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Abstract: The objective of this study was to investigate the rhombohedral-structured, flower-like iron
oxide (Fe2O3) nanoparticles that were produced using a cost-effective and environmentally friendly
coprecipitation process. The structural and morphological characteristics of the synthesized Fe2O3

nanoparticles were analyzed using XRD, UV-Vis, FTIR, SEM, EDX, TEM, and HR-TEM techniques.
Furthermore, the cytotoxic effects of Fe2O3 nanoparticles on MCF-7 and HEK-293 cells were evaluated
using in vitro cell viability assays, while the antibacterial activity of the nanoparticles against Gram-
positive and Gram-negative bacteria (Staphylococcus aureus, Escherichia coli, and Klebsiella pneumoniae)
was also tested. The results of our study demonstrated the potential cytotoxic activity of Fe2O3

nanoparticles toward MCF-7 and HEK-293 cell lines. The antioxidant potential of Fe2O3 nanoparticles
was evidenced by the 1,1-diphenyl-2-picrylhydrazine (DPPH) and nitric oxide (NO) free radical
scavenging assays. In addition, we suggested that Fe2O3 nanoparticles could be used in various
antibacterial applications to prevent the spread of different bacterial strains. Based on these findings,
we concluded that Fe2O3 nanoparticles have great potential for use in pharmaceutical and biological
applications. The effective biocatalytic activity of Fe2O3 nanoparticles recommends its use as one of
the best drug treatments for future views against cancer cells, and it is, therefore, recommended for
both in vitro and in vivo in the biomedical field.

Keywords: Fe2O3 nanoparticles; co-precipitation; cancer cell line; cytotoxicity; antibacterial; antioxidant

1. Introduction

Nanotechnology became a game-changing field in technology development in recent
years. Among the various nanomaterials, nanoparticles received significant attention due
to their unique physical and chemical properties, such as low melting point, specific mag-
netization, higher surface area, and specific optical properties [1]. These size-dependent
properties and minimal harmful effects make them superior and suitable candidates in
different areas of human activities [2]. Nanobiotechnology is currently gaining cumula-
tive importance in the fields of nanomedicine, drug delivery, and immunology. Many
new promising techniques and methods for synthesizing nanoparticles are being devel-
oped through chemical modification, biological reduction, and scaffolding to expand the
application of nanobiotechnology in the biomedical field [3,4]. In recent years, various nano-
materials were synthesized by chemical and green synthesis methods. Some researchers
used green chemical approaches for the synthesis of metallic nanoparticles. Ullah et al.
reported the green synthesis of silver oxide (Ag2O) nanoparticles using leaves extract of
Parieteria alsinaefolia as a reducing agent. Furthermore, various biological application was
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carried out to evaluate the efficiency of these nanoparticles [5]. In another study, researchers
successfully synthesized a composite of silver-graphene nanoparticles ((Ag)1 − x(GNPs)x)
via ex situ approach. The composite nanoparticles showed strong anticancer and antifungal
properties [6]. Haris and their co-workers synthesized iron oxide nanoparticles from Oscil-
latoria limnetica extract and investigated the biomedical potential of these nanoparticles [7].
Among these nanomaterials, iron oxide nanoparticles (IONPs) catch an attraction by the
scientific communities for their unique magnetic properties [8]. Due to their low toxicity
and good biocompatibility, IONPs are considered to be the most favorable candidate for
bioengineering and biomedical application such as bioimaging, targeted drug delivery,
magnetic fluid hyperthermia (MFH), theranostics, detection of biological entities, biosen-
sors, and photoablation therapy [9,10]. For various fundamental and biomedical uses,
recent years saw a systematic study of various polymorphs of magnetic NPs such as Fe3O4,
α-Fe2O3, γ-Fe2O3, and FeO [11–13]. Among them, hematite (α-Fe2O3) is more stable with
optical, magnetic, and anticorrosive properties as well as outstanding chemical stability
and biocompatibility which is beneficial in different technological applications [14]. These
properties of hematite are used in innovative nanomaterial applications such as water
splitting, water purification, gas sensing, solar energy conversion, catalyst, and anticorro-
sive agents [15]. Due to their attractive features, such as good stability, biocompatibility,
low cost, and non-toxicity, these nano-sized Fe2O3 nanomaterials are more suitable for
biomedical applications [16].

