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Abstract: The use of metal nanoparticles (M-NPs) in cancer therapy has gained significant consid-
eration owing to their exceptional physical and chemical features. However, due to the limitations,
such as specificity and toxicity towards healthy cells, their application in clinical translations has
been restricted. Hyaluronic acid (HA), a biocompatible and biodegradable polysaccharide, has been
extensively used as a targeting moiety, due to its ability to selectively bind to the CD44 receptors
overexpressed on cancer cells. The HA-modified M-NPs have demonstrated promising results in
improving specificity and efficacy in cancer therapy. This review discusses the significance of nan-
otechnology, the state of cancers, and the functions of HA-modified M-NPs, and other substituents in
cancer therapy applications. Additionally, the role of various types of selected noble and non-noble
M-NPs used in cancer therapy are described, along with the mechanisms involved in cancer targeting.
Additionally, the purpose of HA, its sources and production processes, as well as its chemical and
biological properties are described. In-depth explanations are provided about the contemporary
applications of HA-modified noble and non-noble M-NPs and other substituents in cancer therapy.
Furthermore, potential obstacles in optimizing HA-modified M-NPs, in terms of clinical translations,
are discussed, followed by a conclusion and future prospects.

Keywords: biopolymers; metal nanoparticles; targeted therapy; controlled release; biomaterials;
hyaluronic acid

1. Introduction

The rapid expansion of nanotechnology is attributed to multidisciplinary collaboration
among researchers from academic, industrial, and federal sectors [1,2]. Nanotechnology is a
rapidly developing field that has the potential to impact many facets of our lives, including
medicine. This field includes nanoparticles (NPs), which are substances with at least one
dimension smaller than 100 nm [3], categorized by exceptional physicochemical, functional
and biological features [4,5]. In the pharmaceutical field, NPs are utilized to enhance the
biodistribution of drugs, or to target them to particular cells or locations. The applications
of these systems are extensively used in several biomedical applications, such as tissue
engineering, hyperthermia, biosensors, and laboratory diagnostics etc. [1].

As the top cause of illness and mortality worldwide, cancer diseases are recognized
as fatal malignancies. In 2020 alone, cancer resulted in approximately 9.9 million deaths
and 19.2 million new cases worldwide. It is estimated that by 2040, the global cancer
burden will rise to between 29–37 million new cases [6]. The development of cancer is
linked to abnormalities in the genes that regulate the balance between cell proliferation and
cell death necessary for cellular homeostasis. When these regulatory genes are defective,
an imbalance in the cell cycle and apoptosis occurs, leading to uncontrolled cell growth,
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dysfunction of cellular tissue, invasion of neighboring cells by tumors, and, eventually,
the progression of the disease to metastasis. Cancer cells are known for their aggressive
cell proliferation and ability to evade apoptosis, setting them apart from non-cancerous
cells [7].

Due to the drastic and unfavorable properties and substandard treatment results asso-
ciated with conventional therapeutic methods, such as chemotherapy, radiotherapy, and
surgery, there has been a significant shift in research towards the integration of nanotechno-
logical approaches in cancer management [8–11]. In the past ten years, there has been a
substantial surge of interest in the utilization of nanotechnology as an interdisciplinary strat-
egy for cancer theranostics, resulting in an exponential growth in the number of researchers
dedicated to the development of tumor-targeting NPs [12,13]. Among various NPs, the
M-NPs have received significant attention due to their potential to serve as versatile agents.
They are particularly prominent in current cancer research platforms which have gained
significant attention. Numerous studies have indicated that M-NPs can be utilized to treat
cancers, with preliminary results and clinical trials which are currently progressing. The
use of non-noble metal-based cancer therapy has the potential to progress towards more
cost-effective treatments when compared to expensive chemotherapeutic approaches [14].
Such properties of M-NPs make them particularly attractive in the field of cancer therapy.
These properties include a comparatively narrow size and shape distribution, a long activity
period, surface functionalization, and the ability to utilize optical or heat-based therapeutic
approaches [15,16]. M-NPs have demonstrated enhanced targeting, gene silencing, and
drug delivery capabilities. In particular, functionalizing the M-NPs with targeting ligands
can promote precise deposition into tumor cells, specifically benefitting various cancer
treatments [17]. On the other hand, there has been a rapidly growing interest in natural
polymers (ex: hyaluronic acid (HA)) due to their inherent biocompatibility, biodegradabil-
ity, targeting capability and non-immunogenicity. These characteristics are crucial for the
development of effective cancer therapeutic systems. Thus, by surface modifications of the
HA with M-NPs multifunctional systems can be developed in order to achieve superior
therapeutic efficacies in cancer therapy [18–20].

To our knowledge, there are some reviews published individually on HA, M-NPs, HA
and other NPs for cancer therapy and biomedical applications [21–26]. However, to date,
there are no reviews available on HA-modified selected noble and non-noble M-NPs and
other substituents for cancer therapy. In this review, with the importance of nanotechnology,
an overview of the current status of cancers and the role of HA-modified M-NPs and other
substituents are discussed. The core part of this review article is to educate researchers,
and, specifically, those conducting research on nanotechnology-assisted cancer therapy, as
to the significance of HA-modified M-NPs and their other substituents in cancer therapy.
The mechanisms involved in cancer targeting, different types of selected noble and non-
noble M-NPs used in cancer therapy are also addressed. In addition, the role of HA, its
sources and fabrication methods, and its chemical and biological properties are described.
Furthermore, aspects of past and recent applications of HA-modified noble and non-noble
M-NPs and other substituents in cancer therapy are thoroughly elucidated. Lastly, potential
challenges involved in HA-modified M-NPs for further optimization, with regard to clinical
translations, are discussed, followed by a conclusion and future prospects.

2. Noble M-NPs Used for Cancer Therapy

The utilization of different types of M-NPs in cancer treatment has been widely
explored. These M-NPs can be generally classified into two categories based on their
chemical properties: noble and non-noble M-NPs. In the below section, a brief outline of
noble M-NPs is provided.

2.1. Gold (Au-NPs)

Au is recognized as a noble element because of its non-reactive characteristics, which
enable it to withstand chemical oxidation, degradation, and corrosion, preserving its
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nature for prolonged periods, even for thousands of years. Au-NPs can be produced
through different methods, including chemical, physical, biological, and green synthesis or
even utilizing both bottom-up and top-down approaches. The exclusive physicochemical
features of Au-NPs make them appropriate in cancer applications [27].

2.2. Silver (Ag-NPs)

The main modes of action by which Ag-NPs exert their effects include inducing ox-
idative stress, causing DNA rupture, and generating reactive oxygen species (ROS). ROS
play a critical role in maintaining cellular homeostasis by regulating various signaling path-
ways. These highly reactive molecules are produced as byproducts of cellular metabolism.
Nonetheless, when present in excess, intracellular ROS can trigger oxidative stress and
induce impairment to cellular components, such as DNA, lipids, and proteins, thereby con-
tributing to Ag-NP-induced toxicity [28]. Ag-NPs are known to induce toxicity in treated
cells by releasing silver ions into the cytosol after endocytosis and subsequent breakdown
of the nanoparticles in acidic environments. Consequently, Ag-NPs have been associated
with an elevated risk of cancer and cell death, owing to their capacities to disrupt vital
metabolic and cell cycle pathways in cells [29].

2.3. Platinum (Pt-NPs)

Pt-based drugs, such as cisplatin, carboplatin, and oxaliplatin, are commonly used in
cancer treatment for patients worldwide. Nevertheless, due to the drugs’ lack of specificity
towards cancer cells, they can cause adverse reactions and contribute to the progress of
drug resistance [30]. Coating the surface of Pt-NPs with a biocompatible substance (such as
HA) could potentially enhance the therapeutic efficacy by prolonging the circulation time
in the body [31].

2.4. Palladium (Pd-NPs)

Researchers have highlighted the exceptional catalytic and optical properties of Pd-
NPs, making them suitable for theragnostic applications. Pd-NPs have been utilized as
prodrug activators, and photothermal agents, as well as anticancer agents [14].

3. Non-Noble M-NPs Used for Cancer Therapy

Despite being prone to oxidation, non-noble metals offer several advantages, due to
their low cost, abundance, localized therapy, enhanced side effects, and excellent conductiv-
ity. The following section describes the characteristic features of selected non-noble M-NPs
used in cancer therapy.

3.1. Magnetic NPs

Manipulating magnetic NPs is made possible by the application of external magnetic
fields [32]. Owing to their exceptional features, such as ease of synthesis, low toxicity and
good biodegradability, they have gained significant attention in cancer therapy [33].

3.2. Zinc Oxide (Zn-NPs)

Zn-NPs are among the most frequently occurring metallic NPs found globally, and
their ability to generate ROS when exposed to light has recently gained significant attention.
Chemical modification with biopolymers can enhance their photocatalytic effectiveness
and ROS generation capacities [34].

3.3. Cerium Oxide (Ce-NPs)

Due to the peculiar chemistry of cerium oxide, cerium oxide NPs (Ce-NPs) have been
considered as potential anti-cancer agents [35]. It has been suggested that Ce-NPs have
enormous potential value in cancer treatment. They exhibit synergistic cytotoxicity when
combined with chemotherapeutics because their mode of action is thought to be through
the production of intracellular ROS. The use of Ce-NPs raises serious safety concerns, due
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to a propensity to aggregate and cause unfavorable side effects. Thus, to address such
demerits, Ce-NPs can be conjugated with HA to decrease agglomeration and to improve
their biological activities [36,37].

4. Mechanism of Cancer Targeting

It is worth noting that M-NPs have been found to exhibit antitumor activity. The below
paragraph outlines the typical mechanisms of action utilized in cancer treatments.

