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Abstract: Numerous neurological disorders have a pathophysiology that involves an increase in
free radical production in the brain. Quercetin (QER) is a nutraceutical compound that shields the
brain against oxidative stress-induced neurodegeneration. Nonetheless, its low oral bioavailability
diminishes brain delivery. Therefore, the current study aimed to formulate QER-loaded transfer-
osomal nanovesicles (QER-TFS) in situ gel for QER brain delivery via the intranasal route. This
study explored the impacts of lipid amount, edge activator (EA) amount, and EA type on vesicle
diameter, entrapment, and cumulative amount permeated through nasal mucosa (24 h). The optimum
formulation was then integrated into a thermosensitive gel after its physical and morphological
characteristics were assessed. Assessments of the optimized QER-TFS showed nanometric vesicles
(171.4 ± 3.4 nm) with spherical shapes and adequate entrapment efficiency (78.2 ± 2.8%). The results
of short-term stability and high zeta potential value (−32.6 ± 1.4 mV) of QER-TFS confirmed their
high stability. Compared with the QER solution, the optimized QER-TFS in situ gel formulation
exhibited sustained release behavior and augmented nasal mucosa permeability. CT scanning of rat
brains demonstrated the buildup of gold nanoparticles (GNPs) in the brains of all treatment groups,
with a greater level of GNPs noted in the rats given the transferosomal gel. Additionally, in vitro
studies on PCS-200-014 cells revealed minimal cytotoxicity of QER-TFS in situ gel. Based on these
results, the developed transferosomal nanovesicles may be a suitable nanocarrier for QER brain
targeting through the intranasal route.

Keywords: quercetin; transferosomes; brain targeting; CT scan; cytotoxicity; intranasal

1. Introduction

Numerous neurological disorders have a pathophysiology that involves an increase
in free radical production in the brain [1]. Through the microbiome-gut-brain axis, recent
evidence suggests that the microbiome in the gut may affect the brain [2]. The dysfunction
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of this axis may be crucial in the etiology of neurological disorders [3]. This mechanism
includes CNS, the enteric nervous system, the intestinal mucosal barrier, the immune
system, various neurotransmitters, neuroregulators, and the blood–brain barrier (BBB) [4].

Presently, phytotherapy, which emphasizes using plants to treat illness [5–7], is a
valuable resource for developing more effective therapeutic agents. Various medicinal
plants have been employed to treat various neurological illnesses [8,9]. Due to their
antioxidant and neuroprotective effects [10], flavonoids are a potential class of natural
substances with a significant role in neuropharmacology. These bioactive substances are
abundant in fruits and vegetables [11].

Quercetin (QER) is the flavonoid found in most food and is mainly utilized by peo-
ple [12]. Abundant evidence has referred that fruits and vegetables shield the brain
against oxidative stress-induced neurodegeneration because of their high QER concentra-
tion [13,14]. By suppressing hydroperoxide production, restoring antioxidant enzymes, and
decreasing free radicals, QER protects neurons from oxidative stress [15,16]. However, QER
has low distribution potential to the brain after oral delivery owing to difficulties in crossing
BBB [17] as well as to rapid metabolism [18]. Therefore, QER exerts its neuroprotective
effects several hours after delivery [19]. It has also been demonstrated to have anxiolytic
and cognitive-enhancing properties [20]. Several studies demonstrate the preventive func-
tion of QER against depressive-like illnesses [21,22]. In addition, this flavonoid ameliorates
anxiety and depression caused by the corticotropin-releasing factor in mice and rats [23,24].
Despite extensive in vivo studies, the potential of QER is not fully explored pertaining to
inherited challenges, such as low oral bioavailability, hepatic metabolism, physiological
pH instability, low brain permeation, photodegradation, and hydrophobic nature [25–27].
Therefore, a suitable nanocarrier is necessary to overcome the obstacles mentioned above.

The nose-to-Brain (NTB) route has received tremendous attention lately as a viable
route as it offers various benefits over oral or parenteral delivery [28,29]. In addition
to being non-invasive and painless, the NTB route has a high level of vascularization
via the epithelium, which increases medication absorption [30]. In addition, the NTB
route bypasses hepatic and intestinal metabolism and permits medication transport to the
brain indirectly via systemic circulation and directly through the olfactory and trigeminal
neurons [28,31]. Recent research indicates that the NTB route may be beneficial in the
treatment of several CNS disorders, including brain tumors [32], schizophrenia [33], and
Alzheimer’s disease [29]. Nevertheless, the limited surface area of the nasal cavity, quick
mucociliary clearance, and limited mucosal permeability are believed to be the principal
constraints of the NTB route [28–30]. Consequently, most contemporary research focuses
on producing mucoadhesive nasal formulations and using permeation enhancers to boost
residence duration and nasal uptake [30].