Many studies on the synthesis of Fe2O3 nanoparticles were conducted in recent
years, detailing efficient synthesis methods for size control, stability, biocompatibility,
and monodispersed iron oxide nanoparticles [17–19]. Among them, the coprecipitation
process, one of the most popular techniques, was frequently used to synthesize Fe2O3
nanoparticles. Coprecipitation is a straightforward, affordable procedure that is carried
out in comfortable settings without the use of any hazardous solvents [20]. The synthesis
process is dependent on several variables, including pH, temperature, the type of salts
used, and ionic strength, to produce nanoparticles that are the ideal size and form [21–23].

After knowing about the significance of Fe2O3 nanoparticles in biomedical areas,
the current research was carried out to synthesize the nanoparticles using a practical
co-precipitation approach. Then, using a variety of characterization, physicochemical
screening of the produced nanoparticles was performed. Regarding this, human breast
cancer (MCF-7) and human embryonic kidney (HEK-293) cell lines were used in the
cytotoxic assessment of Fe2O3 nanoparticles. Additionally, the effectiveness of Fe2O3
nanoparticles against three different bacteria species—Staphylococcus aureus (S. aureus),
Klebsiella pneumoniae (K. pneumoniae), and Escherichia coli (E. coli)—was evaluated. The
antibacterial ability of human pathogenic bacteria, and cytotoxicity effects against cancer
cell lines, suggest the potential of Fe2O3 nanoparticles for biomedical applications.

2. Materials and Methods
2.1. Chemicals and Reagents

We bought ammonia solution (25%) and ferrous sulphate heptahydrate (FeSO4.7H2O)
from Sisco Research Laboratories (SRL) Pvt. Ltd. in India. The following items were ac-
quired from Sigma-Aldrich, India: i.e., dimethyl sulfoxide (DMSO), antibiotics, Dulbecco’s
Modified Eagle’s Medium (DMEM), foetal bovine serum (FBS), trypsin/EDTA, Dulbecco’s
phosphate-buffered saline (DPBS), and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetra Sodium
nitroprusside. 1, 1-diphenyl, 2-picryl hydrazyl (DPPH) was purchased from Invitrogen
in India. Double distilled water (DI) was used in the studies as a standard solvent and
for washing.

2.2. Synthesis of Fe2O3 Nanoparticles

Fe2O3 nanoparticles were synthesized from a simple low-cost coprecipitation route.
Then, 0.1 M FeSO4.7H2O was dissolved in 50 mL DI water and stirred on a magnetic
stirrer vigorously for 45 min. After that, the ammonia solution was added drop by drop
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under continuous stirring until the pH reached ~12 and the green color precipitate was
formed. The solution was placed on magnetic stirring for 1–2 h. Afterward, the solution
was removed from the magnetic stirrer until it settled down. The precipitate was washed
thoroughly with DI water 2–3 times and dried at 65 ◦C for 5 h and calcinated at 800 ◦C for
3 h [20,24]. The synthesis process of Fe2O3 nanoparticles is represented in Figure 1.
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Figure 1. Fe2O3 nanoparticles are an emerging player in biomedical applications. Among various
synthetic methods, the co-precipitation method appears to be the most successful method for batch
production of Fe2O3 nanoparticles. The present diagrammatic illustration represents the facile and
low-cost synthesis of Fe2O3 nanoparticles by modifying the coprecipitation route for better control of
particle size.

2.3. Instrumentation

UV-visible spectrophotometer (SPECORD 210 PLUS double beam spectrophotometer,
Analytic Jena, Germany) was used at room temperature, and the absorption band of the
synthesized sample was measured with a resolution of 1 nm. The manufactured powder
sample’s phase composition and degree of crystallinity were examined using an XRD
diffractometer (Bruker AXSD8) and Cu-K radiation (=1.5406). The sample’s FTIR spectra
were captured using a Perkin-Elmer 1600 Fourier transform instrument in the KBr pellet
mode between 500 and 4000 cm−1. The morphology and chemistry of nanoparticles were
studied using a field emission scanning electron microscopy (FESEM) FEI Quanta 200 F
SEM, FEI Company Netherlands instrument with an EDX detector. Transmission electron
microscopy with high resolution (HRTEM) (FEI Tecnai TF20) was used for TEM and selected
area electron diffraction (SAED) analysis.

