
5.38% (6 h) / / ocular adminis-

tration/Y [70]

Ethionamide matrix Chitosan Mycobacterial −24 ± 9 324 ± 62 59% About
100% (80 h) 0.35 ± 0.09 MIC: 0.43 µg/mL

inhalation and
intravenous ad-
ministration/N

[71]

The ‘/’ or ‘N’ in the table indicates that the corresponding data is not mentioned in the paper, while ‘Y’ indicates that there is relevant data.
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2.3. Gelatin

Gelatin is a product of incomplete hydrolysis of collagen extracted from animals.
However, the hydrolyzed polypeptides have different lengths and usually have a certain
width of molecular weight distribution. Gelatin is easily absorbed by the human body
due to its hydrolysate being amino acids, resulting in nutritional value. However, gelatin
nanomaterials themselves are not antibacterial, and the solubility of gelatin in water is
not stable, which is easily affected by temperature. Therefore, gelatin and its modified
products are often used as carriers of antibacterial drugs. Compared to synthetic polymer
materials, gelatin nanomaterials have lower biological toxicity in terms of antifungal activity.
The abundant active groups in gelatin make it easy for nanomaterials to improve their
mechanical and rheological properties through crosslinking and chemical modification [72].

In the nanoscale range, gelatin can be made into nanoparticles and nanofibers as carri-
ers of antifungal drugs (such as amp B, Daptomycin [73], Polymyxin B [74], Tobramycin,
Vancomycin, etc. [75]).

Hassan M et al. synthesized gelatin nanoparticles by dissolvent method and loaded
them with chidamycin and chloramphenicol to improve the antifungal properties of exter-
nal gauze [76]. The two-step solvent removal method creates gelatin nanoparticles (GNPs)
with a low aggregation trend within a limited size range. GNPs contain spectinomycin and
chloramphenicol to enhance the treatment of bacterial and fungal infections. The results
showed that gelatin nanoparticles loaded with research antibiotics and cellulose cotton
gauze treated with these particles exhibited higher antibacterial activity against the bacteria
and fungi studied. This is due to the presence of drugs, the safety of nanostructures, and
their biocompatibility with skin cells.

V. Aparna et al. innovatively used AutoDock software to calculate and select mod-
ified gelatin A nanoparticles to deliver Amp B [77]. Under the action of cross-linking
agents, modified gelatin nanoparticles were prepared and delivered to macrophages to
treat intracellular fungal infections. Amp B Loaded Gelatin A NPs and Carboxymethylated
ι-Carrageenan are combined to achieve the treatment of intracellular Clostridium smooth
infection. CMC-Amp B-GNP exhibits appropriate stability, cell compatibility, and blood
compatibility.

Although gelatin cannot maintain structural stability in an aqueous environment, some
researchers have also achieved the preparation of nanoscale fibers using an electrospinning
process. Chetna Dhand et al. used drugs rich in hydroxyl groups to improve the water
stability of gelatin nanofibers and prepared polydopamine crosslinked gelatin nanofibers
as scald wound dressings, as shown in Figure 3 [75]. The method can be extended to impart
broad-spectrum antibacterial activity by binding to an antibiotic mixture and retaining
long-term antibacterial activity. It was further demonstrated that the electrospun gelatin
loaded with vancomycin was directly electrospun onto the bandage gauze, then cross-
linked, and its efficacy was examined in an animal model simulating the pathophysiology
of human burn wounds. The results confirmed that polydopamine cross-linking did
not interfere with wound healing; however, the incorporation of vancomycin enhances
wound closure and reduces inflammation. In addition to delivering drugs, researchers
have also used polyvinyl alcohol and gelatin blends to improve the properties of gelatin
nanofibers [78]. This preparation method makes the selection of gelatin nanofibers for drug
delivery more extensive.
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Figure 3. Schematic showing (a) Electrospinning set-up used to prepare polydopamine crosslinked
polyhydroxy antimicrobials loaded gelatin nanofiber mats. (b) Different non-covalent interactions
are involved among dopamine, gelatin chains, and polyhydroxy antimicrobials in dopamine and
antibiotic-loaded gelatin mats. (c) Other covalent interactions involved in polydopamine crosslinked
antibiotic-loaded gelatin mats are responsible for the enhanced antimicrobial durability of wound
dressings. Published by Elsevier, 2017 [75].

