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Abstract: Microbubbles are 1–10 µm diameter gas-filled acoustically-active particles, typically stabi-
lized by a phospholipid monolayer shell. Microbubbles can be engineered through bioconjugation of
a ligand, drug and/or cell. Since their inception a few decades ago, several targeted microbubble
(tMB) formulations have been developed as ultrasound imaging probes and ultrasound-responsive
carriers to promote the local delivery and uptake of a wide variety of drugs, genes, and cells in differ-
ent therapeutic applications. The aim of this review is to summarize the state-of-the-art of current
tMB formulations and their ultrasound-targeted delivery applications. We provide an overview
of different carriers used to increase drug loading capacity and different targeting strategies that
can be used to enhance local delivery, potentiate therapeutic efficacy, and minimize side effects.
Additionally, future directions are proposed to improve the tMB performance in diagnostic and
therapeutic applications.

Keywords: targeted microbubbles; ultrasound imaging probes; ultrasound-targeted delivery;
therapy; immunotherapy

1. Introduction

Microbubbles (MBs) are gas-filled particles of 1–10 µm in diameter suspended in an
aqueous medium. The gas core is highly compressible, making the MB an ideal acoustically
responsive agent for ultrasound. However, uncoated MBs are highly unstable owing to
their Laplace pressure [1] and tendency to coalesce [2]. Therefore, shells comprising lipid,
surfactant, protein, polymer or other materials have been developed to stabilize the MBs for
in vitro and in vivo use (Figure 1) [3,4]. Current clinically approved MBs comprise sulfur
hexafluoride, perfluorobutane or perfluoropropane gas, and a phospholipid or protein
shell (Table 1) [4–6]. These commercial MBs have been approved as ultrasound contrast
agents for different diagnostic purposes including echocardiography, radiology, and other
diagnostic imaging purposes [5–7].

Following their clinical translation as ultrasound imaging contrast agents, MB formula-
tions have been engineered as ultrasound-responsive carriers to promote and enhance the
local delivery and uptake of a wide variety of drugs [8–11], genes [12–14], and cells [15–20] for
various therapeutic applications. Many of these applications include the delivery of therapeu-
tic agents to treat the brain [19–23], heart [15,24–26], and cancer [27–29]. For immunotherapy,
MBs can facilitate the delivery of immune cells, cytokines, antigens, and antibodies to promote
the activation and infiltration of immune cells from the level of single cells to tissues, organs,
and even physiological systems [28,30–32]. In cancer, for example, the concept is to induce the
modulation and modification of the tumor microenvironment with a subsequent enhanced
adaptive immune-cell activation to destroy the primary tumor and its metastases.

At the cellular level, increased uptake of therapeutic molecules into the cytosol has been
attributed to sonoporation, i.e., the creation of a transient pore in the cell plasma membrane
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that increases permeability to molecules into the cytosol [33,34]. This effect is elicited by MB
cavitation at the cell surface. MB cavitation refers to volumetric oscillations of the gas core and
depends on the frequency, pressure, and waveform of the acoustic pulse. Fortuitously, MBs
resonate at clinical ultrasound scanner frequencies, in the 1–10 MHz range. At low acoustic
pressures, MBs exhibit stable cavitation, whereby repeated harmonic oscillations induce pushing-
and-pulling effects and microstreaming that impart contact and shear forces against the cell
membrane (Figure 2A) [35,36]. This mode of operation can be detected by passive acoustic
cavitation and cavitation mapping as harmonics of the fundamental diving frequency [37].
At high acoustic pressures, MBs oscillate more violently, leading to rapid collapse and other
inertial effects, such as microjets, shockwaves, and fragmentation (Figure 2B) [35,36]. This
mode of operation can be detected by passive acoustic cavitation and cavitation mapping as
a broadband response, although inertial cavitation can also enhance harmonics [37]. Stable
and inertial cavitation can trigger various cellular effects, such as plasma membrane pore
formation, cytoskeleton reorganization, transmembrane calcium (Ca2+) influx, potassium (K+)
efflux (hyperpolarization), and reactive oxygen species production (Figure 2C). These biological
effects lead to enhanced cellular delivery through mechanisms such as drug convection and
diffusion through the pores (4–70 kDa) and endocytosis (70–500 kDa) [33–35,38].
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cavitation, which enhance the internalization of drugs.
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Table 1. Current clinically approved MB ultrasound contrast agents.

Contrast Agent Manufacturer Indications Shell Gas Concentration
(MBs/mL)

Size
(Diameter) Half-Life (min) Volume Dose

(µL/kg) a
Mechanical
Properties Reference

Optison GE Healthcare LVO/EBD

Protein:
HSA

ψ0 = −9.5 to
−25.3 mV

C3F8 5–8 × 108
3.0–4.5 µm

(max. 32 µm)
95% < 10 µm

0.5 ± 0.3 6 f = 2–4 MHz
χ = 0.9 N/m [39–43]

Definity Lantheus
LVO/EBD,
breast, liver,

vascular.

Phospholipid:
DPPC, DPPA,

DPPE-
mPEG5000

ψ0 = −1.1 to
−4.2 mV

C3F8 1.2 × 1010
1.1–3.3

(max. 20 µm)
98% < 10 µm

2.0 ± 0.3 10 f = 2–6 MHz
χ = 0.5–2.5 N/m [40,42–46]

SonoVue Bracco

LVO/EBD,
breast, liver,

vascular, urinary
tract.

Phospholipid:
DSPC, DPPG,

PA
ψ0 = −28.3 mV

SF6 1.5–2.5 × 108
1.5–2.5

(max. 20 µm)
99% < 10 µm

1.04 ± 0.15 25 f = 1.5–2 MHz
χ = 0.2–0.3 N/m [40,44,47–49]

Sonazoid GE Healthcare
Myocardial

perfusion, liver,
breast.