Active or Passive Targeting of Tumor

The use of M-NPs in cancer therapy can improve the concentration of therapeutic
agents through passive and active mechanisms. In particular, tumor vasculatures often
display irregular branching and leaky areas, with pore sizes ranging from 100 nm to several
hundred nanometers, attributed to the decreased presence of pericytes resulting from the
swift proliferation of endothelial cells. This phenomenon is commonly observed in cancer
treatments [38]. The increased permeability and retention (EPR) effect refers to the phe-
nomenon of the body concentrating inert M-NPs in the tumor due to its leaky vasculature,
which is a result of the passive targeting mechanism. Alternatively, active targeting modi-
fies the surface of M-NPs to functionally enhance the therapeutic delivery system, resulting
in selective tissue targeting [39]. Incorporating tumor-targeting ligands into M-NPs could
lead to the release of drugs targeted specifically to the tumor site [40]. Other approaches or
mechanisms involved in cancer therapy, such as tumor targeting through gene silencing,
drug delivery through NPs, NP-based hyperthermia and radiotherapy treatment using
NPs are thoroughly explained in a recent review article published by Xu et al. For more
detailed information readers may refer to this article [14].

5. Hyaluronic Acid (HA) in Cancer Therapy
5.1. Sources and Preparations

HA can be derived from various sources, including microorganisms, cell-free systems,
and animal tissues, as illustrated in Figure 1. Among these, animal tissues, such as skin,
eyes, and synovial fluid, are commonly used to obtain HA. This approach involves several
steps, such as enzymatic breakdown, removal of unwanted proteins, precipitation using
alcohol and quaternary ammonium salt dehydration and separation. However, this method
has low efficiency, and the scarcity and quality of raw materials pose significant challenges.
Additionally, it is expensive, and the extracted HA can trigger immune responses and
infectious diseases. Furthermore, the extraction process necessitates large amounts of toxic
chemicals, such as acids and salt chemical reagents, which can pollute the environment and
must be removed from the final product. Consequently, alternative methods of production,
particularly microbial fermentation of HA, have gained popularity [41]. The bacterial-
produced HA is similar in quality to animal-derived HA, but, unlike the latter, it does
not trigger immune responses. Moreover, it is highly compatible with cells, making
it an attractive option for biomedical applications. Several bacterial species, including
strains that are genetically-modified and generally recognized as safe (GRAS), are used to
manufacture HA. The S. zooepidemicus, which has low pathogenicity, is the primary strain
employed for HA production through microbial fermentation [42].
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Figure 1. Various approaches/sources of HA. Reproduced with modifications from [43].

The biosynthesis of HA originates with the phosphorylation of glucose by hexokinase
to generate glucose-6-phosphate. This initiates two distinct pathways for the synthesis [44].
The HA biosynthetic pathway is shown in Figure 2.
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Cell-free systems represent an alternative approach for HA production; however, they
remain suboptimal and unsuitable for large-scale industrial manufacturing. The Group A
and C streptococci are known to possess Class I HAS enzymes that are characterized by their
integral membrane structure containing 4–6 transmembrane domains and 1–2 membrane
domains. These enzymes also possess the ability to be lipid-modified, which facilitates
the extrusion of HA molecules outside the cell. Moreover, they can add UDP sugars
from the reducing end of the HA chain to the developing HA polymer, making them
a unique class of enzymes [45]. Various culture conditions, including pH, temperature,
agitation speed, aeration rate, shear stress, dissolved oxygen, and bioreactor type, can have
a significant impact on the regulation of HA production. Aerobic fermentation generally
leads to higher HA concentrations and yields compared to anaerobic fermentation, due to
several factors. One possible explanation for how oxygen affects HA synthesis is that it may
stimulate the synthesis by protecting streptococcal cells from oxygen metabolites through
the aggregation of cells mediated by their HA capsules. Another probable explanation is
that oxygen may redirect carbon flux towards acetic acid, resulting in increased production
of ATP [41,44]. Therefore, from some of these studies, it is evident that there is still a need
for further improvements in the production of HA to facilitate its economic production for
various applications requiring HA of different molecular weights. Using non-pathogenic
and safe heterologous hosts, such as E. coli or B. subtilis, for bacterial fermentation could
be a viable approach to producing HA. This method has the potential to generate HA
molecules of different molecular weights. Furthermore, metabolic engineering strategies
can be employed to improve and regulate the molecular weight of the produced HA [43].

5.2. Structure and Physical-Chemical Properties
5.2.1. Chemistry Characteristics

HA is a biopolymer comprised of D-glucuronic acid and N-acetyl-D-glucosamine
units [22,46]. HA, being hydrophilic, possesses hydroxyl groups, which enable it to form
hydrogen bonds with water molecules. Additionally, the carboxyl, hydroxyl, and ac-
etamido functional groups present on HA can be utilized for the purpose of chemical
modifications [47]. HA is a biodegradable and biocompatible biopolymer which is used
extensively in cancer therapy [48]. The chemical moieties of HA undergo deprotonation
under physiological conditions as the carboxyl groups of HA have a pKa value of 3–4 [49].
The hydrophilic nature of HA allows it to form viscous and elastic gels through hydration,
resulting in the binding of water molecules [50].

5.2.2. Biological Characteristics

In more recent years, attention has been dedicated to natural polysaccharide polymers,
owing to their various health promoting functions (such as improved pharmacological
activity, and antioxidant, anticoagulant and anticancer properties) [51–57]. HA is consid-
ered a promising agent or natural polysaccharide polymer in cancer therapy, as it contains
reactive sites, such as carboxylic, hydroxyl, and -NHCOCH3 groups, that can be cova-
lently modified. Among these, the carboxylic groups are particularly useful for chemical
modification through amination or esterification or conjugation with M-NPs and other
substituents [58,59]. The binding affinity of HA to CD44 molecules expressed on cancer
cells has made HA a promising tool in cancer therapy, and it has been widely used for
this purpose [60]. The CD44 is a cell surface glycoprotein with multifunctional roles that
include proliferation, migration, and angiogenesis. The binding ability of HA to CD44
allows it to internalize into cells, which makes it a promising candidate to suppress the
progression of cancers [61].
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6. Application of HA-Modified Noble M-NPs and Other Substituents in Various
Cancer Therapies
6.1. HA-Modified Au-M-NPs and Other Substituents

A multifunctional theranostic nanoplatform, comprised of laponite, polylactic acid,
polyethylene glycol, polyethylenimine, Au and an HA system loaded with DOX drug
(LAP-PLA-PEG-PEI--Au-HA/DOX), permits targeted chemotherapy and CT imaging of
tumors. These hybrids have high loading efficiency of DOX at 91.0 ± 1.8% and pH-sensitive
sustained release. In vitro experiments show that the designed hybrids can selectively
deliver to CD44-overexpressing cancer cells, inhibit cancer cell proliferation, and enhance
CT imaging. In vivo experiments demonstrate that hybrids can function as targeted contrast
agents for CT imaging and effectively suppress tumor growth with reduced side effects [62].
The overall scheme to obtain LAP-PLA-PEG-PEI-Au-HA/DOX multifunctional theranostic
nanoplatforms is represented in Figure 3.
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In another work, Zhou et al. designed an integrated multifunctional nanoplatform
of Au nanorods (NRs), mesoporous silica, HA and Arginylglycylaspartic acid (Au-NRs-
mSiO2-HA-RGD) for dual-targeted chemo-photothermal therapy. The researchers tested
the nanoplatform using DOX, a model drug, to evaluate its drug loading, in vitro drug
release profiles, and effects on cells. They found that the nanoplatform demonstrated a
favorable photothermal effect and could load drugs at a high capacity of around 20.16%.
The additional experimental data examined cellular uptake studies which showed that the
Au-NRs-mSiO2-HA-RGD nanoplatform could be targeted to ovarian cancer cells through
dual mechanisms involving endocytosis mediated by CD44 and integrin receptors [63].

Other parts of the work specify the treatment for cancer stem cells (CSCs) in triple-
negative breast cancer (TNBC). To precisely target CD44 receptor-overexpressing cells,
together with CSCs, a pentameric nanocomplex (PNC), comprising Au-NPs and DOX
conjugated to thiolated HA and PEG, DNA CD44 aptamer, was utilized. At a pH of 4.7, and
in the presence of 10 mM glutathione, the most significant in vitro drug release occurred
after 8 h. The PNC was nearly ten times more potent when compared with DOX alone [64].

To achieve successful combined photothermal chemotherapy, it is essential to ensure
that the photothermal agent is delivered specifically to the tumor and the chemotherapeutic
drug is released in a controlled manner. To address these objectives in a single study,
a novel nanoplatform called Au-NRs-HA-FA, which incorporates Au-NRs, HA, and FA
was developed for breast cancers. The nanoplatform can chemically load DOX through
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a pH-sensitive hydrazone linkage with around 7.1 wt.% of DOX loading. The designed
nanoplatform proved to have good biocompatibility. The nanoplatform decorated with
FA showed a notably higher capacity to deliver Au-NRs and DOX to MCF-7 cells through
folate receptor-mediated endocytosis. This approach efficiently induced cell apoptosis
under NIR irradiation. In vivo experiments showed that the combination of photothermal
therapy and chemotherapy resulted in the complete elimination of tumors without causing
severe side effects to normal tissues [65].

In another report, the highly potent cytotoxic agent SN38 was conjugated to HA, which
was then deposited on the surface of Au-NPs through electrostatic interactions. A loading
capacity for SN38 loading of 17.4% was observed and in vitro release studies showed that
drug release under acidic conditions was faster when compared with physiological pH
environments. The cytotoxicity study on MUC1 positive HT29, SW480 colon cancer cells
and MUC1 negative CHO cells indicated that the designed potent hybrids had a higher
toxicity on HT29 and SW480 cell lines than on CHO cells [66].