Recent research has focused on vesicular nanocarriers, such as liposomes [34], cubo-
somes [28], transferosomes [30], and niosomes [35], to deliver pharmaceuticals to the brain
via the intranasal (IN) pathway. Nanovesicular systems can carry drugs from the intranasal
mucosa to the systemic circulation and brain due to their incredible penetrating properties
and capacity to ameliorate ciliary clearance [30]. Transferosomes (TFS), one of these vesicu-
lar carriers, are being studied extensively and have become more significant lately because
they can transport medications to the brain through intranasal administration [30]. Trans-
ferosomal nanovesicles are more deformable than conventional liposomes [36]; therefore,
they are called ultra-deformable liposomes. TFS is highly adaptable, elastic in nature, and
stress-responsive [36]. Other than that, it boosts drug molecule permeation by squeezing
the vesicle structure between cells [30] and facilitates their penetration via holes much
smaller than their size. Transferosomal infrastructure can house both hydrophobic and
hydrophilic moieties [36]. Recently, TFS has been investigated as a carrier for brain delivery
for various pharmaceuticals, such as resveratrol [37], olanzapine [38], and zolmitriptan [39].

This study aimed to explore the potential of QER-loaded transferosomal nanovesicles
(QER-TFS) to deliver QER to the brain through the intranasal route. In this study, QER-TFS
were developed, optimized, and assessed with respect to their physical and morphological
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characteristics to establish their appropriateness for intranasal application. Next, the
optimized formulation was integrated into a thermosensitive gel for brain localization
and cytotoxic studies. In a subsequent study, the effect of intranasal QER-TFS gel on
antidepressant activity was investigated in a depressed rat model.

2. Materials and Methods
2.1. Materials

Quercetin (QER), Dialysis membranes (MW cutoff: 12 kDa), Sodium deoxycholate
(SDC), Methanol (HPLC grade), MTT, L-α-Phosphatidylcholine (Lecithin), Chloroform (HPLC
grade), and Dimethyl sulfoxide (DMSO) were procured from Sigma-Aldrich (St. Louis, MO,
USA). Gentamycin, RPMI-1640, and Fetal Bovine serum were purchased from Lonza
(Verviers, Belgium). PCS-200-014 cells (human oral epithelial cell line) were obtained from
the American Type Culture Collection (Rockville, MD, USA). Other chemicals and solvents
used were of analytical grade.

2.2. Methods
2.2.1. Design and Optimization of Experiments

A central composite design (CCD, face-centered), one categorical factor with two
levels (−1, +1), and two numeric factors with three levels (−1, 0, +1) were used to optimize
the independent variables for the formulation of QER-TFS. The optimization algorithm
was set to decrease vesicle size (VS) and increase entrapment efficiency (EE%), and the
cumulative amount permeated through nasal mucosa after 24 h (Q24). Design Expert®

(version 12.0.3.0, USA) was used to construct and evaluate the experimental design, and
the optimum formulation was chosen. Furthermore, the statistical significance of each
model coefficient was assessed using the multi-factor ANOVA test implemented in the
Design Expert software. The lack-of-fit test was also used to assess the significance of the
model, and the model was deemed acceptable if the variance due to lack of fit did not
differ significantly from the variance due to pure error. The selection of the best models is
based on several criteria (e.g., model p-value, lack of fit p-value, adjusted R2, and predicted
R2). There were 20 trials, with 16 referring to the centroid of each tridimensional cube
edge and 4 to the center point replicas. Three independent variables were tested: Lipid
amount (X1), EA amount (X2), and EA type (X3). VS (nm), EE (%), and Q24 (%) were the
response variables considered. We obtained 3D response surface plots using the plot3D
R-package [40,41]. The experimental runs of the QER-TFS as per the CCD design are shown
in Table 1.

2.2.2. Formulation of QER-TFS

QER-TFS were formulated via the thin film hydration technique [30]. In a round-
bottom flask, QER (10 mg), Lecithin, and EAs were dissolved in a 15 mL chloroform and
methanol (2:1) solution. The chloroform/methanol mixture was vacuum vaporized in a
rotating evaporator (Stuart rotary evaporator, UK) at 60 ◦C to enable the creation of a thin
film and then maintained under vacuum (2 h) to ensure that the organic solvents were
completely evaporated. Then, phosphate-buffered saline (PBS, pH 7.4, 10 mL) was added
to the round-bottom flask. The dried film was then completely hydrated with rotation at
60 rpm (25 ◦C, 1 h). The dispersion produced was sonicated for 10 min and refrigerated
overnight before characterization.

2.2.3. Characterization and Optimization of QER-TFS
Vesicle Size Analysis

The VS of QER-TFS was established via dynamic light scattering approaches (Zetasizer
Nano ZS, Malvern Instruments, Malvern, UK) [41,42]. Prior to the assessment, QER-TFS
dispersion was diluted with purified water (1:10) and investigated at 25 ◦C [43].
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Table 1. The levels of independent variables, experimental runs, and response variables for formulat-
ing QER-TFS.