Phospholipid:
H-EPS

ψ0 = −76 to −82
mV

C4F10 1.2 × 109
1.0–5.0

(max. 10 µm)
99.9% < 7 µm

2.6 ± 0.2 15 f = 4–6 MHz
χ = 0.6 N/m [50–52]

EBD = endocardial border definition; LVO = left ventricular opacification; HSA = human serum albumin; DPPC = 1,2-dipalmitoyl-sn-glycero-3-phosphocholine; DPPA = 1,2-
dipalmitoyl-sn-glycero-3-phosphate; DPPE-mPEG5000 = 1,2- dipalmitoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-5000]; DSPC = 1,2-distearoyl-sn-glycero-
3-phosphocholine; DPPG = 1,2-dipalmitoyl-sn-glycero-3-phospho-(1′-rac-glycerol); PA = palmitic acid; H-EPS = hydrogenated egg phosphatidylserine sodium; ψ0 = zeta potential
measured; C3F8 = perfluoropropane; SF6 = sulfur hexafluoride, C4F10 = perfluorobutane; MBs = microbubbles; a Bolus intravenous injection; f = resonance frequency; χ = shell elasticity.
Adapted with permission from references [4,5,21].



Pharmaceutics 2023, 15, 1625 4 of 31

At the vascular level, increased transport of therapeutic molecules from the vessel
lumen into the surrounding tissue parenchyma also occurs by sonoporation, including
the mechanisms described above for uptake into the endothelium and then transcytosis
or disruption of the endothelium (e.g., rupture of tight junctions to create transport paths
between endothelial cells). This effect can be captured by an increase in the Biot number
(Bi), which is defined as

Bi =
KmLtiss

Dtiss
(1)

where Km is the mass transfer coefficient, equivalent to the endothelial cell permeability
(m/s), and is proportional to the pharmacokinetic first-order rate constant (K = Km A,
where A is the endothelial surface area) between the central and tissue compartments; Dtiss
is the drug diffusivity in the tissue; and Ltiss is the diffusion length in tissue, typically the
half-length between capillaries (~100 µm). Microbubble sonoporation increases Km in a
dose-dependent manner, making diffusion into tissue the limiting transport barrier [53].
Here, the dose includes not only the drug dose, but also the microbubble dose (microbubble
volume dose) and ultrasound dose (mechanical index), which can be estimated by the
received echo intensity by passive cavitation detection.

Therapeutic agents can be co-administered with MBs or loaded onto the MB shell. This
review focuses on shell modification to bioconjugate molecular ligands, drugs (including
nucleic acids), nanoparticles and/or cells for therapeutic applications. Articles utilizing
so-called “nanobubble” formulations (<1 µm diameter) were excluded from this review. By
incorporating specific targeting moieties into the shell, MBs can be engineered to create
targeted formulations (tMBs) that exhibit improved pharmacokinetic and acoustic perfor-
mance, ligand-receptor targeting, biological activation, immunomodulation, and many
other functions. With so many options for MB composition, processing, size, microstructure
and properties, there is a wealth of opportunity to synthesize innovative targeted MB
designs for enhanced performance. Thus, the aim of this review is to summarize the state-
of-the-art of current engineered MB formulations and their ultrasound-targeted delivery in
different biomedical applications.

2. Microbubble Formulations
2.1. Shell Composition
2.1.1. Phospholipid-Coated Microbubbles

Phospholipid-coated MBs have a thin and soft shell (3–5 nm) (Figure 1) that provides
excellent acoustic response for US-contrast imaging. However, for prolonged imaging
and drug delivery, the MBs have limited circulation persistence and drug loading ca-
pacity [3,54,55]. To optimize MB performance by controlling their structure, properties,
targeting, drug loading, and acoustic response, the shell is made up of saturated diacyl
phosphatidylcholine lipids (PC) (80–90 mol%) and PEG-lipid emulsifiers (10–20 mol%) [56].
Longer lipid chains increase intermolecular forces between the phospholipids [57], increase
shell rigidity [58,59], decrease shell permeability [60,61], and improve MB stability [62–64].
This results in superior acoustic stability, stiffer shell elasticity, and reduced fragmentation
propensity [62,65]. They also prolong the in vivo half-life [63] and increase the response at
the second harmonic frequency [62,65]. Moreover, MBs with long lipid chains can achieve
high delivery efficiency for larger molecules [66].

MBs can be quickly eliminated by opsonization, leading to decreased circulation time.
To address this issue, buried-ligand architecture has been developed to extend lipid-coated
MB circulation time [67–69], preserve targeted specificity, and reduce the immunogenic
response by blocking complement protein C3b fixation [67,70,71].

2.1.2. Protein-Coated Microbubbles

Protein-coated MBs have a thicker and stiffer layer (15–150 nm) composed of natural
proteins (Figure 1). These MBs exhibit moderate rigidity and drug-loading capabilities, as
well as good stability and moderate acoustic response [3,72,73]. At present, only Optison is
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clinically approved and commercially available as a protein-coated MB for UCAs (Table 1).
However, the development of novel albumin-tMBs is gaining interest due to their potential
for rapid approval and clinical translation as a drug delivery system.

To maximize albumin-MBs’ loading efficiency, the physicochemical properties of
drugs play a critical role. Drug loading can be increased by pre-loading the drugs prior
to MB synthesis or using drugs with high albumin binding percentages at higher feed ra-
tios [74]. Additionally, chemical modifications such as disulfide bonds and glutaraldehyde
cross-linking [75] can link therapeutic molecules or other loaded carriers to albumin-MBs.
Physical properties such as size, shape, storage stability, and acoustic response can be
tuned by incorporating dextrose [74,76,77], glycerol, and propylene glycol [77], amphi-
pathic molecules [78], polymers [79], PEGylation [80] or increasing the number of thiols
groups [81] into the albumin shell. Several in vitro and in vivo studies have employed
these methods to propose using of albumin-MBs as targeted carriers [82–87] and multi-
modal contrast agents [84,86,88–91]. These strategies offer promising options to develop
targeted albumin-MB formulations that can enhance their performance in US-image-guided
drug delivery applications. Additionally, proteins such as lysozyme and oleosin [92] are
alternative candidates that could be used to create new protein-tMB constructs.