A new approach was developed to synthesize hollow silica nanoparticles (HSNs)
containing Au nanocomposites (Au-HSNs) without the use of surfactants, which advances
their photothermal properties. The even distribution of Au-NPs in the HSN and presence of
a dopamine-hyaluronate (DA-HA) coating on Au-HSN was verified. Under near-infrared
irradiation (NIR), the Au-HSN/DA-HA exposed exceptional endocytosis in cancer cells
without inducing cytotoxicity [67].

In another study, a novel strategy was discovered to deliver cisplatin selectively to
tumors by conjugating it to Au-NPs coated with HA, and to enhance its therapeutic efficacy
using laser treatment. In vitro studies demonstrated that the designed systems were more
cytotoxic than free cisplatin, and in vivo experiments showed significant antitumor efficacy
when combined with near-infrared laser treatment [68].

Zhang et al. reported that Poly (glycidyl methacrylate) (PGMA) microspheres, Au-
NPs, and HA produced nanocomposites for precise photothermal application. The PGMA
microspheres were obtained using emulsifier-free emulsion polymerization followed by
amination, and Au seeds were adsorbed via chelation to obtain Au-PGMA. Further, to
target cancer cells specifically and reduce side effects in normal cells, HA was conjugated
on the surface of Au-PGMA. The Au-PGMA-HA displayed superior selective targeting
toward cancer cells and excellent photothermal outcomes, resulting in three times the
therapeutic effectiveness against cancer cells when compared to normal cells [69].

Overcoming multidrug resistance (MDR) in cancer therapy is a significant chal-
lenge. To address this issue, a non-viral gene delivery system using HA-conjugated and
PEI-modified PEGylated Au nanocages (Au-NCs) loaded with microRNA-21 inhibitor
(anti-miR-21) was developed to enhance the efficacy of DOX. In vitro studies showed
the HA/anti-miR-21/PP-Au-NC system increased intracellular DOX accumulation and
sensitized DOX-resistant HCC cells (HepG2/ADR cells) by upregulating PTEN protein
expression and downregulating P-gp protein expression. Additionally, mild NIR led to
hyperthermia of the HA/PP-Au-NCs, further improving the therapeutic effects. Moreover,
the HA/anti-miR-21/PP-Au-NCs system showed good biocompatibility, highlighting its
significant role as a new strategy for cancer treatment with MDR [70].

The effective exploitation of the EPR result of tumors requires careful consideration
of NP sizes. Larger particles have good retention but poor penetration while smaller
ones have the opposite effect. Size-reducible NPs have been developed to address this
issue, although the primary size and complex tumor microenvironment continue to limit
their distribution. To overcome these challenges, size-reducible nanoplatforms using
hyaluronidase-degradable HA and cationic bovine serum albumin (CBSA) protected Au-
NCs have been obtained. The ratio of HA to Au-NC-CBSA, Au-NC-CBSA-HA can be
adjusted and varying initial sizes designed so as to evaluate the pharmacokinetic profiles
and tumor-targeting efficiencies. Furthermore, the Au-NC-CBSA-HA platform. with a
size of 200 nm, can be utilized to load paclitaxel (PTX) and indocyanine green (ICG) for
chemo-photothermal therapy, as well as nitric oxide (NO) to enhance drug delivery and
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modulate the tumor microenvironment. The final construct, Au-NC-CBSA-PTX-ICG-HA-
NO3, exhibited a size-reducible property triggered by hyaluronidase and high accumulation
with homogenous intra-tumor distribution. The construct was successful in reducing tumor
growth by 95.3% and inhibiting the growth of lung metastasis by 88.4%, demonstrating its
potential as an effective strategy for improved antitumor therapy [71].

In other research, a versatile nanoplatform was fabricated by functionalizing
gold nanorods (Au-NRs) with HA (containing hydrazide and thiol moieties). Then,
5-aminolevulinic acid (ALA), Cy7.5 and anti-HER2 antibody were chemically conjugated
onto the HA moiety for PDT, fluorescence imaging and active targeting, respectively. This
nanoplatform remarkably enhanced the cellular uptake of Au-NR-HA/ALA/Cy7.5-HER2
in vitro. The scheme and respective mechanisms are displayed in Figure 4. In the presence
of NIR irradiation, MCF-7 cells were efficiently killed by a combination of PDT and PTT.
This nanoplatform could be specifically delivered to tumor tissues with an accumulation ra-
tio of 12.8%. This specific PDT/PTT nanoplatform-based treatment completely eliminated
tumors without obvious side effects, revealing impressive potential in cancer therapy [72].
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Another study designated the development of a light-responsive drug delivery system
based on host-guest chemistry. This system consists of a gold nanorod (Au-NR) that
generates plasmonic heat upon NIR exposure, and a layer of HA immobilized to the
Au-NR via functionalization with the macrocycle. It further released a retinoic acid (RA)
derivative, a molecule important in tissue development, homeostasis, and cancer treatment.
The formulation and the bioactivity of the released RA was demonstrated in a reporter cell
line expressing luciferase controlled by the RA receptor [73].

The dual combination of chemotherapy and photothermal therapy has proved a
promising approach for treating cancer. To achieve a multifunctional conjugated system,
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oxidized HA decorated dihydroxyphenyl/hydrazide biofunctionalized hydroxyethyl chi-
tosan (DHHC)-Au-NR is used. The DOX was loaded onto the conjugate resulting in a
drug loading content of 5.1%. The DOX-loaded multifunctional conjugated system showed
good stability in neutral aqueous solutions and had pH-responsive drug release. In vitro
studies demonstrated that the conjugate was efficiently internalized by MCF-7 cells and
had synergistic therapeutic effects [74].

Another study reported on a nanosystem which is highly responsive to multiple stim-
uli and can deeply penetrate tissues, co-delivering poly(amidoamine) (PAMAM) stabilized
AuNPs and pH-responsive DOX prodrug (PD conjugate) incorporated into a HA-based
nanoshell. By leveraging the different properties of the PD, Au-NPs, and HA nanoshell, its
feasibility was demonstrated both in vitro and in vivo, achieving remarkable intratumoral
penetration and a synergistic radio-chemotherapeutic effect [75].

It is important to note that combining multiple therapeutic modalities that utilize dis-
tinct mechanisms for eliminating tumors has become an encouraging approach for treating
cancer. Focusing on such aspects, an innovative platform was developed using chemo-
photothermal therapy of breast cancer, which utilizes an aldehyde/catechol-functionalized
HA (DAHA) and hydroxyethyl chitosan (HECS) decorated Au-NR. The resulting nanoplat-
form proved to have 4.1% of DOX content and exhibited pH/NIR drug release behaviors.
The designed nanoplatform was effectively taken up by MCF-7 breast cancer cells and
displayed superior efficacy in eliminating cancer cells when compared to the individual
therapeutic modalities [76]. The scheme involved in producing AU-NR-DAHA-DOX-
HECS-HA and the therapeutic mechanisms are represented in Figure 5.
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Chen et al. developed a new drug carrier based on porous silica (pSiO2), with a
gatekeeping system composed of an HA layer and Au-NPs. Whilst pSiO2 served as the
drug carrier, the HA and Au NPs acted as the gatekeepers to control drug release. The
amoxicillin (Amox) loading content was 18.2% and the release rate was regulated by redox-
induced breaking of S-Au bonds and enzymatic degradation. The pSiO2-Au/HA composite
exhibited remarkable photothermal conversion efficiency and repeatability [77].

Another part of the research work explored the potential of HA-coated Au-NRs for
combined chemo and photothermal cancer therapy by targeting both tumor acidity and
CD44, as shown in Figure 6. To achieve this pH-induced aggregation and Au-NR coating,
low molecular weight hyaluronic acid (LMWHA) was conjugated with pH-sensitive groups
and lipoic acid (LA). The modified LMWHA’s pH sensitivity could be adjusted by changing
the pKa values of the pH-sensitive groups. The biocompatibility of the coated Au-NRs was
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significantly enhanced. The LMWHA-coated Au-NRs could progressively aggregate under
minor acidic conditions, promoting accumulation at tumor sites and the Au-NRs provided
excellent photothermal ability. Loading DOX on the nanosystem showed 5.0% loading
capacity and enhanced cancer cell-killing and tumor growth inhibiting abilities [78].

The focus of another research investigation involved development of gold nanochains
(Au-NCs) with worm-like nanostructures as a theranostic system for efficient photodynamic
therapy (PDT) under light irradiation. To achieve this, citrate-stabilized Au-NPs were
assembled using HA and hydrocaffeic acid (HA-HCA) conjugates as templates. The
photosensitizers (PSs), and tumor-targeting ligands were integrated onto the surfaces of
the Au-NCs and were highly selective, showing notable phototoxicity, even at low PS
concentrations, when exposed to laser irradiation [79].