We present the statistics in Table 3 for the research of gelatin for antifungal drug
delivery nanosystems in recent years. Gelatin consists of a variety of amino acids and
has the properties of partial proteins. Since gelatin possesses ampholyte properties can
respond in different pH environments. It is commonly used to constitute a drug delivery
system with a targeting effect. Due to the presence of polar groups in collagen molecules,
nanoparticles with smaller particle sizes are not easily formed, usually all with particle
sizes above 100 nm. Gelatin has a relatively short degradation time, and achieving a
stable, controlled release system requires modification of collagen; a large number of
active groups on the molecule provides great potential for modification. The complex
groups of gelatins are more prone to cross-linking and forming a network to achieve drug
delivery. However, the interactions between the chains of gelatin molecules are strong, and
aggregation between particles is easily formed. Moreover, the rapid degradation of gelatin
is not easy to achieve long-term drug release.
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Table 3. Gelatin for antifungal drug delivery nanosystems.

Loaded Drugs Role of
Gelatin

Other
Components Fungal

Zeta
Potential

(mV)
Diameters

(nm)
Loading

Content (LC)
Encapsulation
Efficiency (EE)

Drug
Release PDI Antifungal

Efficacy In Vitro
Administration
Route/In Vivo

Study
Ref.

Spectinomycin matrix / / / 250.9 0.1–0.5 g/
100 mL / / / ZOI: 22 mm oral administra-

tion/N [76]

Fluconazole/
Cinnamaldehyde matrix Poly(Vinyl

Alcohol) Candida albicans / 334 ± 56 0.2 + 2.6 wt%
73.84% (CA)
and 68.58%

(FLU)

CA87% (8
h)/FLU61%

(12 h)
/ ZOI: 36 ± 1 mm corneal adminis-

tration/N [78]

Amp B matrix Carboxymethyl
ι-carrageenan Candida glabrata −25 ± 5.3 343 ± 12 2 wt% 78 ± 0.68% 99% (40

days) <0.3

No viable C.
glabrata was
detected in

Macrophage
cells.

N/N [77]

Amp B
shell-

forming
compo-
nents

polyethylene
oxide

Candida tropi-
calis/Candida

krusei/Candida
parapsilo-

sis/Candida
glabrata/Candida

dublinien-
sis/Aspergillus

flavus

/ 351 ± 73 0–9% / 78% (11 h) / ZOI: 19 ± 0.5 mm Topical adminis-
tration/N [79]

Mmethylene blue matrix / Candida albicans 30.8 100 3.13% to
6.75% 84.0 ± 1.3% 48% (180 h) 0.107 / N/N [80]

Daptomycin/
Polymyxin B/
Tobramycin/
Vancomycin/
Caspofungin/

Amp B

matrix polydopamine Candida albicans / 998 ± 250 0.5% / 80% (24 h) / ZOI: 31 mm wound
dressings/Y [75]

The ‘/’ or ‘N’ in the table indicates that the corresponding data is not mentioned in the paper, while ‘Y’ indicates that there is relevant data.
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2.4. Dextran

Dextran is a non-toxic, biocompatible, biodegradable, and hydrophilic natural polysac-
charide [81,82]. Dextran can enhance the stability of the drug delivery system and avoid
accumulation in blood circulation. Activating macrophages and neutrophils can increase
the content of leukocytes, cytokinins, and special antibodies, comprehensively stimulating
the immune system of the body. Due to the rich hydroxyl groups in dextran, it can directly
bind to biologically active molecules [83–85]. In addition, dextran acts as a nanosystem
and can form hydrogels [86], films [87], and other systems for drug release. Dextran is
easily modified by chemical means and can be derived and modified by etherification,
esterification, amidation, and oxidation. The chemical modification rate is as high as 30%,
which can also maintain the biodegradability of the skeleton [88,89]. These advantages
provide a basis for designing and preparing antifungal drug delivery nanosystems [90,91].

