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Abstract: Takotsubo syndrome (TTS) is an acute heart failure syndrome characterised by catecholamine-
induced oxidative tissue damage. Punica granatum, a fruit-bearing tree, is known to have high
polyphenolic content and has been proven to be a potent antioxidant. This study aimed to investigate
the effects of pomegranate peel extract (PoPEx) pre-treatment on isoprenaline-induced takotsubo-like
myocardial injury in rats. Male Wistar rats were randomised into four groups. Animals in the
PoPEx(P) and PoPEx + isoprenaline group (P + I) were pre-treated for 7 days with 100 mg/kg/day
of PoPEx. On the sixth and the seventh day, TTS-like syndrome was induced in rats from the
isoprenaline(I) and P + I groups by administering 85 mg/kg/day of isoprenaline. PoPEx pre-treatment
led to the elevation of superoxide dismutase and catalase (p < 0.05), reduced glutathione (p < 0.001)
levels, decreased the thiobarbituric acid reactive substances (p < 0.001), H2O2, O2

− (p < 0.05), and
NO2

− (p < 0.001), in the P + I group, when compared to the I group. In addition, a significant
reduction in the levels of cardiac damage markers, as well as a reduction in the extent of cardiac
damage, was found. In conclusion, PoPEx pre-treatment significantly attenuated the isoprenaline-
induced myocardial damage, primarily via the preservation of endogenous antioxidant capacity in
the rat model of takotsubo-like cardiomyopathy.

Keywords: isoprenaline; takotsubo cardiomyopathy; cardioprotection; Punica granatum; oxidative
stress
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1. Introduction

Takotsubo syndrome (TTS) is an acute heart failure syndrome, also known as “broken
heart syndrome”, that usually occurs after extreme physical and/or emotional stress [1,2].
Research has shown that TTS has similar clinical presentation and mortality rates as acute
myocardial infarction (AMI) [3,4]. Reports have shown that the prevalence of TTS is
approximately 2% (or up to 10% if only women are considered) of all patients with a clinical
presentation of acute coronary syndrome [5]. However, underlying pathophysiological
mechanisms are different. In contrast to AMI, no significant coronary artery obstruction
can be found in patients with TTS [6]. Typical findings in TTS are severe regional left
ventricular dysfunction, with akinesia of apical segments, that is associated with a metabolic
derangement of the affected myocardium [7]. Although the exact pathophysiological
mechanism is not entirely understood, the leading hypothesis of TTS pathogenesis seems
to be catecholamine-induced myocardial overstimulation [8]. This correlates with reports
of conditions such as phaeochromocytoma and thyrotoxicosis causing TTS [9,10], as well
as with findings that both adrenaline and noradrenaline levels are notably more elevated
in TTS than in AMI [11].

The isoprenaline model of myocardial injury is a long-standing animal experimental
model of myocardial infarction that was first described in the early 1960s by Chappel and
Rona [12,13]. The model has been widely used and investigated. In previous studies by
Shao et al., a novel rat model of TTS was proposed [7]. They showed that isoprenaline
administration replicates the most important characteristics of TTS, such as typical apical
ballooning, ECG changes, a complete recovery of cardiac function, and characteristic his-
tological findings. The isoprenaline overstimulation model has also been characterised
as a suitable model of TTS by several authors [4,14] In addition, Fineschi et al. proposed
a link between oxidative stress and catecholamine-induced myotoxicity [15]. Excessive
catecholamines may be auto-oxidised into reactive intermediates, further leading to ac-
cumulated intracellular lipids’ peroxidation [7]. Moreover, increased ROS levels have
been found in samples collected by endomyocardial biopsy from patients with takotsubo
syndrome [16].