Generally, the Au-core mesoporous silica shell (Au-MSS) offers a versatile and promis-
ing approach in cancer photothermal therapy. Nonetheless, restricted half-life in the
bloodstream and the low specificity towards tumor tissue have constrained the poten-
tial use in further applications. To address such issues, in this study, D-α-Tocopherol
polyethylene glycol 1000 succinate (TPGS) and HA were conjugated to improve the biolog-
ical performance of Au-MSS. Furthermore, the Au-MSS functionalization improved the
hemocompatibility and selectivity of the nanomaterial towards cancer cells. Moreover, it
successfully induced the death of HeLa cancer cells through an on-demand photothermal
effect [80].
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Li et al. reported on a small-sized nanocomposite for cancer therapy and diagnosis.
The nanocomposite was composed of chlorine e6 (Ce6) integrated Au nanoclusters (NCs)
(Au:Ce6 NCs), HA, DOX, and FA. The FA conjugation of the nanocomposite further en-
hanced the cellular selectively target, while its pH-responsive nature controlled the release
of DOX for tumor chemotherapy. The nanocomposite displayed good biocompatibility,
stability, and loading capacity for Ce6 and DOX were 11.3 and 10.00%, respectively. The
combination of chemotherapy and PDT in the nanocomposite resulted in significant cancer
cell death upon exposure to laser irradiation [81].
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The presence of cancer stem cells (CSCs) represents a foremost challenge to the effec-
tiveness of existing cancer treatments, as non-CSCs can instinctively convert into CSCs,
leading to treatment failure and tumor recurrence. Therefore, developing effective strategies
to eradicate CSCs is crucial. To solve these issues, a CSC-specific, RA-loaded Au-NS with
dendritic polyglycerol (Au-NSs-dPG) nanoplatform was developed for efficient CSC eradi-
cation. The designed system exhibited excellent biocompatibility and effective CSC-specific
multivalent targeting through HA decoration on the bioinert dPG’s multiple attachment
sites. Furthermore, RA-induced CSC differentiation combined with PTT yielded high
therapeutic efficacy in a synergistic inhibitory manner, suppressing breast CSCs and tumor
growth. Moreover, the expression of stemness genes and CSC tumorsphere development
were notably reduced. In vivo, the nanoplatform effectively eliminated tumor growth
and CSCs, indicating higher anticancer activity and effective CSCs suppression [82]. The
scheme for RA loaded GNSs-dPG for targeted photothermal therapy is shown in Figure 7.
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In recent work, Ce6-adsorbed small Au nanorods (Ce6-sAu-NRs), that can activate
photothermal and photodynamic effects through NIR/visible light, were produced. The
Ce6-sAu-NRs were decorated with biological macromolecules, such as thiolated HA and
catalase (CAT), to enable targeting of CD44 and self-supply of O2. This platform un-
veiled visible-light absorption at 668 nm and robust NIR absorption at 800–1000 nm. The
CAT/THA-Ce6-sAu-NRs were able to easily accumulate in CD44-overexpressing MDR
breast cancer cells via CD44-HA recognition. Additionally, CAT catalyzed the decompo-
sition of endogenous H2O2 to generate O2, thus mitigating hypoxia and ensuring high
PDT efficiency [83]. The scheme and the cellular uptake of CAT/THA-Ce6-Au-NRs with
prospects of combined therapy are represented in Figure 8.

A very recent report involves the advance of a pH/NIR dual stimulus-responsive
delivery system fabricated using polydopamine (PDA) mediated Au with HA, loaded with
DOX drug (PDA-Au-HA/DOX), having loading content of around 10.00 wt.%, to targets
tumors. The developed system is coated with HA, which endows it with tumor-targeting
capabilities by binding specifically to the CD44 receptor, which is overexpressed in various
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tumor cells. The PDA and Au nanoshells exhibited excellent photothermal performance
under NIR irradiation, destroying tumor cells and accelerating the release of DOX [84].
Overall, the core materials used, other substituents and key outcomes are summarized in
Table 1.
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Table 1. Summary of the importance of Au-HA as core material along with other substituents and
key outcomes for the treatment of various cancers using different therapeutic approaches.

Sr.no. Core Materials Other Substituents Key Outcomes Ref.

HA-modified Au

1. LAP-PLA-PEG-PEI
• High loading efficiency of DOX at 91.0 ± 1.8% and pH-sensitive

sustained release
• Effectively suppresses tumor growth with reduced side effects

[62]

2. mSiO2-RGD
• High loading capacity of DOX around 20.16%
• Enhanced cellular uptake and targeted to ovarian cancer cells through

dual mechanisms
[63]
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Table 1. Cont.

Sr.no. Core Materials Other Substituents Key Outcomes Ref.

3. PEG-Aptamer
• DOX loading was 270 molecules per Au-NPs
• Designed hybrid system was ten times more potent than DOX alone [64]

4. FA

• DOX loading capacity of around 7.1 wt.% observed
• Induced cell apoptosis under NIR irradiation and in vivo experiments

resulted in the complete elimination of tumors without causing severe
side effects to normal tissues

[65]

5. -
• SN38 loading capacity of 17.4% observed and in vitro release studies

showed that drug release at acidic conditions was faster when compared
with the physiological pH environments

[66]

6. HSN
• Under NIR, excellent endocytosis in cancer cells without inducing

cytotoxicity was observed [67]

7. -
• Designed systems were more cytotoxic than free cisplatin
• In vivo experiments showed significant antitumor efficacy when

combined with near-infrared laser treatment
[68]

8. PGMA
• Displayed superior selective targeting toward cancer cells
• Excellent photothermal outcomes and improved efficacies against cancer

cells when compared to normal cells
[69]

9. PEI-PEG
• Proved to have good biocompatibility, highlighting significant role as a

new strategy for cancer treatment to overcome MDR [70]

10. CBSA
• Successful in reducing tumor growth by 95.3% and inhibiting the growth

of lung metastasis by 88.4% [71]

11. -
• Delivered to tumor tissues with an accumulation ratio of 12.8%.
• Completely eliminated tumors without obvious side effects [72]

12. -
• The formulation and the bioactivity of the released RA was demonstrated

in a reporter cell line expressing luciferase controlled by the RA receptor [73]

13. DHHC
• Evident pH-responsive drug release and efficient internalization by

MCF-7 cells and proved synergistic therapeutic effects [74]

14. PAMAM
• Remarkable intratumoral penetration and synergistic

radio-chemotherapeutic effects [75]

15. DAHA-HECS

• Proved to have 4.1% of DOX content and exhibited pH/NIR drug release
behaviors.

• Effectively taken up by MCF-7 breast cancer cells and displayed superior
efficacy in eliminating cancer cells

[76]

16. pSiO2

• The Amox loading content was 18.2% and release rate regulated by redox
and enzymatic degradation

• The pSiO2-Au/HA exhibited remarkable photothermal conversion
efficiency

[77]

17. LA
• Around 5.0% of DOX loading capacity observed and enhanced cancer

cell-killing and tumor growth inhibiting abilities [78]

18. HCA • Highly selective and showed remarkable phototoxicity [79]

19. MSS-TPGS

• Functionalization improved hemocompatibility and selectivity towards
cancer cells

• Induced the death of HeLa cancer cells through an on-demand
photothermal effect

[80]

20. FA

• Proved to have good biocompatibility, stability, and loading capacity for
Ce6, DOX were 11.3 and 10.00%

• The combination of chemotherapy and PDT in the nanocomposite
resulted in significant cancer cell death upon exposure to laser irradiation

[81]
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Table 1. Cont.

Sr.no. Core Materials Other Substituents Key Outcomes Ref.

21. RA-dPG

• The expression of stemness genes and CSC tumorsphere development
are notably reduced

• In vivo study eliminated tumor growth and CSCs, indicating higher
anticancer activity and effective CSCs suppression.

[82]

22. -

• Easily accumulated in CD44-overexpressing MDR breast cancer cells via
CD44-HA recognition

• The CAT catalyzed the decomposition of endogenous H2O2 to generate
O2, thus mitigating hypoxia and ensuring high PDT efficiency

[83]

23. PDA
• DOX loading content was around 10.00 wt.% and display excellent

photothermal performance under NIR irradiation
• Destroyed tumor cells and accelerated the release of DOX

[84]

6.2. HA-Modified Ag-M-NPs and Other Substituents

In 2018, HA and AgNP combinations which exploit the electrostatic interaction be-
tween negatively charged HA molecules and positively charged AgNPs, followed by
ultrasonication-induced assembly, were introduced. The cell line studies for HA-Ag-NPs
exhibited anti-leukemic activity via ROS overproduction compared to AgNPs alone. Fur-
thermore, the outcomes indicated that HA-Ag-NPs significantly inhibited leukemia cell
viability by inducing apoptosis via specific binding of HA with CD44 receptors that were
overexpressed on the cell surface. Therefore, HA-Ag-NPs represent a novel approach for
leukemia treatment that takes advantage of altered redox conditions in cancer cells and
reduces systemic toxicity. These findings provide valuable insights into the design and
improvement of leukemia-specific chemotherapy [85].

Another study involved using HA as a gel-forming agent, and Amanita muscaria
extract was utilized as the capping agent during the synthesis of Ag and ultra-small
iron oxide to obtain Fe-Ag-NPs for synergistic anticancer properties. The potential of
the HA/Fe-Ag gel for localized cancer treatment was demonstrated through cytotoxicity
studies conducted on both 2D and 3D HeLa cell cultures. The gel formulation utilized
HA as a gelling agent and it was observed that HA improved the transportation of the
active components within HeLa spheroids, thereby enhancing their effectiveness. These
findings suggest that the HA/Fe-Ag NPs have potential as a beneficial approach for cancer
treatment [86].

In order to overcome the limitations of “single-strategy” therapy in real body internal
environments, Liu et al. utilized HA-modified Ag-S-nitrosothiol core-shell NPs using
(EGDMA, TEOS) for synergistic therapy, based on a combination of PTT and nitric oxide
(NO)-based chemotherapy. Under NIR, the Ag core generated cytotoxic heat leading to
cancer cell apoptosis. In addition, the S-nitrosothiol polymeric shells responded to NIR and
heat by releasing free NO at high concentration, which induced NO-based chemotherapy.
The efficacy of the photothermal and NO-based chemical synergistic therapy in targeting
tumors was demonstrated through both in vitro cytotoxicity assays and in vivo experiments
conducted on mice with tumors [87]. Overall, the core materials used, other substituents
and key outcomes are summarized in Table 2.

6.3. HA-Modified Pt /Pd-M-NPs and Other Substituents

The use of targeted photothermal therapy (PTT) in cancer treatment can enhance
therapeutic outcomes while minimizing side effects. Nevertheless, incorporating addi-
tional functionality comes at the cost of increased synthetic steps, toxicity issues, and
complex in vivo behavior effects. To address such difficulties, the one-pot method is used
to produce HA/Pt tumor-targeted systems. Further, in vitro experiments validated that
CD44-overexpressing cancer cells were internalized more effectively than non-targeted
alginate acid-Pt nanoparticles (AA/Pt). Similarly, in in-vivo studies HA/Pt accumulated
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more in CD44-overexpressing tumors than AA/Pt, and proved to have superior efficacy in
inhibiting tumor growth through PTT [88].