Independent Variables
Level

−1 0 1

X1: Lecithin amount (mg) 100 150 200
X2: Edge activator amount (mg) 10 20 30

X3: Edge activator type Tween 80 SDC

Run X1 X2 X3 Y1: VS (nm) Y2: EE (%) Y3: Q24 (%)

1 −1 0 −1 240.2 ± 4.1 ¥ 63.2 ± 4.6 67.3 ± 6.1
2 −1 −1 1 302.1 ± 5.2 65.4 ± 3.2 52.6 ± 5.2
3 0 0 −1 213.5 ± 3.8 74.3 ± 5.1 66.2 ± 5.7
4 1 −1 1 267.6 ± 5.4 85.2 ± 4.8 65.2 ± 4.8
5 1 1 1 125.3 ± 2.6 67.1 ± 3.4 70.1 ± 6.1
6 0 1 −1 137.7 ± 3.9 68.3 ± 4.9 66.8 ± 3.2
7 1 0 −1 180.4 ± 1.6 81.8 ± 3.1 78.3 ± 5.3
8 1 −1 −1 273.9 ± 4.9 86.2 ± 5.3 61.3 ± 4.2
9 −1 −1 −1 315.3 ± 3.1 67.3 ± 4.6 49.4 ± 3.7

10 0 −1 −1 283.2 ± 5.3 77.1 ± 3.5 57.3 ± 4.9
11 0 0 −1 207.9 ± 5.7 76.2 ± 3.6 68.4 ± 5.4
12 1 1 −1 132.5 ± 1.7 69.4 ± 3.7 69.2 ± 4.3
13 1 0 1 175.7 ± 2.4 79.1 ± 2.8 84.9 ± 5.2
14 −1 1 −1 145.8 ± 2.6 55.8 ± 3.9 57.9 ± 3.7
15 −1 1 1 139.6 ± 3.7 51.4 ± 2.9 61.8 ± 2.8
16 0 0 1 192.1 ± 2.8 73.2 ± 3.4 72.1 ± 3.4
17 0 −1 1 269.5 ± 3.7 78.2 ± 2.8 63.2 ± 4.5
18 0 1 1 133.4 ± 2.2 64.4 ± 4.6 67.3 ± 5.1
19 −1 0 1 229.3 ± 3.6 61.9 ± 3.2 69.2 ± 5.6
20 0 0 1 201.4 ± 3.9 76.1 ± 3.8 74.9 ± 4.9

¥ data presented as mean ± SD.

Entrapment Efficiency

The entrapment of QER in QER-TFS was estimated indirectly by measuring the QER in
the supernatant following centrifugation and subtracting this amount from the amount used
during formulation. The supernatant containing free QER was separated using a cooling
centrifuge (SIGMA 3-30K, Roedermark, Germany) at 15,000 rpm (4 ◦C, 2 h) [44]. Using a
spectrophotometer (SHIMADZU (UV-160A), Tokyo, Japan) at 375 nm, the concentration of
QER in the supernatant was measured after an appropriate dilution [45]. The EE (%) of
QER was assessed using the following formula [40,46]:

EE % =
Total QER added − QER in Supernatant

Total QER added
× 100

Ex Vivo Permeability

In a Franz Diffusion cell (2.5 cm2), an ex vivo nasal diffusion experiment was conducted
using nasal mucosa removed from freshly sacrificed sheep. After extensively exposing the
nasal septum and detaching the nose from the cranium, the nasal mucosa was removed
carefully with forceps and surgical scissors. The mucosal tissues were submerged for
30 min in PBS (pH 6.5) [29]. Fifty milliliters of PBS with Tween 80 (0.01% v/v) were added
to the receptor compartment at a temperature of 37 ◦C with stirring at 50 rpm [28]. Then,
freshly excised sheep nasal mucosa (0.2 mm thickness) was carefully placed between
the donor and receptor vessels. Before applying different QER-TFS formulations, each
comprising 3 mg of QER, to the mucosal surface of the nasal mucosa, the nasal mucosa
was kept for 15 min to equilibrate. After 24 h, the aliquots were taken from the receptor
compartment. Each sample was centrifuged, filtered, and spectrophotometrically analyzed
for its QER concentration.
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2.2.4. Characterization of Optimized QER-TFS
Fourier-Transform Infrared Spectroscopy (FT-IR)

The QER and TFS matrix interaction was assessed using FT-IR. Potassium bromide
(KBr) was blended in a mortar and pestle with QER, lecithin, SDC, empty TFS (no drug),
and QER-TFS. The blends were then compressed into a thin film using a hydraulic press
and placed in sample holders. Then, using KBr film as a standard, FT-IR analysis was
carried out in transmission mode between 4000 and 400 cm−1 [41].

Differential Scanning Calorimetry (DSC)

For further investigation into the QER/TFS matrix interaction, DSC thermograms were
recorded using a calorimeter (DSC-60, Shimadzu, Kyoto, Japan) for QER, lecithin, SDC,
empty TFS (no drug), and QER-TFS. Seven milligrams of samples were accurately weighed,
placed in aluminum pans, and tested using an empty aluminum pan as a standard [41]. The
samples were heated to 300 ◦C at 10 ◦C/min while being scanned in a nitrogen atmosphere.