2.4. Evaluation of the Cytotoxic Activity of Fe2O3 Nanoparticles
2.4.1. Cell Culture

Both the human embryonic kidney (HEK-293) and human breast cancer (MCF-7) cell
lines were obtained from the NCCS in Pune, India, and were subcultured in a lab. The
cell lines were grown in DMEM, a high glucose medium, which also contained 10% FBS
and 2% penicillin/streptomycin. The culture was kept in an incubator with 5% CO2 at a
temperature of 37 ◦C.
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2.4.2. MTT Assay

The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was
performed with the Mosdam approach [25]. The culture media were supplemented with
the diluted stock solution of Fe2O3 nanoparticles. Two distinct 96-well culture plates
were seeded with 1 × 105 MCF-7 and HEK-293 cell lines per well and incubated at 37 ◦C
overnight. The cells were treated with various doses of Fe2O3 nanoparticles (25, 50, 75,
100, and 125 µg/mL) the next day and were incubated for 24 h at 37 ◦C with 5% CO2. The
cells that were not exposed served as a control. MTT solution (10 µL) was added to each
well after 24 h, and the culture plates were then incubated at 37 ◦C for 3–4 h. Formazan
crystals were dissolved in 100 mL of DMSO following incubation and a reading at 570 nm
of the absorbance was taken. The experiment was performed three times, the cell viability
percentage was determined using the following formula, and the mean average value was
obtained from triplicates.

cell viability (%) =
(Absorbance o f treated cells)
(Absorbance o f control cells)

× 100

2.5. Antibacterial Activity of Fe2O3 Nanoparticles

The antibacterial study of the Fe2O3 nanoparticles was executed against three differ-
ent pathogenic bacteria E. coli (ATCC-25922), K. pneumoniae (ATCC-31488), and S. aureus
(ATCC-25323) by the disc diffusion method using Kasithevar et al. procedure with some
modification [26]. These bacteria were cultured for 24 h in nutrient broth. Afterward,
100 µL (106 CFU/mL) of the bacterial strains was placed on the agar plates to make the
culture turf. The Fe2O3 nanoparticles were mixed in DMSO to make a stock solution of
1 mg/mL. Later on, 10, 20, 30, and 40 µg/mL of sample disc of nanoparticle were placed
on a nutrient agar media plate along with the control (DMSO). The plates were placed in
the incubator for 24 h and the respective inhibition zone (mm) for bacterial species were
measured. The experiment was performed in triplicates.

2.6. Antioxidant Activity of Fe2O3 Nanoparticles

The free radical scavenging activity of the Fe2O3 nanoparticles was carried by using
1,1-diphenyl-2-picryl hydrazyl (DPPH) assay. Kurechi and their co-worker’s method
was followed with minor modifications [27]. Briefly, a stock solution of 2 mg/mL of the
Fe2O3 nanoparticles and standard solutions of L ascorbate was prepared and diluted to
obtain desired concentrations. After that, an equal amount of the diluted solutions and
DPPH (0.05 mg/mL) solution was mixed and incubated for 30 min. The experiments
were conducted at room temperature. The absorbance was recorded at 517 nm using a
spectrophotometer. The scavenging activity was calculated as

Scavenging (%) =
Ac − As

Ac
× 100;

where Ac-absorbance of the control sample (DPPH) and AS-absorbance of a sample with
DPPH. The experiment was executed in triplicates. Additionally, 0.1 mM DPPH and
L-ascorbate were used as a control and standard solution.