The pomegranate (Punica granatum L.) is a fruit-bearing tree that originates from the
area of the Middle East [17]. Today, it is cultivated and consumed worldwide. The arils of
pomegranate have a recognisable deep red colour due to its high polyphenolic content [18],
which makes it a more potent antioxidant than vitamins E, A, and C [19]. Although arils
in the form of juice are the most consumed part of the plant, pomegranate peel comprises
up to 40% of the total fruit weight, and previous research has shown that it also has
high polyphenolic content of 48 different phenolic compounds [20], with a particularly
high content of hydrosoluble tannins, including punicalagin, punicalin, gallic acid, and
ellagic acid. These polyphenols have been proven to have antioxidant, lipid-lowering,
anti-inflammatory, and antihypertensive properties [17,21–23].

Although progress has been made in identifying causative factors for Takotsubo
syndrome, treatment of TTS is still based on expert opinion and symptomatic therapy
such as beta-blockers [24]. Considering that an increase in reactive oxygen species (ROS)
accumulation and subsequent increase of inflammatory cells and factors can be seen both
in patients suffering from TTS and in animal models [16,25], a hypothesis was derived that
modulators of inflammation and antioxidants could have the potential to be a preventive
or therapeutic option. Several studies have investigated the cardioprotective effects of
pomegranate juice or seed juice extract in the isoprenaline model [26,27], but there are
no sufficient data considering the cardioprotective potential of pomegranate peel extract
(PoPEx). Therefore, this study aimed to investigate the effects of pomegranate peel extract
pre-treatment on isoprenaline-induced takotsubo-like myocardial injury in rats.
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2. Materials and Methods
2.1. Pomegranate Peel Extract and Isoprenaline

The pomegranate peel extract used in this study was provided by the Institute for
Medicinal Plant Research “Dr Josif Pančić” (Belgrade, Serbia). Pomegranate fruits were
harvested from the East Herzegovina region, the Republic of Srpska, Bosnia, and Herze-
govina. After separation from the fruit, the peel parts were dried at room temperature
for 4–6 days and then ground to obtain the powder. Powder (100 g) was extracted in
an ultrasonic bath with 50% ethanol using a 1:10 solid-to-solvent ratio and then evapo-
rated to dryness [28]. Its polyphenolic content was quantified using HPLC. The analysis
showed that the main polyphenols were two punicalagin isomers: α- and β-punicalagin
(26.02 and 45.57 mg/g dry weight (DW), respectively). The other ellagitannins in the
extract were punicalin (31.31 mg/g DW), ellagic acid (22.82 mg/g DW), and gallic acid
(7.74 mg/g DW) [29]. Isoprenaline hydrochloride was purchased from Sigma-Aldrich
(St. Louis, MI, USA; purity > 98.5%) and dissolved using normal saline to a concentration
of 85 mg/mL to achieve a dose of 1 mL/kg.

2.2. Chemicals

The chemicals used for the oxidative stress assays were thiobarbituric acid (Carlo
Erba, Val de Reuil, France, CAS 504-17-6), sodium hydroxide (Lachner, Neratovice, Czech
Republic, CAS 1310-73-2), (Ethylenedinitrilo)tetraacetic acid disodium salt (Lachner, Czech
Republic, CAS 6381-92-6), sulfanilic acid (Acros Organics, Geel, Belgium, CAS 121-57-3),
n-1-naphthyl ethylenediamine dihydrochloride (Fisher Chemicals, Loughborough, UK,
CAS 1465-25-4), sodium chloride (Lachner, Czech Republic, CAS 7647-14-5), gelatine
(Acros Organics, CAS 9000-70-8), nitrotetrazolium blue chloride (Acros Organics, CAS
298-83-9), horseradish peroxidase (Sigma Aldrich, St. Louis, MO, USA, CAS 9003-99-0),
Tris(hydroxymethyl)aminomethane (Acros Organics, CAS 77-86-1), Potassium dihydrogen
phosphate (Lachner, Czech Republic, CAS 7778-77-0), glucose (Lachner, Czech Republic,
CAS 50-99-7), phenol red (Acros Organics, CAS 143-74-8), metaphosphoric acid (Acros
Organics, CAS 37267-86-0), di-sodium hydrogen phosphate (Carlo Erba, France, CAS 7558-
79-4), 5,5-dithio-bis-(2-nitrobenzoic acid) (Sigma Aldrich, USA, CAS 69-78-3), trisodium
citrate dihydrate (Fisher Chemicals, UK, CAS 6132-04-3), Glutathione reduced (Acros
Organics, CAS 70-18-8), and L-Epinephrine (Sigma Aldrich, USA, CAS 51-43-4).