Morphology and Zeta Potential Analysis

The optimum QER-TFS formulation was scrutinized for its morphological merits
using transmission electron microscopy (TEM). One drop of freshly manufactured QER-
TFS dispersion was put into a carbon-coated grid and kept at 25 ◦C (5 min) after sufficient
dilution [47]. The grid was then stained negatively with phosphotungstic acid (1%, w/v),
let to settle to allow for proper staining absorption, and then the stain was removed using
filter paper. At 80 kV, the formulation was examined by TEM (Jeol, Tokyo, Japan) [44]. The
zeta potential (ZP) of the optimized QER-TFS was estimated with the same equipment for
VS analysis.

2.2.5. Preparation of QER-TFS In Situ Gel

The optimal formulation was incorporated into a mucoadhesive in situ gel formulation
to facilitate intranasal delivery, extend residence time, and enhance absorption. The opti-
mum QER-TFS and QER solution (QER-SOLN) were incorporated into a gel base (Carbopol
971P (0.5%), Poloxamer 188 (10%), and Poloxamer 407 (20%)) using the cold technique [30].

2.2.6. In Vitro Release

The Vertical Franz cells were used for the drug release experiments (2.5 cm2 diffusion
surface area). Before testing, a dialysis membrane was submerged for 24 h in a simulated
nasal electrolyte solution (SNES) before being positioned between the donor and receptor
chambers. QER-TFS gel and QER-SOLN gel with equivalent QER amounts (3 mg) were
introduced to the donor chamber. The experiment was conducted at 37 ◦C with a medium
volume of 50 mL SNES containing Tween 80 (0.01% v/v) and stirred at 50 rpm [30,48].
At predetermined intervals, 1 mL of the receptor medium aliquots were removed and
replaced with 1 mL of fresh SNES to maintain a constant volume. The samples were filtered,
and the cumulative quantity released in the collected samples at certain time intervals
was determined spectrophotometrically. The relationship between the percentage of drug
released and time was determined.

2.2.7. Ex Vivo Permeability

Using the Franz diffusion cell, as previously mentioned, ex vivo diffusion tests of QER
via sheep nasal mucosa were carried out on the optimized QER-TFS gel and QER-SOLN
gel. Permeation parameters for both QER-TFS gel and QER-SOLN gel were calculated
using a previously published approach [43].

2.2.8. Stability Study

The optimized QER-TFS gel was kept for 90 days in a glass jar (4 ◦C). After a storage
period of 0, 30, 60, and 90 days, the VS, EE, and ZP of samples from the optimal formulation
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were evaluated [43]. In addition, frequent visual inspections were conducted to identify
any indications of physical instability, such as aggregations, separation, or precipitation.

2.2.9. Evaluation of pH

Measuring the pH of the optimal QER-TFS gel is necessary to ensure it does not irritate
the nasal mucosa following administration. The pH was estimated via a digital pH meter
(Jenway, UK).

2.2.10. Determination of QER Localization in the Brain

The brain accumulation of QER-TFS capped with gold nanoparticles (GNPs) was
examined via Computed Tomography (CT) Scanning using twelve healthy adult Wistar
rats weighing between 190 and 210 gm. The accommodation for the animals was well-
ventilated, and the animals had unrestricted access to food and water. The animals were
given seven days to acclimate prior to the start of the experiment.

Preparation of QER-TFS Capped with GNPs (QER-TFS-GNPs)

GNPs were prepared using a reduction process, as previously stated [49]. In a nutshell,
a boiling solution of gold chloride was mixed with trisodium citrate and agitated for around
4 min to produce a stunning wine-red color [50]. The optimized QER-TFS formulations
were then capped with the developed GNPs during the hydration process [51], and they
were subsequently included in the previously mentioned thermosensitive gel.

CT Scanning

It has been reported that GNPs can be identified in vivo by CT scanning due to the fact
that they are exceptional contrast agents and induce significant X-ray attenuation due to
their high atomic number; therefore, GNPs can be used to identify targeted tissues [52,53].
CT scanning was used to evaluate the accumulation of QER-GNPs (intranasal and oral)
and QER-TFS-GNPs (intranasal) in the separated brains. The rats were divided into four
groups (n = 3): the control group (untreated), the intranasal QER-GNPs gel-treated rat
group, the oral QER-GNPs treated rat group, and the intranasal QER-TFS-GNPs gel-treated
rat group. The respective groups received intranasal QER-GNPs gel or QER-TFS- GNPs
gel at a QER dose of 10 mg/kg and oral QER-GNPs at a dose of 300 mg/kg of QER. The
rats were killed two hours after the drug was delivered, and the extracted brains were
saline-washed before being fixed in 10% formalin. The separated brains were put in a glass
dish and scanned using a CT scanner (Sensation 64, Siemens CO, Erlangen, Germany) [53].
The accumulation and cellular absorption of GNPs in the brains were investigated and
compared to the control group.