Table 2. Summary of the importance of Ag-HA as core materials along with other substituents and
key outcomes for the treatment of various cancers using different therapeutic approaches.

Sr.no. Core Materials Other Substituents Key Outcomes Ref.

1. HA modidied Ag -

• Significantly inhibited leukemia cell viability by inducing
apoptosis via specific binding of HA with CD44 receptors that
were overexpressed on the cell surface

• Reduced systemic toxicity.
• Improvement of leukemia-specific chemotherapy

[85]

2. Fe

• Proved to have synergistic anticancer properties
• Improved the transportation of the active components within

HeLa spheroids
[86]

3. SiO2-EGDMA • Induced cancer cell apoptosis [87]

It is important to mention that developing a nanoplatform that can effectively target
hypoxic tumors using PDT is critical in contemporary cancer research. Thus, in this
work a ROS-generator, called HA-modified Pt NPs/carbon dots-loaded mesoporous silica
(HA-PCD), was designed. The HA-PCD is composed of Pt NPs and carbon dot (CD)-
loaded dendritic mesoporous silica nanoparticles (DMSNs), further modified with HA.
When exposed to 635 nm laser irradiation, HA-PCD produces 1O2 due to the involvement of
CDs photosensitizers. The loaded Pt NPs enhances photodynamic therapy under hypoxic
conditions by producing oxygen via catalase-mimicking activity. Moreover, it produces
OH and O2− for catalytic therapy, due to peroxidase and oxidase-mimicking actions [89].

Another work described novel multifunctional drug delivery systems developed us-
ing, Pt, Pd, glucose oxidase (GO) and HA to obtain Pd-Pt-GO/HA, which addressed the
low efficiency and potential side effects to normal tissues associated with GO-mediated star-
vation therapy. The Pd-Pt-GOx/HA system specifically targets CD44-overexpressed cancer
cells and possesses intracellular Hyase-responsive GO, catalase (CAT), and peroxidase
(POD)-like activities as well as glutathione (GSH) oxidation capacity, significantly enhanc-
ing therapeutic efficacy and biosafety. The differential uptake of Pd-Pt-GO/HA by cancer
cells and normal cells demonstrated that the reactive oxygen species (ROS) induced cell
apoptosis. Furthermore, in vivo experiments demonstrated the excellent treatment efficacy
of Pd-Pt-GO/HA on 4T1 and h22-tumor-bearing mouse models [90]. The representative
scheme and cellular mechanisms are shown in Figure 9.

Zhang et al. developed a nanosystem for photothermal therapy (PTT) and antioxidant
therapy by constructing Pd-Se-HA nanosystems. The selenium (Se) NPs and Pd NPs were
integrated into the core-shell structure, where the Pd NPs showed photothermal effects.
Further, HA was bonded to the surface of the nanosystem to provide targeting functions and
to form Pd-Se-HA nanosystems. In vitro studies demonstrated good photothermal effect,
-OH scavenging ability, effective inhibition of macrophage infiltration, ROS production,
and cytokine-mediated inflammation. In addition, after 15 days of treatment, the Pd-Se-HA
almost completely stopped the inflammatory response in the joints of mice with an induced
RA model and stopped joint degradation [91].

To develop new inorganic sonosensitizers for sonodynamic therapy (SDT), two pri-
mary goals should be noticed, such as increase in the formation of ROS and decrease in ROS
elimination. In this work, new SDT systems were designed by using unique combinations
of barium titanate oxide NPs, Pd, manganese dioxide and HA to produce BTO-Pd-MnO2-
HA. The deposition of Pd NPs creates Schottky junctions that separate electron-hole pairs,
raising the competence of toxic ROS production during SDT. The MnO2 degrades within
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the tumor microenvironment (TME), and the Mn2+ ions catalyze the Fenton-like reaction
generating •OH from H2O2. The BTO-Pd-MnO2-HA incessantly consumes glutathione
(GSH) and produces O2, which improves SDT and chemodynamic therapy (CDT) efficiency.
The BTO-Pd-MnO2-HA offers a multistep. improved SDT process that is activated by TME
decomposition, targeted by HA, and amplified by Pd depositions [92]. To conclude, the
core materials used, other substituents and key outcomes are summarized in Table 3.
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Table 3. Summary of the importance of Pt/Pd-HA as core materials along with other substituents
and key outcomes for the treatment of various cancers using different therapeutic approaches.

Sr.no. Core Materials Other Substituents Key Outcomes Ref.

HA-modified Pt

1. -

• In vitro experiment validated CD44-overexpressing cancer
cells were internalized more effectively

• In-vivo studies proved superior efficacy in inhibiting
tumor growth

[88]

2. DMSN-CDs
• ROS generation and other radicals under hypoxic

conditions [89]

3. Pd

• ROS generation and induced cell apoptosis
• In vivo experiments demonstrated excellent treatment

efficacy on 4T1 and h22-tumor-bearing mouse models
[90]

HA-modified Pd

1. Se

• In vitro studies proved good photothermal effect, -OH
scavenging ability, effectively inhibited macrophage
infiltration, ROS production, and cytokine-mediated
inflammation

• Completely stopped the inflammatory response in the
joints of mice with an induced RA model and stopped joint
degradation

[91]
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Table 3. Cont.

Sr.no. Core Materials Other Substituents Key Outcomes Ref.

2. BTO-MnO2

• Multistep improved SDT process, activated by TME
decomposition

• Enhanced SDT-CDT therapies
[92]

7. Application of HA-Modified Non-noble M-NPs and Other Substituents in Various
Cancer Therapy
7.1. HA-Moadified Magnetic-M-NPs and Other Substituents

A water-based two-step method was used to produce hybrid combinations of su-
perparamagnetic iron oxide NPs, chitosan and HA loaded with curcumin drug (SPION-
CCh-HA-Cur). The SPIONs have a core size of slightly above 10 nm and the designed
hybrid systems exhibit high magnetic properties, making them suitable for use as MRI
contrast agents. Furthermore, biological studies showed that hybrid systems can be easily
internalized into cells and did not exhibit cytotoxicity at the tested concentration [93].

In another work, HA-modified SPIONs were developed and placed upon NIR. The
HA-SPIONs generate heat rapidly and in-vitro studies showed that HA-SPIONs revealed
noteworthy explicit cellular uptake and accumulation in CD44 HA receptor-overexpressing
MDA-MB-231 cells. Furthermore, improved magnetic resonance imaging (MRI) and pho-
tothermal ablation, both in vitro and in vivo, demonstrated substantial photothermal effects
specifically targeting CD44 HA receptor-overexpressing breast cancer [94].

Other work reported conjugation of hyaluronic acid (HA) and bovine serum albumin
(BSA)-modified zinc copper indium sulfide quantum dots (ZCIS QDs) onto the surface of
polyethyleneimine (PEI)-coated iron oxide-Prussian blue NPs (Fe3O4-PB). The resulting
Fe3O4-PB-HA-BSA-ZCIS QDs, denoted as FPPBH, demonstrated good biocompatibility
and better adsorption in the NIR region. In vitro studies revealed specific uptake of FPPBH
by CD44 overexpressed HeLa cells when an external magnetic field was applied. In vivo
NIR fluorescence and magnetic resonance imaging demonstrated the high accumulation of
FPPBH at the tumor site due to the exceptional CD44 receptor/magnetic targeting ability.
The tumor was successfully ablated in nude mice after intravenous FPPBH injection and
treatment with an external magnetic field, which led to a tumor growth inhibition rate of
more than 89.95% when the tumor was exposed to NIR light [95].

In another study, in order to treat hepatocellular carcinoma, a dual system of HA and
DOX was synthesized and subsequently conjugated with amine-modified Fe-NPs. The
resulting hybrid system possessed good water dispersibility, superparamagnetic properties,
and high magnetic relaxivity. In addition, the hybrid system proved to have notable cellular
uptake and accumulation in HepG2 cells, a type of human liver cancer cells, which is
believed to be due to the definite role of HA. Furthermore, in vitro studies revealed that
the release of DOX from the hybrid system was markedly accelerated under mild acidic
conditions (pH 5.0–6.0), which is ideal for effective chemotherapy. Lastly, the in vivo
antitumor efficacy of these hybrid systems was demonstrated in mice, confirming their
substantial therapeutic potentials [96].

Another significant investigation reported that a novel magnetic nanovehicle was
developed using HA conjugated iron oxide (IONPs) for targeted delivery of chemotherapy
drugs to tumor areas with external magnetic field guidance. Moreover, the IONPs were
capable of carrying homocamptothecin (HCPT) model drug, and 75% of HCPT was encap-
sulated in the HA-IONPs. The in vitro and in vivo experiments demonstrated remarkable
magnetic tumor targeting and effective tumor cell ablation. Notably, no systemic toxicity
was observed, highlighting the potential clinical translatability of the designed nanovehicle
as a magnetic field responsive platforms for targeted delivery applications [97].

Zheng et al. developed nanoplatforms comprised of HA-SPION micelles, loaded
with docetaxel (DTX) drug, with a loading efficiency of 10.9%. The results of cellular
uptake studies demonstrated that MDA-MB-231 cells were internalized via CD44 receptor-
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mediated endocytosis, due to the existence of a magnetic field and evidenced good MRI
potential. Additionally, the micelles achieved superior localized photothermal ablation
attainment in MDA-MB-231 cells, demonstrating their potential as effective photo-absorbers
in photothermal therapy [98].