2.3. Experimental Animals and Experimental Protocol

Male Wistar albino rats (n = 24) weighing 210 ± 20 g were used in this experiment.
Animals were kept under controlled laboratory conditions, at 21 ± 2 ◦C room temperature,
55 ± 5% humidity, and a 12 h light-dark cycle. They were given access to food and water
ad libitum. They received a standard pellet diet purchased from the Veterinary Institute
of Subotica (Subotica, Serbia). Animals were randomised into four groups. Animals in
the PoPEx (P; n = 6) and PoPEx + isoprenaline group (P + I; n = 7) were pre-treated with
100 mg/kg of PoPEx suspended in 0.5% carboxy methyl cellulose (CMC), while the animals
in the control (C; n = 5) and isoprenaline (I; n = 6) groups received an equivalent amount
of the CMC. Pre-treatment was delivered via oral gavage for 7 days. On the sixth and the
seventh day, rats in the I and P + I groups received 85 mg/kg/day of the isoprenaline
solution subcutaneously (s.c.), and the C and P groups received an equivalent amount of
saline. On the eighth day, animals were anaesthetised using a combination of 90 mg/kg
ketamine and 10 mg/kg xylazine and then sacrificed by exsanguination, and tissue and
blood samples were collected.

2.4. Hearth Tissue Homogenisation

After excision, rat hearts were rinsed in ice-cold normal saline and frozen at −20 ◦C.
Later on, the tissue homogenate was prepared in ice-cold phosphate buffer (pH 7.4) using an
HG-15D homogeniser (Witeg Labortechnik GmbH, Wertheim, Germany) and centrifuged
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at +4 ◦C and 1200× g. The supernatant was used to determine levels of TBARS, SOD, CAT,
and GSH.

2.5. Oxidative Stress Markers

Oxidative stress status was measured in heart tissue homogenate, plasma, and ery-
throcyte lysate. Plasma prooxidative markers, hydrogen peroxide (H2O2), superoxide
anion radical (O2

−), and nitrite (NO2
−) were measured using Pick and Keisari method [30],

Nitro Blue Tetrazolium (NBT) reduction method [31], and Green method [32], respec-
tively. The index of lipid peroxidation, thiobarbituric acid reactive substances (TBARS),
was determined using 1% TBA and 0.05 M sodium hydroxide (NaOH) and measured at
530 nm [33]. Antioxidants in erythrocyte lysate—CAT, SOD, and GSH—were measured
spectrophotometrically using Beutler methods [34–36].

2.6. Serum Cardiac Markers and Lipid Profile Measurement

The concentrations of high-sensitivity troponin I (hsTnI) and homocysteine (Hcy) were
measured on Abbot Alinity ci-series by chemiluminescent microparticle immunoassay
(CMIA). Additional markers of cardiac damage (AST, ALT, LDH), as well as serum lipid
status, were determined.

2.7. Histopathological Analysis

After dissection, isolated rat hearts were fixed in 10% formalin. Afterward, the samples
were moulded into blocks with paraffin wax and cut into 4 µm slices using a standard
issue microtome. The slices were then stained with haematoxylin and eosin dye (H&E).
Microscopic analysis of the myocardial injuries was performed, each slice was scored from
1 to 4, and an average group score was calculated. A score of 1 means that there were no
pathological changes in the myocardium; 2—mild damage, with multifocal degeneration
and mild inflammation infiltration or focal damage of cardiomyocytes; 3—moderate dam-
age, with severe myofibril degeneration and/or diffuse inflammation; 4—severe damage,
necrosis with diffuse inflammation.