2.2.11. In Vitro Assessment of Cytotoxicity

In the present investigation, the in vitro cytotoxicity of QER-SOLN gel, blank TFS gel
(no drug), and QER-TFS gel were evaluated using MTT assay on PCS-200-014 cells (human
oral epithelial cell line), as described previously [54]. The cells were cultured in RPMI-1640
medium containing gentamycin (50 µg/mL) and inactivated fetal calf serum (10%). In a
humidified atmosphere with 5% CO2, the cells were maintained at 37 ◦C. The cell lines
were spread out in the media on 96-well tissue culture plates at a density of 5 × 104 cells
per well and then incubated for 24 h. The 96-well plates were subsequently loaded with
the tested formulations. After 24 h of incubation, the MTT assay was employed to measure
the number of viable cells. In brief, the media was removed and replaced with fresh RPMI
1640 medium (100 µL) without phenol red. Then, MTT stock solution (12 mM, 10 µL) was
added to each well, including the untreated controls. The plates were then incubated (37 ◦C,
5% CO2, 4 h). 50 µL of DMSO was added after 85 µL of the medium had been removed
from each well, which was then mixed and incubated at 37 ◦C (10 min). The viable cell
numbers were evaluated using a microplate reader (Sunrise, TECAN Inc., San Jose, CA,
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USA) to measure the optical density at 590 nm. As previously indicated, the viability %
was computed [55]

2.2.12. Statistical Analysis

Each experiment was performed thrice; the data are shown as the mean ± SD. In all
conducted experiments, except the CCD optimization experiments, one-way ANOVA with
the Tukey post hoc test was employed to determine if there were significant differences
between the study groups. A p-value < 0.05 was considered significant.

3. Results and Discussion
3.1. Formulation of QER-TFS

Preliminary experiments were carried out to carefully choose the appropriate compo-
nents and procedure for producing the QER-TFS. The variables were created to provide the
utmost encapsulation possible in a suitable VS. These initial studies included the selection
of the appropriate solvent, EAs, and sonication time. The approach of film hydration was
employed. SDC and Tween 80 provided the highest entrapment and smallest size among
several EAs investigated; hence, they were chosen. In order to fabricate transparent and
continuous films, a chloroform/methanol combination was selected to dissolve QER and
other ingredients utilized in the formulation of TFS. TFS were prepared without sonication
and after sonication at various times. For the optimum VS, ten minutes were proven to
be adequate.

3.2. Experimental Design

The lack of fit was insignificant for all response variables; therefore, the models
adequately characterized the range of the estimated results (Table 2). In addition, visual
assessment of the model diagnostic plots of dependent variables reveals an excellent fit
to the estimated results, with most residual errors following a normal distribution and no
noticeable residual error patterns (Figure 1). The link between independent and dependent
criteria is illustrated in Figure 2. Table 2 depicts the derived equations, in terms of coded
values, that describe the relationship between the independent and dependent variables.

Table 2. Data of Regression Analysis and ANOVA of All Dependent Variables.

Source
Size (nm) EE (%) Q24 (%)

F p-Value F p-Value F p-Value

Model 262.29 <0.0001 123.41 <0.0001 46.91 <0.0001
X1: Lipid amount (mg) 43.17 <0.0001 411.21 <0.0001 64.31 <0.0001

X2: Edge activator amount (mg) 738.80 <0.0001 262.92 <0.0001 24.95 0.0002
X3: Edge activator type 4.91 0.0416 7.09 0.0195 11.83 0.0037

X1X2 5.06 0.0425
X1

2 26.07 0.0002
X2

2 19.14 0.0008 86.53 <0.0001
Lack of Fit 3.38 0.2516 0.6769 0.7298 2.21 0.3543

Model Linear Reduced Quadratic Reduced Quadratic
%CV 4.57 2.08 3.85

Adequate precision 45.7876 37.6271 23.7120
Adjusted R2 0.9763 0.9748 0.9062

SD 9.53 1.48 2.55
Predicted R2 0.9672 0.9602 0.8743

R2 0.9801 0.9827 0.9260

VS = 208.3 − 18.1·X1 − 74.8·X2 − 4.7·X3
EE = 74.97 + 8.65·X1 − 6.92·X2 − 0.88·X3 − 1.18·X1·X2 − 3.49·X2

1 − 2.99·X2
2

Q24= 72.66 + 5.9·X1 + 3.68·X2 + 1.96·X3 − 10.82·X2
2
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3.2.1. Effect of Causal Factors on VS

According to Table 1, the average size of QER-TFS vesicles varied from 125.3 to
315.3 nm. When the data of VS of different QER-TFS formulations were evaluated using
ANOVA, the linear model was suggested. In addition, the ANOVA analysis revealed
that the influence of lipid, EAs, and EAs type on the size of nanovesicles was significant
(p < 0.05), as stated in Table 2.

As seen in the first column of Figure 1, increasing the quantity of lipids and EAs led to
a decrease in VS. At high lipid concentrations, a modest VS can only be maintained if the
EA concentration is raised proportionally. A greater quantity of lipids and EAs promotes
better surface coverage of the nanovesicles, hence reducing the interfacial tension, which
enables the formation of small nanovesicles [30]. In addition, formulations including SDC
exhibited the lowest VS values compared to those containing Tween 80. These results might
be explained by the reality that incorporating SDC (charged molecules) into the vesicle
bilayer encourages steric repulsion between charged particles thus increasing the curvature
of the membrane of nanovesicles and decreasing VS [56]. When the quantity of lipids and
EAs exceeded 190 mg and 25 mg, respectively, the lowest VS was observed.