The Griess reaction was used to measure the nitric oxide scavenging activity. After
oxygen interacts with sodium nitroprusside in a solution at a physiological pH, nitric
oxide is produced. Then, 5 mM sodium nitroprusside was mixed with 3 mL of various
concentrations of Fe2O3 nanoparticles and standard solution L ascorbate in phosphate
buffer (pH 7.4) to conduct the nitric oxide assay. Additionally, the solution mixture was left
to stand for 30 to 40 min. Then, 1.5 mL of the incubated solution and Griess reagent were
combined after the incubation period and left to stand for 30–35 min. A spectrophotometer
was used to measure the mixture’s absorbance at 540 nm. Using the absorbance values of
the mixture in comparison to the control solution, an estimate of the percentage of Fe2O3
nanoparticles’ nitric oxide scavenging activity was made.
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2.7. Statistical Analysis

The one-way ANOVA statistical analysis was carried out with the help of the software
Graph Pad Prism v5.0 (San Diego, CA, USA). The differences were deemed significant at
p < 0.05. Mean ± standard deviation (mean ± S.D.) is used to represent all of the data.

3. Results and Discussion

There are two well-known crystalline of Fe2O3: maghemite (the γ-phase) with a
cubic structure and hematite (the α-phase) with a rhombohedral structure. According
to studies, the phase transformation occurs during calcination at a higher temperature
(800 ◦C) that results in the transformation of α-Fe2O3 powder which underwent crystalline
structure from an amorphous state [28]. Furthermore, we examined the synthesized
Fe2O3 nanoparticles by different characterization techniques to obtain information on their
physical and chemical properties.

3.1. Physicochemical Characterization of Fe2O3 Nanoparticles

The synthesized sample’s UV-vis absorption spectrum was measured between 200 and
800 nm, and the related recorded data are presented in Figure 2. The peak at 558 nm in the
visible region was attributed to the 6A1+6A1-4T1 (4G)+4T1 (4G) double excitation process
of Fe3+, while the absorption band between 272 and 321 nm was due to the ligand-metal
charge transfer transition (direct transition) and assigned to the 6A1-4T1 (4P) and 6A1-
4T2 [29]. The twofold excitation process that gives hematite its red color causes the greatest
absorption band to be visible at 558 nm [30].
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Figure 2. UV-vis absorption spectrum of Fe2O3 nanoparticles showing a conformational peak at
558 nm. The inset shows the plot of (αhv)2 vs. photon energy (hv) 1.69 eV and 2.01 eV due to the
direct and indirect transition.

The bandgap energy (Eg) of Fe2O3 nanoparticles was calculated using Tauc’s plot
method by the formula

α = c(hv − Ebulk)
1/2hv,

where α = absorption coefficient, c = constant, hν = photon energy, and Ebulk = bulk bandgap.
Scientists reported that Fe2O3 has an indirect bandgap as well as a direct bandgap [31].
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The reported values of the indirect and direct bandgap lie between 1.38–2.09 eV [32] and
1.95–2.35 eV [33,34]. Here, the Fe2O3 nanoparticles’ bandgap energies were measured to be
1.69 and 2.01 eV, respectively. The energy of a photon is referred to as direct bandgap energy
if the momentum of liberated holes in the valence band and electrons in the conduction band
is the same. A photon cannot be released during the transition if an electron passes through
an intermediate state, which is referred to as indirect bandgap energy. The quantum size
effects of the nano-crystallites are responsible for the direct bandgap’s presence [35].

The XRD spectrum of the prepared sample shown in Figure 3a denotes the crystallinity
and the phase purity. The typical diffraction peaks were observed and matched by the
JCPDS data (file no. 00-001-1053), confirming the synthesis of Fe2O3 nanoparticles. The
sharp peaks at 24.14◦, 33.16◦, 35.66◦, 40.9◦, 49.48◦, 54.08◦, 57.56◦, 62.46◦, 64.04◦, 72.04◦, and
75.46◦ were associated with the plane (012), (104), (110), (113), (024), (116), (122), (214), (300),
(1010), and (217), respectively, with a rhombohedral structure. The average crystalline
size (D) of Fe2O3 was calculated by Debye–Scherer’s equation [36], D = kλ

β cos θ where
k = shape factor (0.89), λ = wavelength of Cu-Kα radiation (0.15406 nm), β = full width
at half maximum (FWHM), θ = Bragg’s diffraction angle. From Scherer’s equation, the
average size of the Fe2O3 nanoparticles is ~24.66 nm.
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Figure 3. (a) The intense and sharp peaks in the XRD pattern of Fe2O3 nanoparticles show the
phase purity of synthesized Fe2O3 nanoparticles. (b) FTIR spectra of Fe2O3 nanoparticles within the
wavelength of 4000–400 cm−1.