2.8. Statistical Analysis

Statistical analysis was performed with IBM-SPSS Statistics version 17.0 software (SPSS,
Inc., Chicago, IL, USA). The Kruskal–Wallis test was used to compare the nonparametric
characteristics between the groups followed by Tukey and Bonferroni tests for post hoc
analysis. Results are presented as mean ± standard error, and p < 0.05 was considered
statistically significant.

3. Results
3.1. Effects on Oxidative Stress Markers in Serum, Erythrocyte Lysate, and Heart
Tissue Homogenate

The subcutaneous application of ISO caused a significant increase in the lipid peroxi-
dation index—thiobarbituric acid reactive substances (TBARS) in heart tissue homogenate,
and a decrease in levels of antioxidative enzymes—superoxide dismutase and catalase
(SOD, CAT), and reduced glutathione (GSH) measured in erythrocyte lysate and hearth
tissue (Figures 1 and 2). The ISO-treated groups also showed an increase in levels of plasma
prooxidative markers: hydrogen peroxide (H2O2), superoxide anion radical (O2

−), and
nitrite (NO2

−), coupled with an increase in plasma TBARS (Figure 3).
Pre-treatment with PoPEx attenuated the effects of isoprenaline and showed a signif-

icant increase in levels of antioxidative enzymes (homogenate-CAT p < 0.05; lysate-CAT
p < 0.001) and GSH (GSH p < 0.001), as well as a decrease in prooxidative markers (O2

−

p < 0.05; NO2
− p < 0.001). In addition, PoPEx-pre-treated groups showed a significant

reduction of both plasma and heart tissue TBARS (p < 0.001). On the other hand, in the case
of SOD and H2O2, pomegranate pre-treatment showed no beneficial effects. In the positive
control group (P group), a significant rise of antioxidative enzymes, for example, the heart
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tissue GSH and CAT and lysate GSH, were found. Rats in this group also showed a signifi-
cant decrease in prooxidative serum marker NO2

− and plasma TBARS. A similar pattern
can be found in the case of other antioxidative enzymes, such as lysate SOD and CAT, and
heart tissue TBARS and plasma H2O2 and O2

−, but without statistical significance.
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control group; I—isoprenaline group; P + I—pomegranate + isoprenaline group.

∧
p < 0.05 I vs. C;

# p < 0.05 P vs. C; *** p < 0.001 P + I vs. I.



Pharmaceutics 2023, 15, 1697 6 of 14

Pharmaceutics 2023, 15, x FOR PEER REVIEW 5 of 14 
 

 

    
(a) (b) (c) (d) 

Figure 1. Effects of Punica granatum peel extract pre-treatment on heart tissue homogenate thiobar-

bituric acid reactive substances (TBARS) (a), antioxidative enzyme levels—superoxide dismutase 

(SOD) (b) and catalase (CAT) (c), and reduced glutathione (GSH) (d). All values are expressed as 

mean ± SEM. C—control group; P—pomegranate control group; I—isoprenaline group; P + I—pom-

egranate + isoprenaline group. ˄ p < 0.05 I vs. C; # p < 0.05 P vs. C; * p < 0.05 P + I vs. I; *** p < 0.001 P 

+ I vs. I. 

 
 

 

(a) (b) (c) 

Figure 2. Effects of Punica granatum peel extract pre-treatment on the erythrocyte lysate levels of 

antioxidative enzymes—superoxide dismutase (SOD) (a) and catalase (CAT) (b), and reduced glu-

tathione (GSH) (c). All values are expressed as mean ± SEM; C—control group; P—pomegranate 

control group; I—isoprenaline group; P + I—pomegranate + isoprenaline group. ˄ p < 0.05 I vs. C; # 

p < 0.05 P vs. C; *** p < 0.001 P + I vs. I. 