The overall scheme to obtain micelle-loaded DTX drug and the dual tumor targeted
therapies are shown in Figure 10.
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A new nanoplatform with synergistic chemo-photothermal therapy was designed
using magnetic polydopamine (MPDA), HA-MTX for PTT. The nanoplatform proved
to have excellent biocompatibility and photothermal conversion efficiency suggesting
potential for photothermal therapy, as well as improved cellular uptake and drug release.
Additional studies conducted both in vitro and in vivo showed that MPDA-HAMTX with
DOX added had preferential tumor accumulation, improved specificity to target tumor
cells, pH- and laser-responsive release, and a high tumor cell-killing efficiency [99].

Other research studies revealed HA-PEGylated magnetic nanoparticles (HA-PEG-
MNPs) prolonged the circulation time of mitoxantrone (MTX) and targeted specific tumor
cells. The MTX loading efficiency was around 87.7%, the release of MTX from HA-PEG-
MNPs was mainly inhibited by amide linkages, and HA-PEG-MNPs remained stable in
physiological conditions for up to 8 days. In addition, HA-PEG-MNPs could bind to the
receptor-binding site and internalize into tumor cells, proving significant induction of
apoptosis in MDA-MB-231 cell lines [100].

Another report described utilization of FePt alloy nanoparticles with precise sizing,
which were subsequently treated with (3-Aminopropyl) triethoxysilane (APTES) to modify
their surfaces. Through a pH-sensitive hydrazone bonding process, lenalidomide (LND)
was covalently bonded to FePt-NH2 and validated with an LND loading efficiency of 6.3%,
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while APTES amino groups were used to attach HA. Additionally, it was conjugated with
lactoferrin (Lf)-bearing carboxylic groups on the HA, which led to the development of
surface-modified pH-sensitive alloy-drug nanoconjugates known as SPANs. These SPANs
demonstrated exceptional heat generation upon exposure to magnetic fields and NIR.
Due to the leaching of Fe and Pt contents, SPANs were capable of generating ROS in the
U87MG cell line, thereby enhancing their therapeutic effects. The in vivo results confirmed
enhanced uptake of SPANs in the brain after intranasal administration with improved nasal
and mucus penetration due to the presence of Lf [101].

Luo et al. developed stable and cytocompatible HA-Fe3O4 NPs using PEI and mPEG
for targeted MRI of pancreatic cancer. The cellular uptake analysis results showed that
MIAPaCa-2 cells, which overexpress the CD44 receptor, were specifically internalized by
HA-Fe3O4 NPs. Therefore, the developed system could serve as an effective nanoprobe for
the MRI of pancreatic cancer cells [102].

Another work involved a solvothermal method to create Fe3O4 NPs coated with
porous carbon (PC), followed by amine terminated groups which were subsequently
modified with HA for targeted tumor treatment. The designed system unveiled exceptional
biocompatibility and efficient photothermal transformation capability, and the porous
structure allowed for a high DOX drug loading capacity of around 27% and intelligent
drug release, making it a multifunctional nanodrug delivery system. In vivo T2-weighted
MR imaging displayed the accumulation of nanocarriers in the tumor. Both in vitro and
in vivo studies were conducted to confirm the efficacy of the system [103].

In other work layered double hydroxides (LDHs) conjugated Fe3O4 tagged with HA to
load DOX were reported on, for improved T1-weighted MR imaging and chemotherapy of
cancer cells that overexpress CD44 receptors. The reported LDH-Fe3O4-HA demonstrated
a 10-fold increase in r1 relaxivity compared to Fe3O4 NPs and proved to have 57.65%
DOX loading capacity. The designed LDH-Fe3O4-HA demonstrated pH-responsive release
behavior, and showed targeted tumor inhibition effect in vitro. The in vivo result indicated
improved tumor penetration and significantly enhanced MR imaging ability [104].

In another study, through a simple process, dual-stage carcinoma cell-targeting sys-
tems for DOX delivery were witnessed. The interaction between the coated phosphatidyl-
choline PC/HA surface and embedded DOX-Fe3O4 had a significant impact with good
antitumor efficacy for MDR cancer therapy with minimal cardiotoxicity. Furthermore,
PC/HA-DOX-Fe3O4 was able to deliver DOX to a xenograft tumor, and could concentrate
into the tumor cells in in vivo studies [59].

Soleymani et al. substantiated a simple one-pot system for synthesizing HA-coated
Fe3O4 with an appropriate size for magnetic hyperthermia therapy and targeted CD44
overexpressing cancer cells. The deigned system unveiled excellent colloidal stability and
low cytotoxicity towards L929 cells. Further, Fe3O4-HA NPs preferentially targeted MDA-
MB-231 cells with a 4-fold higher uptake than L929 cells. Additionally, the heat generation
capability of Fe3O4-HA NPs under different permissible magnetic fields indicated an
intrinsic loss power (ILP) value of Fe3O4-HA NPs of about 3.5 nHm2/kg, which was about
25-fold higher when compared with bare Fe3O4 NPs [105].

Another study explored multifunctional nanocarriers for cancer therapy using a
combination of magnetic and photothermal therapies. The cisplatin-loaded NIR-responsive
PLGA magnetic nanoparticles were coated with HA and labelled as HA/PMNPc. The
PMNPc, encapsulating oleic (OA) modified iron oxide nagnetic NPs (IOMNP), allowed
for magnetic targeted drug delivery. By varying the amount of cisplatin it was possible
to obtain loading capacity differences from 5.3 to 18.00%. The incorporation of HA to
PMNPc resulted in a much higher intracellular uptake efficiency and active targeting of
U87 cancer cells. In a xenograft tumor model in nude mice, treatment with HA/PMNPc via
tail vein injection, resulted in the lowest tumor growth rate. The dual-targeting capability
of HA/PMNPc makes it a promising multifunctional platform for effective cancer therapy
against U87 glioblastoma cells [106].
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One of the main drawbacks involved in chemotherapy is inadequate adhesion of
drugs in tumors, leading to the failure of cancer cell growth prevention. To enhance such
drawbacks, a highly efficient nanocarrier, designed by modifying iron oxide nanoparticles
(IONPs) with a tumor-targeting peptide c(RGDyK) and hyaluronidase (HAase) on the
surface, exhibited DOX loading capacity of around 21.7%. The resulting nanocomplex
bound to integrin αvβ3 to target the tumor and penetrated intensely into the tumors by
degrading the highly expressed HA in the tumor extracellular matrix (ECM). In vitro,
c(RGDyK)-HAase-IONP carrying DOX showed good biostability and a preferred drug
release profile at low pH. After intravenous injection in MC38 tumor-bearing mice model,
c(RGDyK)-HAase-IONP exhibited a 2.5 times higher tumor-targeting effect [107].

In another research work, a magnetic nanocarrier sensitive to pH was developed for the
delivery of DOX, through grafting HA/β-cyclodextrin onto Fe3O4 magnetic nanoparticles.
In-vitro release behavior for DOX was evaluated at two different pH levels: simulated
human blood fluid (pH = 7.4) and simulated cancer fluid (pH = 5.6). Strong pH dependence
was pbserved. The nanocarrier’s pH-sensitive release performance resulted in a higher
DOX release at pH = 5.6 (92.43%; 48 h) than at pH = 7.4 (77.05%; 48 h). Moreover, the
results demonstrated that the DOX release mechanism from the nanocarrier was guided by
Fickian diffusion kinetics [108]. Overall, the core materials used, other substituents and
key outcomes are summarized in Table 4.

Table 4. Summary of the importance of Fe-HA as core material along with other substituents and key
outcomes for the treatment of various cancers using different therapeutic approaches.

Sr.no. Core Materials Other Substituents Key Outcomes Ref.

HA-modified Fe

1. CCh

• Biological studies showed that hybrid systems could be easily
internalized into cells and did not exhibit cytotoxicity at the
tested concentration

[93]

2. -
• Improved cellular uptake and accumulation in CD44 HA

receptor-overexpressing MDA-MB-231 cells [94]

3. PEI-BSA-QD

• In vitro studies revealed specific cellular uptake
• The tumor was successfully ablated in nude mice after

intravenous injection in the presence of NIR
[95]

4. -

• Notable cellular uptake and accumulation.
• In vivo antitumor efficacy demonstrated in mice confirming

substantial therapeutic potentials
[96]

5. -

• Around 75% of HCPT drug encapsulation witnessed.
• In vitro and in vivo experiments demonstrated remarkable

magnetic tumor targeting and effective tumor cell ablation
• Notably, no systemic toxicity was observed

[97]

6. -

• Proved to have DTX drug with loading efficiency of 10.9%.
• Enhanced cellular uptake and endocytosis
• Superior localized photothermal ablation

[98]

7. PDA

• In vitro and in vivo showed preferential tumor accumulation,
improved specificity to target tumor cells, pH- and
laser-responsive releases, and a high tumor cell-killing efficiency

[99]
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Table 4. Cont.

Sr.no. Core Materials Other Substituents Key Outcomes Ref.