Cristina et al. found in their research that, although dextran itself does not possess
antifungal properties, it significantly enhances the stability, magnetic behavior, and bio-
compatibility of inorganic nanoparticles when coated with dextran on the surface of iron
oxide nanoparticles [92]. In addition, by utilizing the drug-loading properties of dextran to
load curcumin onto nanoparticles, the antifungal properties of the oxidized nanoparticles
were synthesized to enhance the antibacterial activity of cerium dioxide nanoparticles by
changing the pH value (i.e., ion balance) of the local environment. In addition, dextran-
coated cerium dioxide nanoparticles can enhance the antibacterial activity of nano-ceria
by changing the pH value of the local environment (ion balance). In addition to being
used as a coating material for nanoparticles, dextran can also be used to synthesize stable
silver nanoparticles through chemical reduction and other methods. The reduced silver
nanoparticles have good antibacterial properties. Milorad et al. synthesized dextran sulfate
stabilized silver nanoparticles (AgNPs-DSS) using a chemical reduction green synthesis
method [93]. DS provides structural stability for AgNPs-DSS as a capping agent. Although
there are uncertainties in organisms and other factors, AgNPs-DSS have an inhibitory effect
on fungi at low concentrations.

S. Anusuya et al. obtained β-d-glucan particles in an uncomplicated manner, as
shown in Figure 4 [94]. Although this study, in addition to testing against fungi, only
β-d-glucan was simply characterized. However, the simple process and uncomplicated
composition make it reasonable to believe in the potential application of β-d-glucan parti-
cles in biomedicine. Researchers have further enhanced the application potential of dextran
through modification. For example, Tuchilus et al. synthesized cationic amphiphilic glucan
derivatives with long alkyl groups at the reducing end of the polysaccharide chain [95]. The
quaternary ammonium group is connected to the main chain of the main dextran, thereby
obtaining a modified dextran with broad-spectrum application potential as an external
antifungal agent.
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We present the statistics in Table 4 for the research of dextran for antifungal drug
delivery nanosystems in recent years. As one of the components of fungal cell walls,
glucan has been relatively less studied in the delivery of antifungal drugs. Moreover,
nanosystems composed of dextran release rapidly after drug loading and are not suitable
for situations where long-term antifungal activity is required. However, as a nontoxic
natural macromolecule, glucan is believed to have a positive impact on human immunity.
Therefore, there is rich research potential for the application of dextran in antifungal aspects.
Researchers can modify the long-term drug-loading properties of dextran through chemical
modifications to extend the drug release time.
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Table 4. Dextran for antifungal drug delivery nanosystems.

Loaded Drugs Role of
Dextran

Other
Components Fungal

Zeta
Potential

(mV)
Diameters

(nm)
Loading

Content (LC)
Encapsulation
Efficiency (EE)

Drug
Release PDI Antifungal

Efficacy In Vitro
Administration
Route/In Vivo

Study
Ref.

Tobramycin/AgNPs matrix /
Pseudomonas

aeruginosa
(PA)

−39.2 ±
1.5 167.2 ± 3.56 >75%

Ag >
95%/Tob78 ±

2.5%
/ 0.241 ±

0.008 MIC: 2 µg/mL intratracheal
instillation/Y [96]

Ciprofloxacin
(CIP)/mucolytic
enzyme papain

(PAP)

matrix / PA −51.0 ±
1.9 223 ± 99 / 88% 100% (40

min) 0.51 ± 0.05 / N/N [97]

Curcumin (CUR) matrix poly-lactic acid / +35 (±7.23) 248 (±86.39) / 73.81% 50% (16 h) 0.21 ± 0.09 / oral mucosa ad-
ministration/Y [98]

Amp B coating
layer poly-lactic acid / 37 644 ± 52 / 56% 100% (5

min) 0.27 / intravenous ad-
ministration/Y [99]

Itraconazole
(ITZ) matrix / / −47 ± 0.8 400 ± 120 65 ± 6% 93 ± 2% / / / N/N [100]

The ‘/’ or ‘N’ in the table indicates that the corresponding data is not mentioned in the paper, while ‘Y’ indicates that there is relevant data.
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2.5. Cellulose

Cellulose, the major component that makes up the cell walls of plants and algae
and part of the microbial capsule [101,102], can be obtained by cellulose extraction and
artificial synthesis [103,104]. Cellulose can be prepared into cellulose nanoparticles and
nanofibers [105,106]. However, cellulose itself is not anti-fungal, and it is often necessary to
synergize it with other antibacterial drugs or antibacterial polymers [107–109]. Cellulose
units contain three hydroxyl groups. These groups can also be transformed into various
functionalities without affecting cellulose structure [107,110]. Cellulose has been widely
studied due to its wide source and simplicity of preparation [111–113]. Therefore, nano
cellulose is widely used in antifungal applications, such as wound dressings and drug
carriers [114].