    
(a) (b) (c) (d) 

Figure 3. Effects of Punica granatum peel extract pre-treatment on plasma thiobarbituric acid reactive 

substances (TBARS) (a), NO2− (b), H2O2 (c), and O2− (d). All values are expressed as mean ± SEM. 
Figure 3. Effects of Punica granatum peel extract pre-treatment on plasma thiobarbituric acid reactive
substances (TBARS) (a), NO2

− (b), H2O2 (c), and O2
− (d). All values are expressed as mean ± SEM.

C—control group; P—pomegranate control group; I—isoprenaline group; P + I—pomegranate +
isoprenaline group.

∧
p < 0.05 I vs. C; # p < 0.05 P vs. C; * p < 0.05 P + I vs. I; *** p < 0.001 P + I vs. I.

3.2. Effects on Biochemical Parameters and Serum Cardiac Markers

As the most sensitive marker of myocardial damage, hsTnI levels were determined
in the collected serum samples. Results showed a significant increase (p < 0.01) of hsTnI
levels in the I group compared to the control. This effect was significantly attenuated
in the PoPEx-pre-treated (P + I) group. As additional markers of cardiac damage, the
levels of AST, ALT, and LDH and the level of homocysteine were significantly increased
in ISO-treated group. In the PoPEx-pre-treated (P + I) group, the serum levels of these
markers were significantly lower than in the I group (Table 1). It was also noted that all the
markers of cardiac damage had lower levels in the P group when compared to the control,
but without statistical significance.

Table 1. Effect of PoPEx pre-treatment on biochemical parameters and serum cardiac markers.

C I P P + I

AST (U/L) 278.60 ± 82.13 1472.17 ± 708.62 * 225.17 ± 58.20 600.57 ± 757.43 #
ALT (U/L) 116.20 ± 41.57 1132.00 ± 1182.71 * 87.17 ± 36.87 192.71 ± 122.08 #
LDH (U/L) 1162.80 ± 545.44 3922.67 ± 1243.23 * 981.50 ± 347.02 1176.33 ± 413.99 #

hsTnI (pg/mL) 70.73 ± 53.24 46,021.13 ± 29,975.57 * 32.40 ± 24.04 888.30 ± 549.43 #
Hcy (µmol/L) 5.24 ± 0.72 15.67 ± 1.67 * 5.88 ± 0.87 11.43 ± 1.72 #

All values are expressed as mean± SEM. C—control group; P—pomegranate control group; I—isoprenaline group;
P + I—pomegranate + isoprenaline group. AST—aspartate transaminase; ALT—alanine transaminase; LDH—
lactate dehydrogenase; hsTnI—high-sensitive troponin Hcy—homocysteine; * p < 0.05 vs. C; # p < 0.05 vs. I.

3.3. Effects on Lipid Status

A lipid panel analysis was performed, determining levels of total cholesterol (TC),
triglycerides (TG), LDL, and HDL. Although no statistical significance was found, isopre-
naline administration showed a tendency toward lowering the HDL levels and rising the
levels of TC, TG, and LDL (I vs. C), while PoPEx pre-treatment showed a tendency to
decrease TC, TG, and LDL levels and elevate HDL levels (P + I vs. I) (Table 2).

Table 2. Effect of PoPEx pre-treatment on lipid status.

C I P P + I

TC (mmol/L) 1.24 ± 0.15 1.37 ± 0.20 1.02 ± 0.12 1.21 ± 0.31
HDL (mmol/L) 0.58 ± 0.08 0.45 ± 0.08 0.45 ± 0.08 0.49 ± 0.21
LDL (mmol/L) 0.10 ± 0.00 0.22 ± 0.04 0.10 ± 0.00 0.19 ± 0.07
TG (mmol/L) 1.42 ± 0.42 1.83 ± 1.78 1.43 ± 0.47 1.19 ± 0.32

All values are expressed as mean ± SEM. C—control group; P—pomegranate control group; I—isoprenaline
group; P + I—pomegranate + isoprenaline group. TC—total cholesterol; HDL—high-density lipoproteins; LDL—
low-density lipoproteins; TG—triglycerides. Statistical analysis was done using Tukey and Bonferroni tests for
post hoc analysis and no statistical significance was found (p > 0.05).
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3.4. Pathohistological Analyses of Rat Hearts