8. PEG

• The MTX loading efficiency was around 87.7% and was stable in
physiological conditions for up to 8 days

• Proved to significantly induce apoptosis in MDA-MB-231 cell
lines

[100]

9. Pt, APTES

• An LND loading efficiency of 6.3% was obtained
• In vivo results confirmed enhanced uptake of SPANs in the

brain after intranasal administration with improved nasal and
mucus penetration

[101]

10. PEI-mPEG

• The cellular uptake analysis showed that MIAPaCa-2 cells,
which overexpress the CD44 receptor, were specifically
internalized

[102]

11. PC-NH2 (porous
carbon)

• Exhibited exceptional biocompatibility and efficient
photothermal transformation capability

• Showed DOX drug loading capacity of around 27%
• In vivo T2-weighted MR imaging confirmed the accumulation in

the tumor

[103]

12. LDH

• Hybrids demonstrated a 10-fold increase in r1 relaxivity
compared to Fe3O4 NPs

• Proved to have 57.65% DOX loading capacity
• Validated by pH-responsive release behavior, which showed

targeted tumor inhibition effects, tumor penetration and
significantly enhanced MR imaging ability

[104]

13.
APTES-

Phosphatidylcholine
(PC)

• Proved to have good antitumor efficacy for MDR cancer therapy
with minimal cardiotoxicity

• Delivered DOX to the xenograft tumor model
[59]

14. -

• The ILP value of Fe3O4-HA NPs was about 3.5 nHm2/kg, which
was about 25-fold more when compared with commercially
available Fe3O4 NPs

[105]

15. PLGA-OA

• By varying the amount of cisplatin, it was possible to obtain
loading capacity differences from 5.3 to 18.00%

• Superior intracellular uptake efficiency and active targeting of
U87 cancer cells

• In a xenograft tumor model in nude mice, treatment with via tail
vein injection, resulted in the lowest tumor growth rate

[106]

16. Peptide

• DOX loading capacity was around 21.7%
• Proved to have good biostability and a preferred drug release

profile at low pH
• After intravenous injection in MC38 tumor-bearing mice model,

exhibited 2.5 times higher tumor-targeting effect

[107]

17. β-cyclodextrin • A pH-sensitive release performance was observed [108]

7.2. HA-Modified Zn-M-NPs and Other Substituents

In order to enhance therapeutic effectiveness, a new system was designed using PEG-
modified oxidized mesoporous carbon nanospheres (OMCNPs) loaded with DOX drug. To
target lung cancer cells, the OMCNPs were modified with HA. Furthermore, zinc oxide
quantum dots (ZnO QDs) were added to not only cap the OMCNP, but also to chelate with
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DOX, resulting in 52% loading content. Upon cellular uptake, the pH-sensitive ZnO lids
dissolved to Zn2+ in tumor cells, leading to dissociation of the Zn2+ DOX complex and
controlled release of DOX. The use of the OMCNP-based system can induce hyperthermia
and promote the release of DOX when exposed to NIR irradiation. When combined with
targeted chemo-photothermal therapy, this approach yielded better results than either
single chemotherapy or photothermal therapy alone [109]. The scheme to produce the
OMCN nanosystem for targeted cellular uptake is schematically displayed in Figure 11.
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Reproduced from [109].

In another report, a bioreducible carrier for siRNA delivery, was created by conju-
gating Zn (II)-dipicolylamine onto HA (HA-DPA(Zn)) to coordinate with siRNAs and
create stable formulation in the presence of zinc ions. The siRNA formulated with this
carrier was efficiently taken up by U87MG cells and released the incorporated siRNAs in
response to reduction signals. In vitro studies demonstrated that siRNA formulated HA
(HA-DPA(Zn)) effectively silenced genes with minimal toxicity. It also proved to have
a prolonged circulation time in the bloodstream, enhanced accumulation in the tumor
site, and remarkable antitumor efficacy in a U87MG tumor-bearing mouse model, without
triggering any organ toxicity [110].

Another research study conjugated zinc oxide (ZnO) through a co-precipitation
method with HA to obtain (HA-ZnO). The conjugated system was then modified with
ginsenoside Rh2, to obtain Rh2-HA-ZnO. The designed Rh2-HA-ZnO exhibited anti-cancer
effects on three different cancer cells, namely, A549 lung cancer, HT29 colon cancer, and
MCF7 breast cancer cells. Additionally, intracellular ROS were observed in all three cancer
cell lines [111].

In the treatment of non-small-cell lung cancer (NSCLC), radiotherapy (RT) is a key
approach, but there is a critical need to amplify its negative effects on tumors through the
development of new treatment modalities. To address such problems, Wang et al. prepared
block copolymer micelles comprised of PEG and polycaprolactone (PEG-PCL) comprising
HA manganese and zinc (Mn-Zn) ferrite magnetic nanoparticles (MZF). Furthermore,
micelles with HA-modified MZF resulted inMZF-HA for specific targeting of CD44 highly
expressing tumor cells, such as A549 (human lung adenocarcinoma cell line). In the A549
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subcutaneous tumor xenografts model, the MRI proved the enhancement of MZF-HA in
the tumor, and hypoxia immunohistochemistry analysis (IHC) confirmed enhanced tumor
oxygenation after HT. Furthermore, there was a 49.6% decrease in tumor volume, compared
to a 58.8% increase in the untreated group [112]. The outline scheme to obtain MZF and the
surface modification to produce MZF-HA and a demonstration using the MZF-HA system
for targeted cancer therapy is shown in Figure 12.
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Figure 12. Outline scheme to obtain (A) MZF and their surface modification to produce MZF-HA
and (B) demonstration to use MZF-HA system for targeted cancer therapy. Reproduced from [112].

In another work, biodegradable NPs which can target tumors were developed for
photothermal therapy (PTT) against human cancer cells that overexpress CD44. The zinc
(II) phthalocyanine-based photosensitizer (ZnPc) was loaded to PLGA-HA, and exhibited
high stability and good biocompatibility. Upon 808 nm irradiation, the ZnPc-PLGA-HA
induced a photothermal effect and promoted cellular uptake by CD44-overexpressed A549
and HT29 cells, leading to enhanced photothermal efficacy. Moreover, the ZnPc-PLGA-HA
was able to ablate the tumor of nude mice upon laser irradiation [113]. The scheme to
obtain the ZnPc-PLGA-HA system and the respective mechanisms are shown in Figure 13.

7.3. HA-Modified Ce-M-NPs and Other Substituents

Despite significant progress in breast cancer treatment, the challenge of addressing
the aggressive nature of TNBC is considered a major obstacle. Thus, to deliver a solution,
PEI assisted HA tagged with ceria (PEI-HA-Ce) can be used as a therapeutic agent, and has
demonstrated significant anticancer effects and is responsible for the generation of ROS for
MDA-MB-231 TNBC cells. The designed PEI-HA-Ce demonstrated efficient endocytosis,
resulting in MMP loss and successive release of Cyt c from the mitochondria. This led to
the activation of caspases-3 and -9, while also decreasing levels of Bcl-2. Treatment with
PEI-HA-Ce led to irreversible nuclear chromatin condensation [114].
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Figure 13. Scheme to obtain ZnPc-PLGA-HA system and their respective mechanisms. Reproduced
from [113].

Other work resulted in a dual-targeted drug delivery system for solid tumors by using
a pH-sensitive polymer and an inorganic nanozyme. The core of the PEI polymer was
loaded with indocyanine green (ICG) by electrical charge adsorption. Once delivered to
the tumor site, the CeO2 NPs catalyzed the production of oxygen from hydrogen peroxide
through the cycling of cerium valency, thus enhancing both PTT and PDT. This strategy
successfully improved the hypoxic microenvironment of the solid tumor. Additional
results verified that ICG-PEI-HA/CeO2 increased ICG uptake at the cellular level, induced
apoptosis of tumor cells, and increased in vivo bioavailability of ICG at the tumor site [115].
The scheme and the mechanisms involved in utilizing the pH sensitive polymer, HA
mediated inorganic enzyme and ICG loading to produce ROS are shown in Figure 14.
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Figure 14. Scheme and the mechanisms involved in utilizing pH sensitive polymer, HA mediated
inorganic enzyme and ICG loading to produce ROS. Reproduced from [115].

Another work depicted utilization of SPIONPs (Fe3O4) for targeted delivery incor-
porated with cerium oxide (CeO2) on the surface of NPs to generate ROS in the tumor
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environment, inducing oxidative stress and selective killing of cancer cells. Additionally,
HA was used to coat the CeO2 surface and target CD44-overexpressing tumor cells, while
natZr was chelated on the Fe3O4-CeO2 surface to enable labeling with the radioisotope 89Zr.
Furthermore, good dispersibility of the HA coated NPs showed that CeO2 generated ROS
and targeted delivery [116].

Although photodynamic therapy (PDT) has shown better results in cancer treatment,
its effectiveness has been limited by hypoxic tumors, poor targeting, and photosensitizer
(PS) aggregation. To address all these drawbacks, HA-modified CeO2 decorated with metal-
organic frameworks (MOFs) to produce HA-CeO2-MOF and the resulting PDT treatment
are shown in Figure 15. The CeO2 catalyzes H2O2 to produce O2, resolving hypoxia issues,
and HA targets the CD44 receptor expressed on tumor cell membranes. When incubated
with HA-CeO2-MOF under laser irradiation, the growth of tumor cells 4T1 and MCF-7
was distinctly controlled, while the survival of normal cell LO2 was nearly unchanged.
Importantly, HA-CeO2-MOF was effectively aggregated within the tumor area 12 h after
injection and remarkably inhibited tumor growth under laser irradiation [117].
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Figure 15. Schematic representation to obtain HA-CeO2-MOF and PDT treatment. Reproduced
from [117].

Ulcerative colitis (UC) is a challenging chronic nonspecific inflammatory bowel disease
characterized by rapid progression. The high expression of myeloperoxidase (MPO) in
colonic ulcers of UC patients results in an abundance of macrophages and ROS. In this
respect, Gao et al. developed an electrostatically assembled MPO targeting HA/serotonin/
(5-HT) ceria nanoenzyme (HA-5-HT-CeO2) to address existing challenges. By using CeO2
NPs, 5-HT and HA mediated to achieve dual targeting effects of MPO and the macrophage
CD44+ receptor, the HA-5-HT-CeO2 was able to locate the inflammatory site and eliminate
O2, H2O2, and ROS. This strategy successfully repaired the intestinal epithelial barrier
by specifically targeting inflammatory factors. In vitro pharmacodynamic investigations
and animal models of acute colitis indicated that HA-5-HT-CeO2 demonstrated superior
efficacy in reducing inflammation and treating ulcerative colitis compared to conventional
drugs [118]. Overall, the core materials used, other substituents and key outcomes are
summarized in Table 5.
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Table 5. Summary of the importance of Zn-HA and Ce-HA as core materials along with other
substituents and key outcomes for the treatment of various cancers using different therapeutic
approaches.