Carla Vilela X et al. combined bacterial nanocellulose (BNC) with monomers of antibac-
terial polymers (poly[2-(methacryloyloxy)ethyl] trimethyl ammonium chloride, PMETAC)
to prepare layered nanofilms for the treatment of fungal infections [115]. These cationic
nanocomposite PMETAC/BN materials have UV-blocking properties, high water absorp-
tion capacity, thermal stability up to 200 ◦C, and good mechanical properties. PMETAC/BN
has no cytotoxicity to HaCaT cells and can inactivate Candida albicans.

Researchers have extensively studied modified cellulose derivatives. Rimpy et al.
prepared fluconazole containing 3D scaffolds by modifying plant-derived nanocellulose
with tetraethyl orthosilicate (TEOS) [116]. The swelling, porosity, and tensile strength of
TEOS-modified nanocellulose scaffolds were significantly improved. Silica groups added to
nanocellulose enhanced mucoadhesive strength, antifungal properties, and ex vivo vaginal
penetration ability of lyophilized scaffolds. TEOS-modified nanocellulose scaffolds also
exhibited prolonged drug release behavior in SVF buffer up to 24 h, being histologically
safe and less cytotoxic to Vero cell lines. Therefore fluconazole loaded TEOS modified
cellulose scaffolds have great potential for vaginal drug delivery applications.

Ahmed S. et al. prepared a nanocomposite based on gold nanoparticles and car-
boxymethylcellulose against Aspergillus through a green-friendly chemical reduction
method, as shown in Figure 5 [117]. According to cell cycle analysis, CMC AuNPs induced
apoptosis and necrosis of liver cancer cells and arrested the cell cycle at G1/G0 phase.
Ultimately, the as-prepared nanocomposite CMC AuNPs exhibit good antibacterial, an-
tifungal, and anticancer activities and can be used in pharmaceutical and medical fields.
Megha et al. used stabilizing agent hydroxypropyl methylcellulose (HPMC) to limit particle
growth during fungal drug griseofulvin (GF) composite synthesis adsorbed on the surface
of hydrophilic diatoms [118]. This study provides a unique structure with a diatom onto
which hydrophobic drugs can be immobilized to improve drug delivery. The nanoparticle
drug release rate after controlling the particle size with HPMC was significantly increased.
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Figure 5. Nanocomposite based on gold nanoparticles and carboxymethyl cellulose. TEM image
(right A), SEM image (right B), and SEM/EDX mapping analysis (right C–E) of CMC-AuNPs. CMC-
AuNPs induces apoptosis in MCF-7 cells. (left A) Control, (left B) CMC-AuNPs, and (left C) Represent
the illustration for % of necrotic and apoptotic cells in different treated cells. Published by Elsevier,
2022 [117].

We present the statistics in Table 5 for the research of cellulose for antifungal drug
delivery nanosystems in recent years. Cellulose has a large molecular weight in natural
polysaccharide polymers, and there is a lack of cellulosic enzymes in the human body.
Generally, it does not introduce toxicity other than drugs after taking cellulose preparations.
On the other hand, cellulose drugs cannot be degraded by the human body if implanted
in the body. Therefore, in antifungal applications, nanosystems composed of cellulose are
typically only used for surface fungal infections. How to modify cellulose so that it can be
degraded and absorbed in vivo is an important research direction.
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Table 5. Cellulose for antifungal drug delivery nanosystems.

Loaded Drugs
Role of
Cellu-
lose

Other
Components Fungal

Zeta
Potential

(mV)
Diameters

(nm)
Loading

Content (LC)
Encapsulation
Efficiency (EE)

Drug
Release PDI Antifungal

Efficacy In Vitro
Administration
Route/In Vivo

Study
Ref.