2.1.3. Polymer-Coated Microbubbles

Polymer-coated MBs are composed of a thick and stiff layer (50–500 nm) of biodegrad-
able, natural or synthetic polymers (Figure 1). These MBs can encapsulate either hydrophilic
and hydrophobic molecules, carry higher drug doses and enhance MB stability during
circulation, more so than typical protein and phospholipid MBs. Nevertheless, their in-
compressibility and rigidity lead to suboptimal US imaging capability and limited acoustic
response [3,72,93]. To enhance polymer-MB drug loading capacity and acoustic proper-
ties, their chemical composition or polymer molecular weight (MW) is often modified
to adjust the shell’s elasticity and thickness. Increasing the drug’s hydrophobicity and
molecular weight also boosts loading capacity, stability, and drug release [94]. Proteins [95]
or high MW surfactants [96] can also be used to fine-tune MB loading capacity and acoustic
response by regulating their stability, size, and shell thickness.

2.2. Gas Composition

The composition of the gas core plays a significant role in the stability of MBs. MBs
composed of PFC and SF6 gases, which have lower solubility in blood and higher molecular
weight, diffuse more slowly across the MB shell, leading to longer circulation persistence.
A recent study has shown that MBs filled with C3F8 or C4F10 were highly stable, exhibited
sustained in vivo circulation, and demonstrated more efficient delivery of Evans blue into
the brain without causing side effects as compared to SF6-MBs [97].

MBs are now being used as carriers for therapeutic gases, such as NO and O2, to
potentially regulate the tumor microenvironment or to enhance immune responses. O2-
MBs, for example, have been used to locally release O2 into tumors, thereby improving
therapeutic efficacy by reducing hypoxic treatment resistance [98,99]. Additionally, O2-MBs
can normalize dysfunctional vessels, enhancing vascular maturity, blood perfusion, and
drug penetration [100]. Meanwhile, NO-MBs can control the release of NO to mitigate
oxidative stress and apoptosis during ischemia–reperfusion injury [101], enhance the
targeted delivery of mesenchymal cells into the infarcted myocardium, and induce regional
angiogenic response [15]. In addition, NO-MBs accelerate deep vein thrombosis resolution
by reducing platelets and inflammatory cells aggregation, enhancing collagen turnover
and stimulating an anticoagulant condition of endothelium [102].

The use of O2- and NO-MBs is still limited due to the properties of the diffusible
gases, resulting in lower storage stability and significantly shorter circulation persistence
than PFC-MBs. To solve this problem, our group has demonstrated that the lipid shell can
be engineered with longer acyl chains (C22:0) to increase O2 payload and enhance local
delivery [103]. Additionally, O2-MBs with larger diameters (2–10 µm) have demonstrated
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an 8-fold increase in half-life compared to smaller diameters (0.5–2 µm) [104]. Recent
approaches propose incorporating folate ligands or SPIONs into drug-loaded-O2MBs to
accumulate them in a target region by molecular targeting or using an external magnetic
field. This incorporation enhances stability, improves drug delivery, and suppresses tumor
growth [105–107]. Additionally, C4-d-tMBs composed with a gas core combination of
PFC/NO have been successfully used to alleviate cardiac allograft rejection by suppressing
thrombosis and inflammatory cell infiltrates, while prolonging the survival time two-
fold [108].

2.3. Size and Microbubble Volume Dose

The varying components of MBs, including the shell, gas core, size, concentration,
and recommended dosage, lead to distinct acoustic responses [109,110], circulation half-
life [110,111], and biological effects [111–114] for both clinically approved MBs (Table 1) and
experimental tMB formulations (Tables 2–6). The biological impact of MB acoustic behavior
is dose-dependent [115], so selecting dosing strategies for each MB formulation that produce
comparable bioeffects is crucial. The MB gas volume dose (MVD) is a unified dose metric
that integrates MB size distribution and concentration into a single parameter [22,116]. Our
group has demonstrated that MVD can be used to: (1) maximize US imaging contrast and
circulation persistence (Figure 3A) [112]; (2) achieve similar, consistent, and comparable
molecular delivery across the blood–brain barrier (Figure 3B) [116]; (3) predict, compare,
and characterize the MB pharmacokinetics behavior (Figure 3C) [117]; and (4) match the
harmonic and broadband cavitation doses regardless of MB size (Figure 3D) [37]. Moreover,
matching the gas volume fractions of different commercial MBs with varying sizes and
distributions results in equivalent permeabilization effects [118].
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Table 2. Microbubbles targeted with a therapeutic ligand used for therapy.

Ligand Type Ligand
Species Conjugation Chemistry Microbubble Composition Ultrasound Parameters Animal/Disease Model Reference

Protein SDF-1α EDC/sulfo-NHS

Shell: DSPC, DPPG,
PEG4000-COOH

Gas: C3F8
Diameter: 1–5 µm
Dose: unknown

f = 4 MHz
MI = 1.5

Time = 1.15 min
Rat/Diabetic nephropathy [119]

GPVI-Fc Avidin-biotin

MicroMarker™
Shell: Phospholipid

Gas: C4F10/N2
Diameter: 2.3–2.9 µm

Dose: 2.8 × 108 MBs/kg or
5.3 µL/kg MVD

f = 24 MHz
Time = 2 min

Mouse/
Atherosclerosis [120]

Antibody Aβ 1-42 Avidin-biotin

Shell: DSPC, DPPA,
PEG4000
Gas: C3F8

Diameter: 2.13 µm
Dose: 5.8 × 108 MBs/kg or

2.9 µL/kg MVD

f = 3 MHz
MI = 0.8

PRF = 50 Hz
Time = 5 min

Mouse/Alzheimer’s disease [20]

C4d mAb Avidin-biotin

Shell: DPPC,
DSPE-PEG-2000, -Biotin

Gas: C3F8/NO
Diameter: 0.96 ± 0.07 µm

Dose: 5.8 × 106 MBs/kg or
0.003 µL/kg MVD

f = 13 MHz
MI = 0.33

Time = 5 min

Rat/Heterotopic Heart
transplant [108]

IL-8 mAb Avidin-biotin

USphere™ Labeler
Shell: Phospholipid

Diameter: 1.8 µm
Dose: 1.2 × 109 MBs/kg or

3.6 µL/kg MVD

f = 1 MHz
MI = 1.5

Power = 5 W
Time = 1 min

Rabbit/
Atherosclerosis [121]

DSPC = 1,2-distearoyl-sn-glycero-3-phosphocholine; DPPG = 1,2-dipalmitoyl-sn-glycero-3-phospho-(1′-rac-glycerol); DPPA = 1,2-dipalmitoyl-sn-glycero-3-phosphate; PEG4000-
COOH = polyethylene glycol-4000-carboxy; DSPE-PEG2000 = 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000]; C3F8 = perfluoropropane;
C4F10 = perfluorobutane; NO = nitric oxide; MVD = Microbubble Volume Dose; f = frequency; MI = mechanical index; PRF = pulse repetition frequency.
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Table 3. Drug or gene loaded-MBs targeted with a ligand used for therapy.