3.2.2. Effect of Causal Factors on EE

According to Table 1, the EE of produced QER-TFS varied from 51.4% to 86.2%.
ANOVA demonstrates that the reduced quadratic model was recommended to analyze
gathered entrapment results. In addition, the ANOVA analysis of the collected entrapment
data revealed a significant (p < 0.05) influence of lipid, EAs, and EAs type on the entrapment
of QER.

Increasing lipid and lowering EA seems to enhance the amount of QER entrapped
(Figure 1, second column). High phospholipid concentration creates greater space to add
additional lipids, reducing the likelihood of the medication leaking to the outer phase [57].
The growth of vesicles rises when EA is incorporated in small amounts [58]. However,
an increase in the levels of EA results in the creation of pores in lipid bilayers. Once EA
concentration reaches 25 mg, mixed micelles are generated with TFS, resulting in low
entrapment due to the rigidity and diminutive size of mixed micelles compared to TFS [59].
Further, the second column of Figure 1 indicates that the entrapment in the case of Tween
80 (HLB:15) was somewhat greater than that of SDC (HLB:16.7). High HLB surfactants
may result in drug solubilization in the aqueous media [60].

3.2.3. Effect of Causal Factors on Q24

Table 1 demonstrates that the Q24 of produced QER-TFS vesicles varied from 49.4 to
84.9%. The reduced quadratic model was suggested when evaluating the Q24 results using
ANOVA. In addition, the ANOVA demonstrates that the effects of lipid, EAs, and EAs type
on Q24 of QER-TFS are statistically significant (p < 0.05).

Numerous strategies for increased nasal delivery by TFS have been proposed [61,62].
The most probable hypothesis implies that intact TFS may traverse the nasal mucosa and
load vesicle-bound medication molecules [63]. The TFS flexibility allows them to enter
the nasal mucosa readily. Extreme flexibility enables TFS to traverse pores considerably
narrower than their own diameter [64]. Another hypothesis posits that TFS, like other lipid-
based nanovesicles, may serve as permeation enhancers [43,65]. In this context, the bilayers
of the vesicle traverse the intranasal mucosa, opening “new holes” in the paracellular tight
junctions [66], allowing medicines to enter deeper on their own [67].

The highest Q24 values were obtained when lipid levels were more than 180 mg
(Figure 1, third column). This might be because vesicle phospholipid bilayers have a
high affinity for the intercellular lipid layer of the mucosal surface [60]. In addition, TFS
containing high (30 mg) or low (10 mg) concentrations of EAs were ineffective for vesicular
delivery, but TFS containing a moderate level of EAs (20–25 mg) increased the delivery
of QER via the nasal mucosa (third column, Figure 1). As was previously mentioned,
vesicles with a large diameter are produced when EA levels are low, whereas mixed



Pharmaceutics 2023, 15, 1805 10 of 20

micelles, produced when EA levels are high, are less deformable and have poor permeability
compared to the TFS system [59,68]. In addition, the greatest Q24 was found in nanovesicles
containing SDC, as seen in the third column of Figure 1. These may be explained by the
SDC’s lower VS, which provided the most surface area for drug diffusion [60].

3.2.4. Formulation Optimization

The software suggested an optimal QER-TFS formulation with an overall desirability
of 0.80 after imposing constraints on the response variables. As depicted in Table 3, the
optimum casual factors were estimated to be 200 mg of lipids, 23.1 mg of EAs, and SDC
as the EAs type. The estimated optimal response parameters were VS of 162.6 nm, EE of
76.5%, and Q24 of 80.6%. As demonstrated in Table 3, our models effectively predicted the
optimum TFS features as the prediction error results for the studied response variables was
less than 6%.

Table 3. Composition, measured, and predicted characteristics of the optimal QER-TFS formulation.

Factor Optimal Response Measured Predicted Prediction Error (%) *

X1: Lipid amount (mg) 200 VS (nm) 171.4 162.6 5.1
X2: Edge activator amount (mg) 23.1 EE% 78.2 76.5 2.2

X3: Edge activator type SDC Q24% 77.2 80.6 4.4

* Calculated as (measured-predicted)/measured × 100.

The Pareto chart (Figure 3) shows the impacts of the formulation factors on the re-
sponse variables. EAs level was the most influential on transferosomal size and cumulative
amount permeated (24 h). However, lipid amount was the most influential for encapsula-
tion efficiency.
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3.3. Characterization of Optimized QER-TFS
3.3.1. FT-IR

The FT-IR assessments demonstrated the interaction between QER and TFS matrix
(expressed as bond formation or peak absence). Figure 4 illustrates the FTIR spectra of
QER, lecithin, SDC, empty TFS (without drug), and QER-TFS. QER has characteristic
peaks such as those at 1100–1600 cm−1 (aromatic bonding and stretching), 3407 cm−1

(stretching phenol O-H), 1663 cm−1 (Ketone carbonyl stretching), 1609 cm−1 (stretching -C-
O), 1521 cm−1 (Stretch asymmetrically -C-C=C), 1383 cm−1 (-C-OH stretch), and 1261 cm−1