[2-
(methacryloyloxy)ethyl]
trimethylammo-
nium chloride

solution

matrix / Candida albicans / / 40% / / / inhibition >
99.9%

Antifungal
dressings/N [115]

Fluconazole matrix tetraethyl
orthosilicate Candida albicans

RNF-25.4 ±
1.13/WNF-

24.4 ±
1.15

RNF for
441.7/WNF

for 407.7
1% w/v / 30% (24 h)

0.735 for
RNF/0.655
for WNF

ZOI: 39 mm Vaginal adminis-
tration/Y [116]

ciclopirox
olamine and

Boswellia serrata
matrix /

Candida
albicans,
Candida

parapsilosis
/ / 10.1 ± 3.1% 10.0 ± 2.2%

79.1 ±
17.7% (48

h)
/ ZOI: 20 mm Topical adminis-

tration/N [119]

gold
nanoparticles matrix /

C. albicans, A.
terreus, A. niger,

and A.
fumigatus

−3.16 54.49 / /
pH 5.5,

>45%. pH 7
< 5% pH 9

<1%.
/ MIC: 20 µg/mL N/N [117]

hydroxyapatite matrix lysine Candida albicans / 600 50–70% / / / ZOI: 28 mm N/N [120]

Griseofulvin stabilizer diatom / −13 ± 2 2–3 ± 0.5 µm / / / 0.675 / N/N [118]

Amp matrix / Candida albicans −16.10 ±
2.6 150 ± 9.23 5 µg/mL 60 ± 2% 18 ± 2.1%

(12 h)
0.258 ±

0.005
MIC: 0.145 ±
0.01 µg/mL

Oral administra-
tion/Y [121]

Lliconazole matrix Polyvinyl
alcohol

Candida
albicans,

Aspergillus niger
−14.6–32.3 300–600 1% 70–80% up to 8 h 0.108~0.497 strong antifungal

activity
Topical adminis-

tration/N [122]

Citin’
nanocrystals matrix / Aspergillus / 60 0–10 % / / / inhibition:

98.87%
Antifungal

dressings/N [123]

The ‘/’ or ‘N’ in the table indicates that the corresponding data is not mentioned in the paper, while ‘Y’ indicates that there is relevant data.



Pharmaceutics 2023, 15, 1866 18 of 30

2.6. Polyesters

Polyester materials are the most widely used biodegradable synthetic polymer materi-
als [124–126]. Among them, hydroxy acids and lactone polymers represented by polylactic
acid (PLA) were first used in the biomedical field and have been certified by the US Food
and Drug Administration (FDA) [127]. Polyester-based materials are more hydrophobic
in molecular structure and more stable in structure than hydrophilic macromolecules
like polysaccharides, giving them unique advantages for applications as drug delivery
nanosystems [128–130]. The development of electrospinning technology has made up
for the shortcomings of polyesters in poor thermal stability during processing [131,132].
Therefore, polyester materials and their copolymers have been widely studied in antifungal
applications [133–135]. In terms of antifungal applications, polyesters can be applied in
the biomedical field as antibacterial drug dressings by preparing nanofibrous membranes
using electrospinning technology [136–138]. We present the statistics in Table 6 for the
research of polyesters for antifungal drug delivery nanosystems in recent years.

Raul Machado et al. made bovine lactoferrin (bLF) and PLA form uniform, smooth
nanofibers (fiber minimum diameter of 380 nm) by electrospinning technique [139]. The
final formed nanofibrous membranes had porosity up to 80%. The high porosity and
uniform fibers enabled a slow and uniform release of bLF mixed in PLA at 60 days. bLF-
PLLA membranes did not induce cytotoxicity in human fibroblasts, and 20 wt% of bLF-
PLLA membranes were able to induce cell proliferation even after 24 h of indirect contact.
The composite membranes showed very potent antifungal activity against the filamentous
fungus A.nidulans. Polylactic acid nanofibers can also be given more possibilities by more
complex coaxial electrospinning. B. Jalvo et al. prepared a core–shell nanocomposite
membrane with polylactic acid as the core, as shown in Figure 6 [140]. Chitosan on the fiber
surface makes the nanofibers positively charged and not prone to microbial colonization.
Such that bacteria in contact with the chitosan membrane surface undergo cellular damage.
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Figure 6. Transmission electron microscopy pictures of core–shell nanofibers prepared by coaxial
Electrospinning technology. Published by Elsevier, 2022 [140].

Nanofibrous membranes can be used for antifungal drug delivery in superficial layers,
such as the oral cavity and skin. Copolymers of polylactic acid can also be used for drug
delivery by forming nanoparticles that are more widely applied. A novel nanoantibiotic
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system based on mesoporous silica encapsulated in PLA nanoflowers (PLA-NFs) was devel-
oped by Mostafa F. Abdelbar et al. [141]. This mesoporous silicate has a two-dimensional
hexagonal porous array and high surface area sensitivity. Such mesoporous silicates exhibit
2D porous hexagonal arrays and high sensitivity of the surface area. The nanoantibiotic
system combines polylactic acid nanoflowers with mesoporous silica, which enables the
antimicrobial drug (levofloxacin) to be released in a controlled manner under a pH environ-
ment. PLA-NFs exhibited a rather fast degradation rate during hydrolysis under an acidic
environment, allowing the drug (Levofloxacin; LVX) in the delivery system to be released
under controlled conditions.
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Table 6. Polyesters for antifungal drug delivery nanosystems.