Microscopic investigation of myocardium samples of rats treated with isoprenaline
showed severely damaged myocardium with fragmented and degenerated cardiomyocytes,
loss of myofibrils, interstitial oedema, and dense inflammatory infiltrate, as well as perivas-
cular haemorrhage. However, in the PoPEx-pre-treated (P + I) group, only a mild degree
of tissue damage was found (Figure 4). The average myocardial damage score was also
determined (Figure 5). A significant decrease in the level of myocardial damage was found
in the P + I group when compared to the isoprenaline (I) group.
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Figure 4. Representative microphotographs of rat heart sections stained by haematoxylin and eosin
(magnification 20×, scale bar = 100 µm). Myocardium structure presenting as normal in the (a) control
and (b) PoPEx group; (c) isoprenaline group myocardium showing severely damaged myocardium
with fragmented and degenerated cardiomyocytes (black arrow), myofibril loss, interstitial oedema
(white arrow), and dense inflammatory infiltrate (black arrowhead), as well as perivascular haemor-
rhage (white arrowhead); (d) PoPEx + Isoprenaline group myocardium presenting with mild damage,
no degenerative cardiomyocyte changes, and a slight degree of inflammation (black arrowhead),
interstitial oedema (white arrow) and haemorrhage (white arrowhead).
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Figure 5. Effects of pomegranate pre-treatment on myocardial damage score. The values repre-
sent the mean damage score of the group. The following scoring system was used: Score 1—no
pathological changes; Score 2—mild damage, with multifocal degeneration and mild inflammation
infiltration or focal damage of cardiomyocytes; Score 3—moderate damage, with severe myofibril
degeneration and/or diffuse inflammation; Score 4—severe damage, necrosis with diffuse inflamma-
tion; C—control group; P—pomegranate control group; I—isoprenaline group; P + I—pomegranate
+ isoprenaline group.

4. Discussion

In the present study, an isoprenaline model of takotsubo-like myocardial injury was
used to investigate the cardioprotective potential of PoPEx. The results show that seven-day
pre-treatment with 100 mg/kg of PoPEx led to a decrease in oxidative stress markers, an
increase in the levels of antioxidant enzymes, and a reduction of myocardial damage and
serum cardiac damage markers.

Isoprenaline acts as a non-selective β1,2-AR agonist via the Gs-cyclic adenosine
monophosphate–protein kinase A (Gs-cyclic AMP–PKA) pathway, thus having positive
chronotropic and inotropic effects on the myocardium [37]. This mimics elevated plasma cat-
echolamines that can be found in patients with Takotsubo syndrome [11]. Previous studies
have shown that isoprenaline administration in rats leads to takotsubo-like cardiomyopa-
thy, mimicking characteristic Takotsubo syndrome findings such as apical ballooning [7].
It has been proposed that due to catecholamine overstimulation, a switch of intracellular
signalling pathways, from Gs to Gi protein signalling, happens, thus causing a metabolic
change in the myocardium, predominantly in the apical area, which has a higher β-AR
density [7,38,39]. In addition, accumulated catecholamines are auto-oxidised, creating
reactive intermediates and subsequent intracellular lipid peroxidation [7]. This makes the
myocardium more susceptible to further oxidative damage, via oxidative deterioration
of the membrane polyunsaturated fatty acids, which leads to the alteration of membrane
structure and enzyme activity [40].

To study the extent of oxidative tissue damage and antioxidant status, levels of TBARS
were measured in the collected plasma samples and heart tissue homogenate, and the
activity of SOD, CAT, and GSH was determined in tissue and erythrocyte lysate samples.
SOD and CAT are free radical scavenging enzymes that represent the first-line defence
against oxidative tissue damage [41,42]. SOD converts superoxide radicals into hydrogen
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peroxide, which is then converted to molecular oxygen and water by CAT [27,43]. On the
other hand, glutathione peroxidase leads to the reduction of hydrogen peroxide radicals.
Consequently, the levels of all three parameters are decreased when tissues are exposed
to oxidative damage due to increased utilisation, while the levels of hydrogen peroxide,
superoxide anion radical, and nitrite increase. PoPEx pre-treatment caused a restoration
of antioxidative enzyme levels and a decrease of the free radical levels, suggesting that
pomegranate acts as a free radical scavenger, thus sparing the antioxidant capacity of
endogenous enzymes. A similar result was found in a study by Jadeja et al., who used
pomegranate juice as a pre-treatment [27].