Figure 3b shows how FTIR was used to investigate the infrared characteristics of
synthetic material in the wavelength range (4000–400 cm−1). Peaks associated with metal
oxide bonds can be found in the fingerprint range between 1000 and 400 cm−1, whereas
water molecule bending and stretching vibrations were responsible for peaks in the region
between 400 and 1000 cm−1. The stretching vibration of the water molecules was what
caused the absorption peak at 3435 cm−1 to be assigned [37]. The -OH stretching vibration
was responsible for the peaks at 2922 and 2853 cm−1. Due to the bending vibration of
the crystalline Fe-O bond and the absorbed moisture content, respectively, the peaks at
1629 and 1056 cm−1 were assigned [38]. The 537 and 459 cm−1 peaks were due to the
vibration of Fe-O-Fe confirming the presence of Fe2O3 [39].

3.2. Morphology and Elemental Mapping of Fe2O3 Nanoparticles

Figure 4 depicts the shape of Fe2O3 nanoparticles that were studied using FESEM.
The flower-like structure of Fe2O3 nanoparticles was visible in FESEM pictures (Figure 4a).
According to FESEM pictures (Figure 4b), the nanostructures were about 23.4 nm in size,
which was in agreement with the X-ray diffraction finding. Additionally, the components
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present in the Fe2O3 nanoparticles were confirmed by an EDX analysis, as shown in
Figure 4c. The presence of the distinct peaks indicates the presence of Fe and O in the
nanoparticles. Additionally, the purity of Fe2O3 nanoparticles was demonstrated by the
peak of Fe and O devoid of any unknown signals. The distribution of components within
Fe2O3 nanoparticles is depicted in Figure 4d.
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(b) The histogram plot for the particle size distribution shows the size of Fe2O3 nanoparticles ~23.4 nm.
(c) EDX spectrum shows the peaks of Fe and O atoms in nanoparticles. (d) Elemental mapping at
20 µm illustrated the distribution of present atoms in Fe2O3 nanoparticles.

TEM images of Fe2O3 nanoparticles are shown in Figure 5. Due to the agglomeration,
the size of the nanoparticles was seen as bigger. With the help of the Image J software, the
calculated size of the Fe2O3 nanoparticles came out to be 22–45.5 nm (Figure 5a). The bright
spot in the SAED pattern demonstrated the crystalline nature of Fe2O3 nanoparticles with
different orientations (110), and (1010), respectively (Figure 5b). The growth direction of
the Fe2O3 was parallel to the lattice fringes and the d-spacing of the (012) plane was about
0.354 nm, which was close to the lattice spacing of the rhombohedral Fe2O3 (Figure 5c).
Considering our XRD study and close observation of the SAED images, it can be concluded
that the diffraction rings indicate the rhombohedral Fe2O3 structure.
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Figure 5. (a) HRTEM micrograph of Fe2O3 nanoparticles at 200 nm shows the size of nanoparticles
between 22–45.5 nm (b) SAED pattern at 5 nm SAED pattern of Fe2O3 nanoparticles indicates
crystallinity with different orientation (c) HRTEM image of Fe2O3 nanoparticles at 5 nm indicates
high crystallinity and shows lattice fringes.