Polymers/Role Other
Components Loaded Drugs Fungal

Zeta
Potential

(mV)
Diameters

(nm)
Loading

Content (LC)
Encapsulation
Efficiency (EE)

Drug
Release PDI

Antifungal
Efficacy In

Vitro

Administration
Route/In Vivo

Study
Ref.

PLA/matrix / Bovine
Lactoferrin

Aspergillus
nidulans / 495 ± 127 20 wt% / 17.7 ± 4.4%

(7 weeks) /

Significantly
inhibit

mycelium
growth

Antifungal
dressings/N [139]

PLA/coating
layer

Mesoporous
silica

nanoparticles
Levofloxacin Candida albicans / 5.4 33.3 wt% 98.32% 92% (280

min) / ZOI: 43 mm at
72 h N/N [141]

PLA/core Polyacrylonitrile/
cellulose Chitin Aspergillus

niger
−10.5 ±

1.3 350–400 15 wt% / / /
>99% for

fungal spores
(>2 µm)

N/N [140]

PLA/matrix Cellulose
nanofibrils

Silver
nanoparticles

Fusarium/
Aspergillus/
Curvularia

/ 1.44 ± 0.32
µm <0.1 wt% / / / inhibition >

95%
Antifungal

dressings/N [137]

PLGA/matrix / Amp B Candida albicans −10.9 ±
1.9

343.17 ±
24.74 5.7% 85% 45.6%

(48 h) / inhibition:
99.65%

Topical admin-
istration/Y [133]

PLGA/matrix / Amp B Candida albicans −10.9 ±
1.9 287.8 ± 8.64 5.7 ± 0.12% 85 ± 2.4% / 85 ± 2.4

diffusion
distance: 1.55
± 0.11 µm

Topical admin-
istration/Y [142]

PLA/matrix / Carvacrol Candida albicans 1.54 ± 1.07
µm 28 wt% / 90% (150 h) / inhibition:

92–96%
Antifungal

dressings/N [136]

PLA/matrix PEG Amp B Candida albicans / 25.3 ± 2.7 40 mg/batch 56.5 ± 3.9% 59.4 ±
5.7% (24 h) / inhibition:

90.8%
Oral adminis-

tration/Y [143]

PLGA/core / Butenafine
Candida
albicans,

Aspergillus niger
−20.3 267.21 ± 3.54 1% 72.43 ± 3.11%

42.76 ±
2.87%
(48 h)

0.227 ZOI: 20.54 ±
1.8 mm at 48 h

Topical admin-
istration/N [144]

PLA/matrix Cashew gum Amp B Candida albicans −24.3 ±
2.3 1025 ± 143 9.1% 89.7% 52.2 ± 3.9%

(168 h) 0.307 MIC:
0.25 µg/mL

Oral adminis-
tration/N [145]

PLA/matrix / Hypocrellin A Candida auris / 699 2% / / inhibition:
99.9%

Topical admin-
istration/Y [138]

PCL/matrix Squalene Squalene Candida albicans −48 ± 2.00 254 ± 6.81 30.98 ±
2.20% 86.09 ± 0.28% 85% (4 h) 0.23 ± 3.03 inhibition:

92.47%
Topical admin-

istration/Y [146]

PCL/coating
layer / Peppermint oil

Candida albi-
cans/Aspergillus

niger
/ / / / / / ZOI: 20.6 mm

at 48 h
Antifungal

dressings/N [147]

PCL/coating
layer / Essential oils Candida albicans −11 ± 1 200 52 ± 3% 84 ± 6% / 0.09 ± 0.02 inhibition: 89% N/N [148]
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Table 6. Cont.

Polymers/Role Other
Components Loaded Drugs Fungal

Zeta
Potential

(mV)
Diameters

(nm)
Loading

Content (LC)
Encapsulation
Efficiency (EE)

Drug
Release PDI

Antifungal
Efficacy In

Vitro

Administration
Route/In Vivo

Study
Ref.