Ligand Type Targeting
Ligand Therapeutic Molecule Conjugation

Chemistry Microbubble Composition Ultrasound Parameters Animal/Disease Model Reference

Antibody VEGFR2 mAb pHSV-TK Avidin-biotin
Electrostatic

Shell: DPPC, DPTAP,
DSPE-PEG2000, -Biotin

Gas: C3F8
Diameter: 1.1 ± 0.1 µm

Dose: 1.8 × 1010 MBs/kg or 12.4 µL/kg MVD

f = 1 MHz
PNP = 0.7 MPa

PRF = 5 Hz
Time = 2 min

Mouse/Glioma
tumor [122]

VEGFR2 mAb BCNU Avidin-biotin
Hydrophobic

Shell: DPPC,
DSPE-PEG2000, -Biotin

Gas: C3F8
Diameter: 1.79 ± 0.13 µm

Dose: 1.4 × 1010 MBs/kg or 41 µL/kg MVD

f = 1 MHz
PNP = 0.7 MPa

DC = 5%
PRF = 5 Hz

Time = 1 min

Rat/Glioma
tumor [123]

CD105 pEZ-M46-ES Avidin-biotin
Electrostatic

Shell: DPPC, Cholesterol,
DSPE-PEG2000, -Biotin

Gas: C3F8
Diameter: 1.44 ± 0.21 µm

Dose: 1.3 × 1010 MBs/kg or 20.6 µL/kg MVD

f = 1 MHz
PNP = 0.7 MPa

DC = 50%
I = 2 W/cm2

PRF = 5 Hz
Time = 30 s

Mouse/Hind limb
tumor [124]

RGD Urokinase Electrostatic
SonoVue

Diameter: 1.5–2.5 µm
Dose: 4.4 × 107 MBs/kg or 0.18 µL/kg MVD

f = 1.6 MHz
MI = 1.1

PRF = 24 kHz
Time = 10 min

Pig/Thrombosis [125]

VCAM-1 miR-126 Avidin-biotin

VisualSonics Target-Ready MBs
Shell: Phospholipid

Gas: C4F10/N2
Diameter: 1.5 µm

Dose: 3.7 × 109 MBs/kg or 6.6 µL/kg MVD

f = 10 MHz
MI = 0.66

I = 0.076 W/cm2

Time = 2.5 min

Mouse/Aortic
Aneurysm [126]

Peptides LHRa Paclitaxel Avidin-biotin
Hydrophobic

Shell: DPPC, DSPE-PEG2000-Biotin
Gas: C3F8

Diameter: 1.8 ± 0.2 µm
Dose: 1.5 × 109 MBs/kg or 4.5 µL/kg MVD

f = 0.3 MHz
I = 1 W/cm2

DC = 50%
Time = 3 min

Mouse/Breast
cancer [127]

RGD tPA Amine
Hydrophobic

Shell: DPPC, DSPC
PEG-Amine
Gas: C3F8

Diameter: 2.08 ± 0.93 µm
Dose: 8.0 × 108 MBs/kg or 3.8 µL/kg MVD

f = 2 MHz
MI = 1.4

I = 1.8 W/cm2

DC = 95%
PRF = 15 Hz

Time = 30 min

Rabbit/
Thrombolysis [128]
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Table 3. Cont.

Ligand Type Targeting
Ligand Therapeutic Molecule Conjugation

Chemistry Microbubble Composition Ultrasound Parameters Animal/Disease Model Reference

Vitamins Folate Paclitaxel Hydrophobic

Shell: DPPC,
DSPE-PEG2000-Folate

Gas: O2
Diameter: 1.81 ± 0.04 µm

Dose: unknown

f = 0.3 MHz
I = 1 W/cm2

Time = 3 min

Mouse/Ovarian cancer [105]

Folate p-FLuc Amide
Electrostatic

Shell: DPPC, DPTAP,
DSPE-PEG2000

Gas: C3F8
Diameter: 3.2 ± 0.1 µm

Dose: 1.8 × 108 MBs/kg or 3.1 µL/kg MVD

f = 1 MHz
PRF = 5 Hz

PNP = 0.7 MPa
Time = 1 min

Rat/
Glioma tumor [129]

DPPC = 1,2-dipalmitoyl-sn-glycero-3-phosphocholine; DSPE-PEG2000 = 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol) -2000]; DPPG = 1,2-
dipalmitoyl-sn-glycero-3-phospho-(1′-rac-glycerol); PA = palmitic acid; DSPC = 1,2-distearoyl-sn-glycero-3-phosphocholine; DPTAP = 1,2-dipalmitoyl-3-trimethylammonium-propane;
C3F8 = perfluoropropane; SF6 = sulfur hexafluoride, C4F10 = perfluorobutane; N2 = nitrogen; O2 = oxygen; MVD = Microbubble Volume Dose; f = frequency; MI = mechanical index;
PRF = pulse repetition frequency; I = intensity; DC = duty cycle; PNP = peak negative pressure.

Table 4. Drug, gene, or cell loaded-MBs targeted with two different ligands.

Targeting
Ligands

Therapeutic
Molecule Conjugation Chemistry Microbubble Composition Ultrasound Parameters Animal/Disease Model Reference

CD90 Ab
ICAM-1 Ab Adipose-derived stem cells Avidin-biotin

Shell: DSPC, PEG40S,
DSPE-PEG2000, -Biotin

Gas: C4F10
Diameter: 3.5 µm

Dose: 9.3 × 107 MBs/kg or 2.1 µL/kg MVD

f = 1 MHz
PNP: 0.1 MPa
PRF = 1 kHz

DC = 50%
Time = 10 min

Rat/Myocardial
Infarction [130]

CD90 Ab
ICAM-1 Ab Adipose-derived stem cells Avidin-biotin

Shell: DSPC, PEG40S,
DSPE-PEG2000, -Biotin

Gas: C4F10
Diameter: 3.5 µm

Dose: 4.6 × 107 MBs/kg or 1 µL/kg MVD

f = 1 MHz
PNP: 0.1 MPa
PRF = 1 kHz

DC = 50%
Time = 1 min

Mouse/
Atherosclerosis [131]
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Table 4. Cont.