Although it is understood that catecholamine overstimulation plays a major role in the
pathogenesis of Takotsubo syndrome, less is known about the subcellular mechanisms of
the cardiac dysfunction that follows the acute damage. Overdosing rats with isoprenaline
causes injury of the myocardium, primarily in the apex area, that later undergoes cardiac
remodelling and subsequent dysfunction [14]. Willis and collaborators found that mito-
chondrial dysfunction and exacerbated oxidative stress were causative factors of cardiac
dysfunction in isoprenaline-induced Takotsubo-like cardiomyopathy [14]. This suggests
that the antioxidative capacity of PoPEx is an important component of its cardioprotective
potential. The antioxidative potential of pomegranate peel was previously demonstrated in
both in vivo and in vitro studies, and the results were summarised in a recent review by
Fahmy et al. [44]. The main reason for the high antioxidant potential of PoPEx is thought to
be its high polyphenolic content. The major polyphenols in the PoPEx used in the present
study were α- and β-punicalagin, followed by punicalin and gallic and ellagic acid [29]. Its
antioxidant capacity was previously investigated in a study by Mandić–Kovačević et al.,
who used a variety of in vitro models and showed high values of antioxidant capacity [45].
Other studies have shown that among other more widely used pomegranate products,
such as pomegranate pulp, seed, and juice, PoPEx has significantly higher antioxidative
capacity [46,47]. Although the present study focused on providing initial evidence of the
cardioprotective potential of PoPEx in experimentally induced Takotsubo-like cardiomy-
opathy, mechanisms by which PoPEx and/or its polyphenols exhibit their antioxidative
and anti-inflammatory activities can be found. It has been shown that peel extracts have the
capacity to scavenge superoxide, hydroxyl anion, and peroxyl radicals [48]. The mechanism
through which polyphenols scavenge radicals is considered to be a donation of hydrogen
atoms, which reduces radicals to their non-radical form, i.e., DPPH is reduced to DPPH-H.
This consequently inhibits radical activity [49]. In addition, Al-Gubory et al. showed that
pomegranate peel extract also acts via upregulation of the antioxidant enzymes activity,
such as SOD and CAT, glutathione peroxidase (GPx), glutathione-S-transferase (GST), and
glutathione reductase (GR) [50].

Mechanical damage or the destruction of myocytes due to ischaemia leads to damage
or even ruptures in their cellular membranes. This results in the leakage of intracellular
enzymes into the bloodstream, thus elevating their activities [40,51]. As it is known, the
extent of tissue damage is proportional to the amount of enzyme released [52] Well-known
markers of cardiac muscle damage, hsTnI, AST, ALT, and LDH were measured. Similar
to other studies, isoprenaline administration led to an increase in hsTnI, AST, ALT, and
LDH [52–56]. Significant mitigation of these effects was accomplished with seven-day
PoPEx pre-treatment, thus indicating that pomegranate helps to maintain membrane
integrity, therefore restricting the leakage of intracellular enzymes. A previous study by
Priscilla et al. (2009) investigated the cardioprotective potential of gallic acid, one of the
phenolic acids found in the pomegranate extract [40]. The authors found that 10-day oral
pre-treatment with 15 mg/kg of gallic acid led to a significant decrease in CK, CK-MB, AST,
ALT, and LDH plasma levels, showing the preservation of membrane integrity. Membrane
preservation has also been found by other authors who investigated different antioxidative
compounds [42,57], which suggests that PoPEx, through its antioxidative components,
prevents oxidative damage of the myocyte cellular membrane, therefore leading to the
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reduction of isoprenaline-induced myocardial tissue damage and, later on, the preservation
of myocardial function.