(-C-O-C bond) [69]. The characteristic peak of lecithin is 2926 cm−1 due to the presence
of the carboxylic acid group [46]. SDC showed a distinct peak at 1567 cm−1 (Asymmetric
COO- stretched band), 2934 cm−1 (CH band stretching), 1403 cm−1 (symmetric COO-
stretched band), and 1042 cm−1 (Stretching band for secondary alcoholic C-O) [70]. Empty
TFS (no drug) showed similar peaks to QER-TFS. The absence of QER characteristic peaks
in QER-TFS spectra suggests that QER molecules were embedded in the nanovesicles.
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3.3.2. DSC

Utilizing the DSC apparatus, the degree of nanovesicle crystallinity and the impact of
QER integration was investigated (Figure 5). QER displayed a strong endothermic peak at
126 ◦C, suggesting its crystalline nature. Two peaks of lecithin were detected at 83.5 ◦C and
154 ◦C. Moreover, SDC showed an exothermic peak at 189 ◦C but two endothermic peaks at
102.6 ◦C and 234 ◦C. A small endothermic peak was seen in empty TFS at 266 ◦C. The QER-
TFS showed a single peak at 268 ◦C. The SDC endothermic peak of Empty TFS shifts from
234 to 266 ◦C on the DSC thermogram, and the lecithin peak disappears [38]. Lecithin peak
loss might be triggered by SDC fluidizing the lipid bilayer and producing TFS [71,72]. The
physical interaction between SDC and lecithin could shift the SDC endothermic peak [38].
The QER-TFS DSC thermogram is distinguished by relocating the SDC peak to 268 ◦C and
the absence of the QER and lecithin peaks. The lack of the distinctive peak of QER indicates
the presence of the drug inside the transferosomal lattice and confirms its amorphous
nature [38,73,74].
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Figure 5. Differential scanning calorimetry thermograms of QER, Lecithin, SDC, empty TFS (no
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3.3.3. Morphological Evaluation and Zeta Potential

TEM images of the prepared QER-TFS vesicles (Figure 6) showed vesicles with spheri-
cal shape and comparable average VS range similar to the data obtained by using a Zetasizer
particle size analyzer. The dispersion is expected to be stable when their surface charge is
more than 30 mV (absolute value) [29]. Thereby, the high negative charge value (−32.6 mV)
of QER-TFS suggests their high stability.
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3.3.4. In Vitro Release

The in vitro release comparison of QER-TFS gel and QER-SOLN gel is shown in
Figure 7. The cumulative QER amount released was plotted as a function of time, and as
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expected, the QER-SOLN gel demonstrated rapid QER release, with a cumulative release of
more than 95% within 3 h. In comparison, the release of QER from QER-TFS gel was 61.3%
within 3 h. The figure shows bi-phasic drug release behavior from QER-TFS gel, with a
rapid drug release occurring in the first 2 h (45.5%) and a slower release over an 8 h period.
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Figure 7. The release profile behavior of QER from optimized QER-TFS in situ gel and QER-SOLN in
situ gel through dialysis membranes.

3.3.5. Ex Vivo Permeability

The actual drug permeation properties might be revealed by performing the exper-
iments on a natural membrane-like human intranasal mucosa. The sheep nasal mucosa
was used in the permeation experiment because of the histological similarities between
the sheep and human nasal epithelium [75]. Transferosomal nanovesicles significantly
facilitated the increase in the permeability of drug molecules. The permeation profile of
QER from optimized QER-TFS gel and QER-SOLN gel is shown in Figure 8. Within 12 h,
77.2 ± 2.6% of QER was permeated from QER-TFS gel, and 46.4 ± 5.2% of the drug was
permeated from QER-SOLN gel. The results of this experiment show that QER-TFS gel had
a greater permeation rate than QER-SOLN gel (p < 0.05). Table 4 summarizes the perme-
ability coefficient and the steady-state flux of QER-TFS gel. The Jss of QER-TFS gel and
QER-SOLN gel were 44.35 ± 5.3 and 21.69 ± 2.6 µg cm−2 h−1, respectively. Collectively,
QER-TFS gel formulation resulted in high QER penetration over the nasal mucosa.
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Table 4. The permeation parameters of QER-TFS versus QER-SOLN.

Formulation Flux Jss (µg cm−2 h−1) Cumulative QER Permeated at 12 h
(µg/cm2) Permeability Coefficient (cm/h)

QER-TFS 44.35 ± 5.3 926.4 ± 78.9 0.044347 ± 0.00072

QER-SOLN 21.69 ± 2.6 556.8 ± 156.4 0.021696 ± 0.00047

3.3.6. Stability Study

The optimized formulation exhibited excellent physical stability throughout a three-
month storage period at 4 ◦C, exhibiting no aggregation, separation, or drug precipitation.
Figure 9 depicts the VS, ZP, and EE changes of the stored optimized QER-TFS gel formula-
tion. During the storage period, the preserved samples had no significant differences in VS,
ZP, and EE (p > 0.05). The high negative ZP originating from the anionic nature of SDC [76]
and the nanoscale of the optimal formulation may be the causes of their high stability.
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3.3.7. Evaluation of pH

It is necessary to evaluate the pH of QER-TFS gel to guarantee that the system is safe
for intranasal administration. In its typical physiological condition, the pH of nasal mucosa
varies from 4.5 to 6.5, while the pH of QER-TFS gel was measured to be 6.1. These findings
indicate that the QER-TFS gel is physiologically compatible and is not anticipated to cause
tissue damage.