3.3. In Vitro Cytotoxicity Assay of Fe2O3 Nanoparticles

The MTT test was used to investigate the metabolic effects of Fe2O3 nanoparticles on
the MCF-7 and HEK-293 cell lines. The relevant answers demonstrated a percentage of cell
viability after exposure to Fe2O3 nanoparticles at concentrations between 25 and 125 µg/mL
for 24 h (Figure 6). In the MCF-7 cell line, cell viability was reduced to 50% when Fe2O3
nanoparticles were present at a concentration of 125 µg/mL (Figure 6a). The cytotoxicity
of Fe2O3 nanoparticles against cancer cell lines supported the notion that nanoparticle
cytotoxicity is dose-dependent. The normal embryonic kidney cell line (HEK-293) was
also subjected to the MTT assay for 24 h, with results revealing less toxicity when com-
pared to the breast cancer cell line (Figure 6b). The potential of Fe2O3 nanoparticles was
demonstrated by the falling vitality of the cancer cell line in comparison to the normal cell
line. Nanoparticles were reported to induce cytotoxic effects on human cells by employing
multiple cell-mechanical approaches: (i) through the uptake of free nanoparticles causing
defective DNA replication, (ii) through the generation of free radicals and reactive oxygen
species (ROS), and (iii) by stressing the cell membrane, the structure of the entire cell
membrane is deformed, followed by cell damage or cell death [40,41]. After ROS genera-
tion, altered mitochondrial membranes trigger caspase 3, a protein involved in organelle
breakdown and DNA fragmentation, which, in turn, triggers apoptosis and cell cycle arrest.
Apoptosis initiation leads to the activation of cell-signaling pathways, including activation
of p53 protein, and increased p53 protein leads to cell death and nuclear destruction [42].
Moreover, the apoptosis pathways and method for cell death still need to be explained,
through in vitro and in vivo studies.
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showing the significant activity (p < 0.05 was considered to be statistically significant. The symbols **,
*** represents, p < 0.01, p < 0.001).

Previously, researchers illustrated the cytotoxicity of Fe2O3 nanoparticles and nanocom-
posite of α-Fe2O3/Co3O4 on MCF-7 cell line for 24 h, showing that the nanocomposites are
more toxic than α-Fe2O3 [43]. In another study, the cytotoxic efficiency on the A549 cell
line was performed for 24 h and showed 50% cell viability at 970 µg/mL concentration [44].
However, our results showed that at 125 µg/mL concentration, 50% MCF-7 cell line were
viable, indicating good cytotoxic activity of Fe2O3 nanoparticles. Based on the result, we
can say that Fe2O3 nanoparticles can be used as a cytotoxic agent in cancer cell line

3.4. In Vitro Antibacterial Assessment of Fe2O3 Nanoparticles

The antibacterial action of synthesized Fe2O3 nanoparticles was conducted upon
pathogenic bacteria, namely S. aureus, E. coli, and K. pneumoniae, employing the disc
diffusion method. The inhibition zone showed the antibacterial activity of the Fe2O3
nanoparticles. The Fe2O3 nanoparticles revealed good inhibitory potential on bacterial
pathogens (Figure 7). The probable mechanisms of bacterial cell death induced by the Fen-
ton reaction were as reported in the literature [45]. After exposure to Fe2O3 nanoparticles
to the pathogens, the iron ions released from nanoparticles can cross the membrane either
through active uptake into cells or through leakage from sites of reduced membrane in-
tegrity. Highly reactive hydroxyl radicals formed when Fe2+ reacts with hydrogen peroxide
primarily cause oxidative damage. Fe3+ can be reduced by NADH to regenerate Fe2+. OH
radicals can also damage DNA, proteins, and lipids. Fe2+ can also directly damage DNA,
resulting in cell death of pathogens [46].

Among three pathogenic bacteria, E. coli showed more activity than other bacteria. It
was also shown that after increasing the dose of Fe2O3 nanoparticles, the inhibition zone
increased, as shown in Figure 8 and Table 1. The observations reported that a smaller
amount of Fe2O3 nanoparticles are sufficient for the activity against the tested bacterial
strains. Our results are comparable with the results reported by Saquib and their co-
workers [19].