To further investigate the extent of myocardial damage, a pathohistological (PH) ex-
amination was conducted. Isoprenaline induced severe heart damage with fragmented and
degenerated cardiomyocytes, interstitial oedema, and dense inflammatory infiltrate. How-
ever, in the PoPEx-pre-treated (P + I) group, no degenerative cardiomyocyte changes were
found, but only a slight degree of inflammation and haemorrhage. A similar finding was
obtained in the rats pre-treated with gallic acid [40], a phenolic acid that is one of the main
components of PoPEx. This was objectified by determining an average myocardial damage
score. PoPEx pre-treatment significantly lowered the damage score, further supporting its
anti-inflammatory and cardioprotective effects.

Balanced lipid metabolism is an important component of maintaining cardiovascular
health. High levels of cholesterol and LDL cholesterol are known predictive factors of
potential heart disease that positively correlate with the incidence of AMI. Isoprenaline is a
synthetic non-selective β adrenergic agonist that activates adenylate cyclase, leading to an
increase in cAMP formation. Subsequently, cAMP-dependent protein kinase A is activated,
which further leads to triacylglycerol hydrolysis and hyperlipidaemia [58]. Lipids also
play an important role in maintaining stability and modifying the composition of the
cellular membrane [42]. HDL, on the other hand, inhibits LDL uptake and facilitates
cholesterol transport and catabolism and is therefore in negative correlation with AMI
incidence [42]. To analyse the lipid profile, the levels of TC, LDL, HDL, and TG were
measured. In the isoprenaline vehicle control group, the results showed a tendency toward
an increase in TG, TC, and LDL levels and a decrease in HDL levels, which was consistent
with previous studies [41,42]. PoPEx pre-treatment caused a reversal of these effects, but
without statistical significance. In a double-blind, placebo-controlled randomised trial,
Grabez et al. (2019) showed a similar effect in patients with type 2 DM treated with
500 mg/day of PoPEx over 8 weeks [23]. Using the same extract as in the present study,
they noted a significant increase in HDL accompanied by a decline in the plasma levels of
LDL, TG, and TC [22]. Although some studies are in agreement with these results [59,60]
and others are not [61,62], these discrepancies could be explained by the differences in
the experimental protocols. Previous studies that investigated the effects of pomegranate
components indicated that polyphenols, mainly punicalin and ellagic acid, showed dose-
dependent lipid-lowering effects. The possible molecular mechanisms of these effects are
related to the activation of peroxisome proliferator-activated receptor 23 γ (PPARγ) and
enhanced cholesterol metabolism [63]. Gallic acid has been reported to inhibit cholesterol
esterase, but orally administered polyphenols have also been shown to bind bile acids in
the digestive system and therefore increase their faecal excretion [64].

In the I group, an increase in homocysteine (Hcy) levels was noted. Similar results have
been found in other studies using the ISO model [65–67]. Homocysteine is considered to be
an independent risk factor for cardiovascular diseases [68] that increases ROS production,
thus causing mitochondrial dysfunction and promoting oxidative damage [69–71]. PoPEx
administration significantly lowered Hcy levels, which is in concordance with a study by
Kannan et al. (2011) [65] who pre-treated rats with ellagic acid, one of the most abundant
polyphenols present in the PoPEx extract used in this study.

5. Conclusions

The present study provides an initial insight into the use of pomegranate peel extract
or PoPEx as an efficient cardioprotective agent in the model of Takotsubo cardiomyopathy.
PoPEx administration led to the alleviation of oxidative heart tissue damage, reduced
the extent of tissue inflammation, and induced a rise in the antioxidant potential of the
myocardium. Nonetheless, further studies are needed to investigate the molecular mecha-
nisms related to the antioxidative and cardioprotective effects of PoPEx in Takotsubo-like
cardiomyopathy.
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