Targeting
Ligands

Therapeutic
Molecule Conjugation Chemistry Microbubble Composition Ultrasound Parameters Animal/Disease Model Reference

CCR2 Ab
iRGD peptide shAKT2 Avidin-biotin,

Electrostatic

Shell: DSPC, Stearic-PEI600,
DSPE-PEG2000-iRGD-Biotin

Gas: C4F10
Diameter: 1.32 ± 0.22 µm

Dose: 5.3 × 109 MBs/kg or 6.3 µL/kg MVD

f = 1 MHz
PNP: 1.2 MPa
PRF = 1 kHz

DC = 50%
Time = 10 min

Mouse/Breast
cancer [132]

cRGD peptide
Folate Doxorubicin Avidin-biotin

Shell: DSPC,
DSPE-PEG2000, -Biotin

Gas: C3F8
Diameter: 5.8 ± 2.1 µm

Dose: 1.1 × 1010 MBs/kg or 1.1 mL/kg MVD

f = 10 MHz
MI: 0.64

Time = 0.5 min

Mouse/Breast
cancer [133]

cRGD and cCLT1
peptide Paclitaxel Amide,

Hydrophobic

Shell: DSPC,
DSPE-PEG2000, -COOH

Gas: SF6
Diameter: 1.59 ± 0.54 µm

Dose: 1.0×1010 MBs/kg or 21 µL/kg MVD

f = 1 MHz
MI = 1.17
DC = 10%

I = 2.5 W/cm2

Time = 3 min

Mouse/Pancreatic cancer [134]

DSPC = 1,2-distearoyl-sn-glycero-3-phosphocholine; PEG-40S = Polyoxyethylene (40) stearate; DSPE-PEG2000 = 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-
[methoxy(polyethylene glycol)-2000]; PEI = Branched Polyethylenimine; C3F8 = perfluoropropane; SF6 = sulfur hexafluoride, C4F10 = perfluorobutane; MVD= Microbubble Volume
Dose; f = frequency; MI = mechanical index; PRF = pulse repetition frequency; I = intensity; DC = duty cycle; PNP = peak negative pressure.

Table 5. Microbubbles conjugated with targeted drug-loaded carriers used for therapy.

Carrier Type of
Targeting

Therapeutic
Molecule Conjugation Chemistry Microbubble Composition Ultrasound

Parameters Animal/Disease Model Reference

Nanoparticles Magnetic 5-fluorouracil
Rose Bengal Avidin-biotin

Shell: DBPC,
DSPE-PEG2000, -Biotin

Gas: O2
Diameter: 1–2 µm

Dose: 7.0 × 109 MBs/kg or 12.3 µL/kg MVD

f = 1 MHz
PNP = 0.85 MPa

DC = 30%
I = 3.5 W/cm2

PRF = 100 Hz
Time = 3.5 min

Mouse/Pancreatic tumor [106]

Magnetic Doxorubicin Amide

Shell: DSPC, DSPG
DSPE-PEG2000, -Biotin

Gas: C3F8
Diameter: 5.4 ± 1.1 µm

Dose: 5.7 × 108 MBs/kg or 46.7 µL/kg MVD

f = 1 MHz
PNP = 0.3 MPa

DC = 30%
I = 3.5 W/cm2

PRF = 1 Hz
Time = 4 min

Rat/Glioma tumor [107]

Magnetic Gemcitabine
Rose Bengal Avidin-biotin

Shell: DBPC,
DSPE-PEG2000, -Biotin

Gas: O2
Diameter: 1.9 ± 0.4 µm

Dose: 5.4 × 109 MBs/kg or 19.5 µL/kg MVD

f = 1.17 MHz
PNP = 0.7 MPa

DC = 30%
Time = 3.5 min

Mouse/Pancreatic tumor [135]
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Table 5. Cont.

Carrier Type of
Targeting

Therapeutic
Molecule Conjugation Chemistry Microbubble Composition Ultrasound

Parameters Animal/Disease Model Reference

Magnetic Doxorubicin Electrostatic and
hydrophobic

Shell: DSPC, DSPG
DSPE-PEG2000, -Biotin

Gas: C3F8
Diameter: 1.04 ± 0.01 µm

Dose: 9.7 × 1010 MBs/kg or 56.8 µL/kg MVD

f = 0.4 MHz
PNP = 0.325 MPa

Power = 4 W
PRF = 1 Hz

Time = 1.5 min

Rat/Glioma tumor [136]

Magnetic tPA Electrostatic

Shell: SDS
Gas: Air

Diameter: 5.36 ± 1.44 µm
Dose: 6.4 × 1010 MBs/kg or 0.50 µL/kg MVD

f = 18 MHz
DC = 10%

Time = 5 min

Mouse/
Thrombolysis [137]

Magnetic/
molecular RGD Amide

Shell: PVA
Gas: Air

Diameter: 1.37 µm
Dose: 5.4 × 108 MBs/kg or 0.70 µL/kg MVD

f = 30 MHz
Time = 10 min Mouse/Colon cancer [138]

Liposomes Magnetic Doxorubicin Maleimide

Shell: DPPC,
DSPE-PEG2000-SPDP

Gas: C3F8
Diameter: 4 µm

Dose: 7.0 × 109 MBs/kg or 233 µL/kg MVD

f = 1 MHz
DC = 30%

I = 2 W/cm2

Time = 2 min

Mouse/Pancreatic tumor [139]

Molecular: RGD peptide Paclitaxel Avidin-biotin

Shell: DSPC,
DSPE-PEG2000, -Biotin

Gas: C3F8
Diameter: 1.5 µm

Dose: 1.1 × 1010 MBs/kg or 17.8 µL/kg MVD

f = 1 MHz
DC = 1%

PRF = 1 Hz
Time = 2 min

Mouse/Breast
cancer [140]