Researchers discovered that ROS causes oxidative stress, which is why antibacterial
medications exhibit bactericidal characteristics [47]. Additionally, several studies showed
that ROS is crucial for cell signalling and death [48]. Due to the production of ROS, one of
the most well-known silver nanoparticles exhibits antibacterial potential [49]. In our mate-
rial, it was expected that Fe2O3 nanoparticles, which prevent microbial development, can
produce ROS (Figure 9). The process by which hydrogen peroxide (H2O2) was produced
when iron (Fe2+) and oxygen interacted was described by Keenan et al. [50]. Additionally,
this H2O2 interacted with Fe2+ ions to create hydroxyl (OH−*) radicals, which damage
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macromolecules and membranes. Numerous studies showed that nanoparticles of various
sizes can enter cells, interact with intracellular oxygen, and cause oxidative stress, which
weakens the membrane [46,51,52]. Additionally, according to several studies, the concen-
tration of nanoparticles was a crucial element in boosting antibacterial activity [53,54].
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Figure 7. Antibacterial activity of Fe2O3 nanoparticles against Gram-positive and Gram-negative
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(B-control, 1–10 µg/mL, 2–20 µg/mL, 3–30 µg/mL and 4–40 µg/mL).
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Figure 8. 3D representation of the inhibition zone formed around respective discs of bacteria S. aureus,
K. pneumoniae, and E. coli representing the activity of Fe2O3 nanoparticles.

Table 1. Antibacterial activity of synthesized Fe2O3 nanoparticles against the pathogen (* including
disc size).

Concentration (µg/mL)
* Zone of Inhibition (mm) Mean ± SD

S. aureus K. pneumoniae E. coli

Control 5 5 5
10 8.3 ± 0.4 8.4 ± 0.4 10.4 ± 0.5
20 10.2 ± 0.2 10.1 ± 0.1 14.1 ± 0.1
30 14.4 ± 0.3 13.4 ± 0.4 16.3 ± 0.3
40 16.2 ± 0.2 17.2 ± 0.2 19.3 ± 0.3
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Figure 9. Schematic representation for a possible mechanism of Fe2O3 nanoparticles towards antibac-
terial activity. The effectiveness of Fe2O3 nanoparticles is based on the production of ROS, which is
responsible for the cell death of microorganisms. ROS production cannot develop immunity because
Since ROS attack many different sites and biomolecules in the microorganism, they cannot develop
resistance resulting in oxidation and cell death.

3.5. Antioxidant Efficiency of Fe2O3 Nanoparticles: A Possible Mechanism of Action for
Antibacterial and Cytotoxic Activity

DPPH and nitric oxide (NO) scavenging assays were carried out to determine the
antioxidant phenomenon of Fe2O3 nanoparticles (Figure 10). DPPH is a stable free radical
delocalizing throughout the entire molecule to prevent its dimerization [55,56]. The DPPH
was reduced to the formed stable, diamagnetic molecule when the nanoparticle was mixed
with the solution resulting in changing the color of the solution from yellow to violet color.
If the DPPH molecule is shown by X• and the donor molecule by ZH, the primary reaction
is defined as X• + ZH = XH + Z*, where XH meant reduced form and Z* meant free radical.
According to the UV-vis absorption curve in Figure 10a, the antioxidant potential of Fe2O3
nanoparticles was dose-dependent. The potential for inhibition in the production of nitrite
with oxygen and oxides carried out the NO scavenging activity (Figure 10b). The overall
findings demonstrated that at a concentration of 800 µg/mL, Fe2O3 nanoparticles exhibited
high activity. The antibacterial and cell cytotoxic potential can be attributed to scavenging
activity [57].
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4. Conclusions

Since physiological processes occur at the nanoscale, many biological and medical
issues are anticipated to be resolved through the use of nanotechnology and nanoparticles.
To understand the mode of action and impact of various coatings to counteract the negative
effect at the cellular level and optimize the potential of our nanoparticles for nanomedicine,
a tailored investigation against each aspect is required. Our research revealed that Fe2O3
nanoparticle exposure to MCF-7 cells causes considerable cytotoxicity, opening up new
possibilities for the safe delivery of Fe2O3 nanoparticles and their use in anticancer therapies.
Additionally, it demonstrated another role in bacteria’s antimicrobial ability. Moreover,
further research on the toxicity and biocompatibility aspects of animal models is also
recommended to further understand their safety and biocompatible nature. Therefore, we
may conclude that Fe2O3 nanoparticles can be employed as an acceptable substitute for an
antibacterial drug that received clinical approval.
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