Sr.no. Core Materials Other Substituents Key Outcomes Ref.

HA-modified Zn

1. PEG-QDs

• Around 52% of DOX loading content observed
• Induced hyperthermia and promoted the release of DOX when

exposed to NIR irradiation
[109]

2. -

• Validated with prolonged circulation time in the bloodstream,
enhanced accumulation in the tumor site, and remarkable
antitumor efficacy

[110]

3. -
• Exhibited anti-cancer effects on three different cancer cells and

intracellular ROS were observed [111]

4. Mn-Zn-PEG-PCL

• In the A549 subcutaneous tumor xenografts model, MRI proved
enhancement in the tumor

• The IHC confirmed enhanced tumor oxygenation
[112]

5. PLGA • Destroyed the tumors of nude mice upon laser irradiation [113]

HA-modified Ce

1. PEI
• Proved to have superior anticancer effects and responsible for

the generation of ROS [114]

2. PEI

• Effectively improved the hypoxic microenvironment of the solid
tumor

• Induced apoptosis of tumor cells, and increased in vivo
bioavailability at the tumor site

[115]

3.
• Generated ROS in the tumor environment, inducing oxidative

stress and selective killing of cancer cells [116]

4. MOF • Remarkably inhibited tumor growth under laser irradiation [117]

5.
• Demonstrated superior efficacy in reducing inflammation and

treating ulcerative colitis compared to conventional drugs [118]

8. Potential Challenges Involved in Clinical Translations

The advancement of M-NPs is rapidly evolving, providing alternative approaches to
cancer treatment and enhancing the effectiveness of various cancer therapies. Numerous
in vitro and in vivo investigations have reported encouraging outcomes in the treatment
of various types of cancer by utilizing HA-modified M-NPs and other substituents with
inherent anticancer properties, or metallic nanoplatforms in combination with other ther-
apeutic modalities. The growing body of literature demonstrates the potential of these
approaches in cancer treatment. The application of controlled release and targeted systems
that can be triggered by factors such as pH, temperature, electromagnetic waves, light, and
enzymes provides vital precision in the delivery of chemotherapeutic agents, resulting in
enhanced accumulation of drugs in tumor tissues and improved therapeutic efficacies [26].
Additionally, detailed and comprehensive investigation is required for the transition of
noble and non-noble M-NPs from the laboratory to the clinic. While the earliest gold M-
NPs are gradually being utilized in clinical trials after undergoing in vivo/in vitro studies,
silver, palladium, and platinum are still in their infancy stages, with more structural and
functional possibilities yet to be explored [119]. On the other hand, HA is widely utilized
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in active tumor targeting and hyaluronidase degradation. The interaction between HA and
CD44 is greatly influenced by the molecular weight of HA, and the protein corona may
impede degradation through hyaluronidase, or hinder the interaction between specific
ligand and receptors. A sdual stimuli responsive strategy, such as response to pH, GSH, and
NIR, may be a solution. Additionally, the cross influence of hyaluronidase degradation and
CD44 binding with HA in the tumor should be evaluated. However, the targeting capacity
of HA may not be significantly impacted by hyaluronidase degradation, as CD44-mediated
internalization occurs quickly when the HA or hybrids bind with tumor cells [22]. These
are some of the concerns that need to be addressed. Finally, there are some clinical trials
utilizing HA in cancer therapy, wherein HA-irinotecan entered Phase II trials in treating
metastasis colorectal cancer. Similarly, another Phase II trial involved HA-irinotecan with
carboplatin for intravenous injection. However, further clinical trials are required for the
inclusive evaluation of HA-modified M-NPs and other substituents for cancer therapy in
the near future [25]. The transition from clinical to industrial application of HA-modified
M-NPs in cancer treatment poses several challenges due to the complexity of the process.
Thus, we outline some of the key factors that contribute to the complexity of this transition
and the considerations involved.

1. Scale-up process: Moving from laboratory-scale synthesis to large-scale production of
HA-modified M-NPs requires optimization of manufacturing processes. Factors such
as reproducibility, batch-to-batch consistency, and quality control need to be addressed.
Scaling up the production process, while upholding the desired physicochemical
properties and functionalization, is crucial for industrial applications.

2. Cost: Industrial production regularly entails cost-effective strategies. The selection of
raw materials, purification techniques, and synthesis methods should be optimized to
minimize costs without compromising quality and performance. Further, economical
scale-up processes need to be developed to ensure affordability for widespread cancer
treatment.

3. Stability and shelf-life: Ensuring the stability and extended shelf-life of HA-modified
M-NPs is crucial for industrial applications. Stability studies should be conducted
to evaluate the NPs’ physicochemical properties, such as size, surface charge, and
drug-loading capacity, over time. The development of appropriate storage and trans-
portation conditions is essential to preserve the therapeutic efficacy.

4. Regulatory considerations: Regulatory guidelines and requirements play a vital role
in the transition from clinical to industrial use. Comprehensive preclinical and clinical
studies should be conducted to assess the safety, efficacy, and toxicity profiles of HA-
modified M-NPs. Data on pharmacokinetics, biodistribution, and long-term effects
are essential for regulatory approval. Furthermore, compliance with good manufac-
turing practices (GMPs) and other relevant protocols is necessary for industrial-scale
productions.

5. Quality Control and characterization: Industrial production requires stringent quality
control measures to ensure consistency and reproducibility. Robust analytical meth-
ods should be established for accurate characterization, including size distribution,
surface chemistry, and drug-loading efficiency. Furthermore, standardization of char-
acterization techniques is essential for batch-to-batch consistency and comparability.

6. Scalability of functionalization: HA-modified M-NPs can be functionalized with
various ligands, targeting moieties, or therapeutic agents to enhance their specificity
and efficacy. Thus, developing scalable methods for functionalization and achieving
uniform surface handling are critical challenges. The biocompatibility of different
functionalization strategies with large-scale production needs to be evaluated.

7. Manufacturing partnerships and collaboration: Establishing collaborations between
research institutions, pharmaceutical companies, and manufacturing facilities is cru-
cial for the successful transition to industrial application. Collaboration can help
leverage expertise, resources, and infrastructure required for large-scale production,
quality control, and regulatory compliances.
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Overall, the clinical to the industrial transition of HA-modified M-NPs in cancer
treatment is a complex process that involves optimization of manufacturing processes,
cost considerations, stability, regulatory compliance, quality control, and collaborations.
Addressing these challenges will facilitate the translation of this promising technology into
practical and accessible solutions for cancer patients.

9. Conclusions and Future Prospects

In conclusion, we summarized past and most recent progress in the application of
HA-modified M-NPs and other substituents in various cancer therapy applications utilizing
different cancer therapeutic approaches. The abundance of literatures in recent years makes
it evident that using HA-modified M-NPs and other substituents as biomaterials to target
different tumors is a promising and attractive approach for enhancing cancer therapy.
Definitely, there is a dearth of research on the biodistribution, toxicity, and availability
of HA-modified M-NPs and other substituents under physiological conditions. A more
in-depth study of these parameters is imperative for clinical implementation. Overall, the
development of cancer therapeutic systems is a multidisciplinary field that necessitates
expertise from a range of fields, such as chemistry, material science and engineering,
nanotechnology, and medicine. Therefore, several experts from diverse domains are
collaborating to design innovative cancer therapeutic systems that are clinically efficient
and have minimal side effects. Such systems are expected to enhance human health in the
near future. Some of the future directions listed are below:

1. Targeted drug delivery: HA modification of M-NPs and with other substituents en-
ables targeted drug delivery to cancer cells. Future research can focus on developing
multifunctional NPs that encapsulate other therapeutic agents, such as chemother-
apeutic drugs and small interfering RNA (siRNA). The incorporation of targeting
ligands or antibodies on the surface could enhance specificity towards cancer cells,
minimizing off-target effects.

2. Imaging and diagnosis: HA-modified M-NPs can serve as excellent imaging agents
for cancer diagnosis. The unique optical, magnetic, and photoacoustic properties
of M-NPs can be exploited to develop imaging probes for early cancer detection,
precise tumor localization, and monitoring of therapeutic responses. Future research
should explore the integration of imaging modalities with therapeutics, allowing
simultaneous diagnosis and treatment.

3. Photothermal therapy: M-NPs possess photothermal properties, converting light into
heat, which can be utilized for targeted cancer therapy. HA modification enhances
tumor accumulation and internalization of M-NPs, making them an ideal platform
for photothermal therapy. Future studies can focus on optimizing NP design, select-
ing appropriate light sources, and investigating the synergistic effects of combining
photothermal therapy with other treatment modalities.

4. Immunotherapy developments: HA modification of M-NPs holds potential in modu-
lating the tumor microenvironment and enhancing immunotherapy approaches. The
immune response can be stimulated by incorporating immune modulators, such as
cytokines or immunomodulatory agents, onto the surface of NPs. Moreover, M-NPs
can act as adjuvants to promote antigen presentation and improve the efficacy of
cancer vaccines. Future research can explore these strategies and investigate the
immunomodulatory mechanisms to develop personalized cancer immunotherapies.

5. Theranostic platforms: Integration of diagnosis and therapy into a single platform,
known as theranostics, is a promising approach in cancer treatment. HA-modified
M-NPs can serve as versatile theranostic agents by combining imaging capabilities,
targeted drug delivery, and therapeutic modalities. Future research should focus on
developing more multifunctional nanoplatforms that can be precisely controlled and
optimized for personalized cancer therapy.

6. Safety and toxicity considerations: As with any novel therapeutic approach, the
safety and toxicity profiles of HA-modified M-NPs and other substituents must
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be thoroughly evaluated. Future research should investigate the long-term effects,
biodistribution, and potential adverse reactions associated with the use of these
systems in cancer therapy.
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