Molecular:
NGR peptide

shBirc5 Avidin-biotin

Shell: DPPC, Cholesterol
DSPE-PEG2000-Biotin

Gas: C3F8
Diameter: 2.90 ± 0.38 µm

Dose: 2.1 × 1010 MBs/kg or 265.6 µL/kg MVD

f = 1 MHz
DC = 50%

Power = 1.84 W
Time = 1–5 min

Rat/Glioma tumor [141]

Molecular:
VEGFR2 Ab Irinotecan Avidin-biotin

MicroMarker™
Shell: Phospholipid

Gas: C4F10/N2
Diameter: 1.5 µm

Dose: 4.7 × 109 MBs/kg or 8.2 µL/kg MVD

f = 2.2 MHz
PNP = 0.26 MPa

PRF = 1 Hz
Time = 4 min

Mouse/Colorectal cancer [142]

Nanodroplets Molecular:
VEGFR2 Ab Combretastatin A4 Avidin-biotin

Shell: DPPC, DSPE-PEG2000-Biotin
Gas: C4F10

Diameter: 2.6 ± 1.5 µm
Dose: unknown

f = 2.2 MHz
PNP = 0.26 MPa

PRF = 1 Hz
Time = 5 s

Mouse/Colorectal cancer [143]

DBPC:1,2-dibehenoyl-sn-glycero-3-phosphocholine; DSPG: 1,2-Distearoyl-sn-glycero-3-phospho-rac-glycerol; DSPE-PEG2000: 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-
[methoxy(polyethylene glycol) -2000]; DSPC: 1,2-distearoyl-sn-glycero-3-phosphocholine; SDS: Sodium Dodecyl Sulfate; PVA = Poly(vinyl alcohol); DPPC = 1,2-dipalmitoyl-sn-glycero-3-
phosphocholine; C3F8 = perfluoropropane; C4F10 = perfluorobutane; O2 = oxygen; MVD = Microbubble Volume Dose; f = frequency; PRF = pulse repetition frequency; I = intensity;
DC = duty cycle; PNP = peak negative pressure.
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Table 6. Targeted microbubbles used for cancer immunotherapy.

Immunotherapy
Modality

Therapeutic
Molecule Conjugation Chemistry MicrobubbleComposition Ultrasound

Parameters Animal/Disease Model Reference

Monoclonal
antibody EGFR mAb Avidin-biotin

Targestar™-SA
Shell: Phospholipid

Gas: C4F10
Diameter: 2.5 µm

Dose: 3.6 × 109 MBs/kg or 29.7 µL/kg MVD

f = 400 kHz
PRF = 1 Hz

Power = 5 W
Time = 3–4 min

Mouse/Glioma
tumor [144]

DLL4 mAb Avidin-biotin

Targestar™-SA
Shell: Phospholipids

Gas: C4F10
Diameter: 2 µm

Dose: 5.3 × 108 MBs/kg or 2.2 µL/kg MVD

f = 1 MHz
DC= 50%

I = 2 W/cm2

Time = 1.5 min

Mouse/Gastric
cancer [145]

Trastuzumab mAb NHS

Shell: DPSC, DSPE-PEG-2000-NHS, Cholesterol
and pyropheophorbide

Gas: SF6
Diameter: 1.654 ± 1.07 µm

Dose: unknown

f = 1 MHz
DC= 50%

I = 2 W/cm2

Time = 5 min

Mouse/Gastric
cancer [146]

Immune checkpoint
inhibitors PDL-1 mAb NHS

Shell: DSPC,
DSPE-PEG-2000-NHS.

Gas: SF6
Diameter: 1.06 ± 0.31 µm

Dose: 6.9 × 1010 MBs/kg or 43.3 µL/kg MVD

f = 1.1 MHz
DC = 5%

PRF = 100 Hz
Time = 0.5 min

Mouse/Colon cancer [147]

PDL-1 mAb and
Cisplatin

Avidin-biotin
Unbounded

Shell: DPSC, DSPE-PEG-2000, -Biotin
Gas: C3F8

Diameter: 1.01 ± 0.14 µm
Dose: 1 × 108 MBs/kg or 0.06 µL/kg MVD

f = 1 MHz
DC = 50%

I = 1W/cm2

PRF = 1 kHz
Time = 1.5 min

Mouse/Cervical
cancer [148]

PDL-1 mAb and
miR-34a

Avidin-biotin
Electrostatic

Shell: DSPC, DSPE-PEG-2000,
DSPE-PEG-2000-Biotin, PEI-600

Gas: C3F8
Diameter: 0.940 ± 0.080 µm

Dose: 4 × 109 MBs/kg or 1.7 µL/kg MVD

f = 18 MHz
DC = 50%

I = 1 W/cm2

Time = 1.5 min

Mouse/Cervical
cancer [149]

Vaccine CD11b mAb and
CGAMP Maleimide

Shell: DSPC, DSPE-PEG-2000,
DSPE-PEG-5000-Maleimide

Gas: C4F10
Diameter: 2.6 µm

Dose: 1.4 × 109 MBs/kg or 13.1 µL/kg MVD

f = 1 MHz
DC = 50%

I = 4 W/cm2

Time = 2 min

Mouse/Breast cancer [150]
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Table 6. Cont.

Immunotherapy
Modality

Therapeutic
Molecule Conjugation Chemistry MicrobubbleComposition Ultrasound

Parameters Animal/Disease Model Reference

HSP70-MAGEA1 Electrostatic

Shell: Span 60 and Tween 80
Gas: SF6

Diameter: 6 µm
Dose: 1.3 × 109 MBs/kg or 144.7 µL/kg MVD

MI = 0.75 Mouse/Melanoma tumor [151]

Dendritic cell plasma
membrane fragments Hydrophobic

Shell: DPPC, DPPA, DSPE-PEG5000
Gas: C3F8

Diameter: 1.21 ± 1.0 µm
Dose: 5 × 108 MBs/kg or 0.5 µL/kg MVD

f = 18 MHz
MI = 0.75

Time = 5 min
Mouse/Breast cancer [152]