3.4. Determination of QER Localization in the Brain

CT scanning was used to assess the cellular absorption of the proposed QER-TFS gel
in the brain after intranasal application. CT images of rat brains in control, QER-GNPs gel
(IN), QER-GNPs (oral), and QER-TFS-GNPs gel (IN) groups are shown in Figure 10. By
comparing produced CT scans, we can clearly identify light brain areas that show GNP
buildup (yellow arrows). These bright areas may be recognized from nearby tissues because
of the considerable X-ray attenuation caused by GNPs. CT scans of QER-GNPs following
oral and intranasal administrations (Figure 10B,C) were highly comparable despite the
much larger QER dose used orally (300 vs. 10 mg/kg). This finding confirms the adequacy
of the intranasal route as an alternative to the most common route of administration,
the oral route. The CT scans of the brains of QER-TFS-GNPs gel-treated rats had the
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maximum intensity (Figure 10D), indicating a higher accumulation of GNPs, corresponding
to the previously described findings of the ex vivo permeation investigation via the nasal
epithelium, in addition to potential direct passage of the nanotransferosomes to the brain
via the trigeminal pathway (i.e., the NTB direct pathway) [30]. The CT experiment hereby
demonstrates that the designed intranasal nanoformulations effectively targeted the brain
for QER delivery.
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3.5. In Vitro Assessment of Cytotoxicity

The cytotoxicity test was conducted to ensure the safety of the formulated QER-TFS
gel on the epithelial cells. Following intranasal delivery, nanomaterials come in contact with
nasal epithelial cells, which constitute the initial barrier to the brain [77]. The PCS-200-014
cells were used as a model for nasal mucosa cells in order to replicate these circumstances
and assess the safety and uptake of nanomaterials. As shown in Figure 11, exposure to
QER-SOLN gel for 24 h induced significant cell death in PCS-200-014 cells (p < 0.05) in
contrast with blank TFS gel (no drug) and QER-TFS gel with increasing concentrations
of QER. The diminished cytotoxic effect of the transferosomal gel components on the
PCS-200-014 cell line demonstrated the suitability of these nanovesicles for biological
application and reduced the risk of adverse effects due to the biocompatibility of the
nanovesicle constituents.
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PCS-200-014 cells.

4. Conclusions

This study presents a new delivery system for QER based on transferosomal nanovesi-
cles in an intranasal gel formulation. The prepared formulation had desirable surface
charge, pH, and particle size. In comparison to quercetin solution gel, the developed
system displayed extended drug release and enhanced drug penetration through the nasal
mucosa of sheep. CT scanning of rat brains demonstrated the buildup of GNPs in the
brains of all treatment groups, with a greater level of GNPs noted in the rats given the
transferosomal gel. Additionally, in vitro studies on PCS-200-014 cells revealed minimal
cytotoxicity of QER-TFS in situ gel. Based on these results, the developed transferosomal
nanovesicles may be a suitable nanocarrier for QER brain targeting conducted intranasally.

Author Contributions: Conceptualization, M.H.E. and H.M.E.; Methodology, M.H.E., R.M.Z., O.A.A.,
M.E., A.Z., K.S., M.A.A., F.I.A.E.-E., M.E.R., I.A.N. and H.M.E.; Software, R.M.Z. and F.I.A.E.-E.;
Validation, O.A.A., M.E., A.Z., K.S., M.A.A., M.E.R. and I.A.N.; Formal analysis, F.I.A.E.-E. and
H.M.E.; Investigation, F.I.A.E.-E. and H.M.E.; Resources, M.H.E., R.M.Z., O.A.A., M.E., A.Z., K.S.,
M.A.A., M.E.R. and I.A.N.; Writing—original draft, H.M.E.; Writing—review & editing, M.H.E.,
R.M.Z., O.A.A., M.E., A.Z., K.S., M.A.A., F.I.A.E.-E., M.E.R., I.A.N. and H.M.E.; Supervision, M.H.E.;
Project administration, M.H.E.; Funding acquisition, M.H.E. All authors have read and agreed to the
published version of the manuscript.

Funding: This work was funded by the Deanship of Scientific Research at Jouf University under
Grant Number (DSR2022-RG-0143).

Institutional Review Board Statement: The animal study protocol was approved by the Beni-Suef
University Institutional Animal Ethics Committee (Approval No.: 022-294) following the Declaration
of Helsinki.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data sharing is contained in this article.

Conflicts of Interest: The authors declare no conflict of interest.



Pharmaceutics 2023, 15, 1805 17 of 20

References
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