PCL/matrix / 4-
Nerolidylcatechol

Microsporum
canis

−9.30 ±
0.17 143.5 ± 1.36 / 100% / 0.232 ±

0.00

MIC:
0.625 µg/mL.

MFC:
0.625 µg/mL.

Cutaneous ad-
ministration/Y [149]

PCL/coating
layer / Miconazole

nitrate Candida albicans –31.22 ±
2.1 89 ± 3.63 24.1 ± 0.65% 98 ± 5.21% 90% (48 h) 0.35 MIC:

0.75 µg/mL
Cutaneous
administra-

tion/N
[150]

PCL/matrix / Diphenyl
diselenide Candida albicans −10.1 ±

2.21 240 ± 52 5.07 ± 0.14
mg/g 98% / 0.17 ± 0.08 MIC:

0.5 µg/mL
Cutaneous ad-
ministration/Y [151]

PCL/matrix / Amp B / 0 183 5 mg/mL 86% 78% (48 h) 0.211 / N/N [152]

PCL/matrix Pluronic Chloramphenicol Candida −22.4 123.5 / 98.3% 88% (96 h) / MIC: 2 µg/mL Antifungal
dressings/Y [153]

PCL/coating
layer Polyethyleglicol Am B Albicans/Glabrata/Auris−8.8 ± 0.1 226 16.40 ± 0.18

wt% / 38% (100 h) 0.25 MIC:
0.11 µg/mL N/N [154]

The ‘/’ or ‘N’ in the table indicates that the corresponding data is not mentioned in the paper, while ‘Y’ indicates that there is relevant data.
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Due to the limitations of polylactic acid in mechanical properties, current research
on polylactic acid nanoscale antifungal is mostly synergistic with other polymers. Poly-
lactic acid glycolic acid (PLGA) exhibits excellent drug loading and antifungal properties.
Researchers have characterized the drug-loading properties of PLGA nanoparticles for
antifungal drugs, such as butenolone (BT) and Amp B [133,142,144]. In addition, Some
researchers explored the enhancement of oral absorption of Amp B by PLGA-PEG nanopar-
ticles [143]. Due to the excellent degradation properties of PLA and PLGA, they are
metabolized in the human body within a few weeks and are likely not to cause significant
environmental residues [155].

Besides PLA, PCL has also been used by researchers to design antifungal drug delivery
nanosystems. Vanessa et al. loaded 4-Neroliyl chloride methanol (4-NC) with PCL, which
showed high encapsulation efficiency (100%) for 4-NC [149]. PCL nanoparticles, while
retaining 4-NC antifungal activity, also reduced cytotoxicity, increased the stability and
solubility of the substance, and increased the efficacy of 4-NC.

Compared with liposomes, PCL has a slower and more stable release behavior. Pre-
pared Mn-loaded PCL nanocapsules with a simple, cost-effective technique by R. S. Abdel-
Rashid et al. [150]. The resulting nanocapsules represent a good route to deliver MNS due
to their small particle size, slow biphasic release rate, high % EE and high stability. In
addition to the above advantages, the nanocapsules have good antifungal activity, dual
effects on superficial and deep fungal infections, and biphasic release mode. Therefore, PCL
nanocapsules can enhance antifungal activity, minimize side effects, and reduce dosage
and administration frequency.

PCL would also be used by researchers for electrospinning. Mehrez E. et al. blended
PCL and peppermint oil (PO) nanoemulsion to prepare uniform nano-sized PO nanoemul-
sion, as shown in Figure 7 [147]. The electrospinning technique was used to prepare PCL
nanofibrous mats loaded with PO nanoemulsion. This nanofibrous mat has good and
significant antibacterial and antifungal activity against a variety of human pathogens. The
absolute inhibition of biofilm formation was enhanced for the successful encapsulation of
the highest concentration of PO nanoemulsion. Because nanofibrous mats are coated with
smooth nanofibrous morphology, as well as strong antibacterial activity, they can play a
role in superficial antifungal therapy, such as acne and skin diseases and wound healing.

Polysaccharide-based antifungal drug delivery nanosystems often have higher release
rates, and it is often difficult to achieve a longer cycle of drug delivery behavior (weeks).
While polyester materials do not have a rich range of modified groups, their stability
provides unique advantages when drug delivery systems require slower and more stable
delivery behavior.