DSPC = 1,2-distearoyl-sn-glycero-3-phosphocholine; DPPA: 1,2-dipalmitoyl-sn-glycero-3-phosphate, DPPC: (1,2-dipalmitoyl-sn-glycero-3-phosphocholine); DSPE: 1,2-Distearoyl-
sn-glycero-3-phosphorylethanolamine; PEI: Branched Polyethylenimine; DSPE-PEG-2000: (1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-methoxypolyethylene glycol)-2000];
DSPE-PEG-5000: (1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-methoxypolyethylene glycol)-5000]; C3F8 = perfluoropropane; SF6 = sulfur hexafluoride, C4F10 = perfluorobutane;
MVD = Microbubble Volume Dose; f = frequency; DC = duty cycle; I = intensity; PRF = pulse repetition frequency; MI = mechanical index.
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Figure 3. Effect of microbubble volume dose (MVD) on microbubble performance. (A) The use of 
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Copyright © 2023 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier 
Inc. All rights reserved. (B) The use of MVD results in similar and consistent delivery of Evans blue 
across the blood–brain barrier (a) compared to using MB concentration as dose metric (b). The de-
livery effect of size distribution and concentration of MBs can be collapsed by using MVD. Best fit 
trend lines, determined by linear regression analysis, are represented by black lines for the 2-µm 
and 6-µm data sets during the initial 5-minute period of BBB disruption (solid circles; right striatum) 
and the subsequent 5-minute period (empty circles; left striatum). *p<0.0001. Adapted with permis-
sion from reference [116]. (C) In vivo pharmacokinetics of size-isolated MBs demonstrated that 
MVD has greater impact on half-life (a) and area-under-the-curve (b) than size. * p < 0.05 and ** p ≤ 
0.01. Adapted with permission from [117]. Copyright © 2023, American Chemical Society. (D) The 
in vitro harmonic (a) and broadband (b) cavitation dose (HCD and BCD) versus mechanical index 
versus gas volume fraction can be aligned by matching the MVD for 2, 3, and 5 µm diameter and 
polydisperse MBs. Adapted with permission from [37]. © 2023 by the authors. 
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force experienced [154,155], and resonance frequency [156,157]. Monodisperse tMB size 
distributions, combined with acoustic radiation force, have been suggested as a new ap-
proach to improve MB targeting, promote ligand–receptor interactions and enhance the 
sensitivity of US detection in various disease models, including inflammation [158–161], 
prostate cancer [162], and fibrosarcoma tumors [67,163]. Our recent results have shown 
that monodisperse tMBs, driven near their resonance frequency and at low concentra-
tions, can maximize the adhesion efficiency and specificity of tMB [164]. Thus, the use of 
monodisperse tMB formulations and MVD as a dose metric could be advantageous in 
future biomedical applications to enhance US-image contrast sensitivity, increase MB ad-
hesion efficiency, maximize MB interaction with endothelial cells, control cavitation be-
havior, and increase drug delivery efficacy at the target site. 
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isolated microbubbles (MBs) of different diameters. Adapted with permission from reference [112].
Copyright © 2023 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc.
All rights reserved. (B) The use of MVD results in similar and consistent delivery of Evans blue across
the blood–brain barrier (a) compared to using MB concentration as dose metric (b). The delivery
effect of size distribution and concentration of MBs can be collapsed by using MVD. Best fit trend
lines, determined by linear regression analysis, are represented by black lines for the 2-µm and 6-µm
data sets during the initial 5-minute period of BBB disruption (solid circles; right striatum) and the
subsequent 5-minute period (empty circles; left striatum). * p < 0.0001. Adapted with permission
from reference [116]. (C) In vivo pharmacokinetics of size-isolated MBs demonstrated that MVD
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harmonic (a) and broadband (b) cavitation dose (HCD and BCD) versus mechanical index versus gas
volume fraction can be aligned by matching the MVD for 2, 3, and 5 µm diameter and polydisperse
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The acoustic response of MBs is significantly affected by their size. Changes in size
can lead to variations in important parameters such as cavitation threshold [153], radiation
force experienced [154,155], and resonance frequency [156,157]. Monodisperse tMB size
distributions, combined with acoustic radiation force, have been suggested as a new ap-
proach to improve MB targeting, promote ligand–receptor interactions and enhance the
sensitivity of US detection in various disease models, including inflammation [158–161],
prostate cancer [162], and fibrosarcoma tumors [67,163]. Our recent results have shown
that monodisperse tMBs, driven near their resonance frequency and at low concentra-
tions, can maximize the adhesion efficiency and specificity of tMB [164]. Thus, the use
of monodisperse tMB formulations and MVD as a dose metric could be advantageous
in future biomedical applications to enhance US-image contrast sensitivity, increase MB
adhesion efficiency, maximize MB interaction with endothelial cells, control cavitation
behavior, and increase drug delivery efficacy at the target site.

2.4. Methods to Control Microbubble Size Distributions

Regulating the size of MBs is critical to control their acoustic response, generate
high contrast and maximize therapeutic efficiency. Therefore, ensuring a narrow size
distribution is desirable for future formulations. Although mechanical agitation is currently
employed to produce clinically approved MB suspensions, the resulting size distributions
are highly polydisperse, which is unsuitable for therapeutic applications. Hence, to engineer
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monodisperse MB suspensions, research has mainly focused on employing differential
centrifugation and microfluidic technologies.

2.4.1. Differential Centrifugation

To obtain stable size-selected MBs with narrow size distributions, our group developed
the differential centrifugation method [165]. This method involves two steps: First, highly
concentrated, polydisperse MB suspensions (109 to 1010 MBs/mL) are rapidly produced by
the sonication method. Second, the MBs are isolated based on their migration in a centrifu-
gal field. The sorting process relies on the application of Stokes’ equation (Equation (2))
which describes the velocity at which a buoyant particle raises relative to the surrounding
fluid under conditions of creeping flow:

ui =
2(ρ2 − ρ1i)

9η2
r2

i g (2)

where i refers to the MB size index desired for isolation, ri is the MB radius, g is the relative
centrifugal force (RCF) required for the MB rise through a column of length L, and η2 is the
effective viscosity.

Size-isolated MB populations obtained by this method can be biochemically targeted
with specific ligands for ultrasound molecular purposes [67–70,164]. Thus, this method
represents a simple way to generate size-isolated tMBs suspensions in high yield that can
be adopted for therapeutic applications.