Compared to conventional drug delivery systems, nanosystems exhibit significantly
high specific surface areas, which are advantageous for drug loading and release. The
antifungal nanosystems based on polymer matrices discussed in this article can be primarily
classified into two categories: nanoparticles and nanofibers.

Nanoparticles can be classified into two categories based on their morphological
characteristics: nanocapsules and nanospheres. Nanocapsules are composed of a core,
which can be oil-based or water-based, encapsulated by a polymer shell. This dual-layer
structure allows for the drug to be dissolved in the internal oil-based or water-based phase
of the capsule, facilitating drug loading and release. The polymer shell provides protection
for the internal drug while maintaining the nanosize of the system, preventing aggregation
and fusion of the internal nanophase from forming larger particles. Additionally, the
polymer shell can control the release rate of the drug, reducing drug inactivation. On
the other hand, nanospheres are composed of a continuous polymer network and can
retain the drug internally or adsorb it on the surface through physical adsorption and
chemical interactions. Due to their larger specific surface area, nanospheres provide more
contact between the drug and the release environment, enabling drug loading and release.
Nanocapsules offer controlled release capabilities, while nanospheres, due to their internal
continuous polymer network, exhibit higher contact areas for drug interaction.
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Compared to nanoparticles, nanofibers exhibit unique characteristics for drug delivery.
Nanoparticles are typically employed as drug carriers and require a combination with
liquid dispersion systems or solid carriers, such as incorporation into dressings, injectables,
or gels, for application. In contrast, nanofibers can directly form fibrous membranes, pro-
viding both mechanical strength and drug-loading capability. Due to their porous structure,
nanofibers can be utilized as the surface layer of antifungal dressings while maintaining
breathability. The development of electrospinning techniques has enabled researchers to
fabricate nanofibers using coaxial electrospinning, wherein different drugs are loaded in the
core and shell layers to achieve sequential drug release. Furthermore, precise control over
the diameter and morphology of nanofibers can be achieved by adjusting process parame-
ters during electrospinning, enabling accurate modulation of drug delivery. Nanoparticle
size control is relatively challenging, particularly when compared to nanofiber diameter.

3. Summary and Conclusions

In our review of research on polymers, we found that the inherent antifungal prop-
erties of most polymers are not ideal. While cationic polymers have a broad range of
antibacterial properties, their effectiveness against fungal infections is limited. Therefore,
researchers often utilize polymers as carriers for the efficient delivery of antibacterial drugs,
constructing antifungal agent delivery nanosystems to combat fungal infections. This ap-
proach improves the bioavailability of antifungal drugs, prevents excessive administration
due to low absorption efficiency, and reduces the drug metabolism burden on patients.
Moreover, the sustained-release delivery nanosystems composed of polymers exhibit high
stability, minimizing the toxicity of antifungal drugs and reducing adverse reactions during
treatment. By manipulating the length of the molecular chains, the degradation of the
polymer can be slowed down in vivo or on the body surface. Loading antifungal drugs
onto these polymer systems enables sustained drug release, maintaining a stable drug
concentration and prolonging the drug’s efficacy. We also consider scaffolds prepared
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using nanofibers as a type of antifungal nano drug delivery system. Polymer scaffolds are
commonly employed as dressings for treating superficial fungal infections. Researchers
have utilized electrospinning technology to transform long-chain polymers into nanofibers,
which possess strong adhesion capabilities due to their high specific surface area and
surface charge density. This improves their binding with fungi and enhances drug deliv-
ery efficiency. Electrospinning allows for the incorporation of other macromolecules or
small molecules into the polymer, ensuring more uniform drug loading and release and
enhancing the antibacterial effect.

Given the complex and diverse types and sites of fungal infections, different fac-
tors must be taken into account when treating infections in vivo or on the body surface.
Therefore, the use of antifungal drugs presents numerous complex challenges in practical
applications. The diversity of polymers provides us with a range of solutions for addressing
these challenges. Whether selecting polysaccharides, protein, or polyesters-based polymers
as nano-drug delivery carriers, the ultimate goal is to achieve improved therapeutic effects
with fewer side effects in antifungal therapy. When designing antifungal agent delivery
nanosystems using polymers, researchers should carefully choose suitable carriers based
on the specific scenarios they encounter. In this selection process, we hope that this review
can offer valuable guidance and assistance.
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