2.4.2. Microfluidic Devices

Microfluidic devices, such as flow focusing [2,166–168] and T-junctions [169], have
emerged as promising one-step methods to generate stable monodisperse MB suspensions
in the clinical application range. In these geometries, a gas phase is concentrated between
two liquid flows through an orifice. Due to unstable capillary instability, the gas becomes
unstable and pinches off, resulting in the release monodisperse MBs. Moreover, these
devices, offer precise control over the flow rate, viscosity, and interfacial tension, allowing
for the production of MBs with uniform and narrow size distributions at the desired
size [170–173]. However, one must account for a transient Ostwald ripening process when
using microfluidic microbubbles [2,167].

The use of microfluidic devices has been proposed for the in situ production of
monodisperse drug-loaded MBs for delivery applications. The use of US and MB enhances
the drug delivery to ex vivo rat aortic smooth muscle cells, with over 70% of cells internal-
ization under physiological flow and shear stress conditions [174]. Recently, the feasibility
of coating monodisperse MBs with liposomes containing quantum dots and a drug model
via a biotin-streptavidin linkage using microfluidic devices has been demonstrated [175].
This technology allows the production of the liposome-MB complex at clinically relevant
concentrations with high reproducibility. These results suggest the possibility of adapting
this method to simultaneously produce future tMB formulations with homogenous ligand
and therapeutic molecule distribution, high payloads, and deliver therapeutic agents in
real time.

3. Targeted Microbubbles for Therapeutic Applications

MBs can be biochemically targeted by loading their shell with ligands that avidly bind
to specific cell receptors, e.g., those overexpressed during disease states. The ligand can
be linked to the MB shell by covalent or noncovalent coupling [6,176,177]. The covalent
coupling uses PEG-functionalized lipids with thiol-maleimide, disulfide, DBCO-azide, and
folate bonds, whereas noncovalent coupling uses electrostatic interactions and biotin-avidin
bridge interactions (Figure 4A).
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nanodroplets, can increase drug loading capacity and delivery efficiency at the target site. 
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filled MBs that are targeted with anti-Cd4 can help alleviate cardiac allograft rejection by 
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Figure 4. Schematic illustration of current strategies to improve the performance of targeted mi-
crobubbles (tMBs) in therapeutic applications. (A) Microbubble targeting can be achieved through
electrostatic interactions or through the use of PEGylated lipids linked with conjugation groups such
as thiol-maleimide, disulfide, DBCO-azide, folate or biotin. (B) Ligand–receptor targeting of drug,
gene or cell-loaded MBs with antibodies, peptides or vitamins can improve delivery at the target
site. (C) Dual targeting of loaded MBs with antibody-antibody, antibody-peptide, peptide-peptide,
or peptide-vitamin conjugation can improve delivery efficiency and spatial targeting. (D) MBs
conjugated with molecular or magnetic targeted carriers, such as nanoparticles, liposomes, and
nanodroplets, can increase drug loading capacity and delivery efficiency at the target site.

To improve the delivery of drugs, genes, and cells in different biomedical applications,
MB targeting can be divided into four strategies: (1) MBs targeted with a therapeutic
ligand; (2) drug or gene loaded-MBs targeted with a ligand; (3) drug, gene, or cell loaded-
MBs targeted with two different ligands; and (4) MBs conjugated with magnetically or
molecularly targeted loaded carriers.

3.1. Microbubbles Targeted with a Therapeutic Ligand

MBs can be loaded with a therapeutic ligand (i.e., where the ligand aids microbub-
ble adhesion and has a therapeutic effect) to improve targeted binding efficiency, spatial
delivery, and facilitate real-time imaging of tissue structure, function, and molecular char-
acteristics in neurodegenerative and cardiovascular diseases (Table 2). Zhu et al. [20]
demonstrated that administering anti-Aβ-tMBs with neural stem cells is a safe and effec-
tive dual delivery approach to accelerate Aβ plaque clearance, increase BDNF expression,
and improve learning and spatial memory function impairment in Alzheimer’s disease.
Similarly, Gao et al. [119] showed that injecting anti-SDF-1-tMBs with mesenchymal stem
cells can simultaneously monitor real-time renal perfusion, promote cell homing, and
repair early diabetic neuropathy kidneys. Using GPVI-tMBs [120] and anti-IL8-tMBs [121]
can aid in diagnosing atherosclerotic lesions, slowing down atheroprogression, reducing
inflammation, and enhancing plaque stability. Additionally, administering nitric oxide-
filled MBs that are targeted with anti-Cd4 can help alleviate cardiac allograft rejection by
suppressing thrombosis and inflammatory cell infiltrates, while prolonging the survival
time two-fold [108].
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3.2. Drug or Gene Loaded-MBs Targeted with a Ligand

Drug- or gene-loaded MB can be targeted with a ligand (here, just to aid microbubble
adhesion) to enable site-specific delivery, enhance therapeutic efficacy, and enable image-
guided treatment (Figure 4B). Antibody/peptide-tMBs loaded with various genes and
chemotherapeutic drugs (Table 3) have been proposed in several studies as successful
treatments for various tumors, including glioma [122,123], hind limb [124], and breast
tumor [127]. Targeted delivery in these therapies acts as both a molecular contrast agent
and a delivery system, improving tumor-specific targeting without harming normal tissues,
and increasing local agent delivery, circulation times, and median survival times in mouse
and rat models.

A recent study has suggested using folate-tMBs loaded with oxygen and paclitaxel as a
dual-targeted system for ovarian tumor cells and tumor-associated macrophages, resulting
in two-fold increase in drug concentration, apoptosis index, and median survival [105].
Similarly, folate-tMB loaded with pFLuc enhanced gene transfection efficiency in the brain
by 1.5-fold higher than MBs without folate conjugation [129].

On the other hand, different studies have demonstrated that RGD-tMBs loaded with
fibrinolytic agents, such as urokinase [125] and tPA [128], can improve arterial blood
flow and reduce thrombus size locally without causing adverse side effects, making it a
promising and safe option for thrombolysis therapy. Furthermore, VCAM-1-tMBs loaded
with mir-126 can serve as a non-invasive and risk-free anti-inflammatory therapy to pre-
vent the growth of abdominal aortic aneurysms and assess the inflammatory state of the
endothelium [126].

3.3. Drug-, Gene- or Cell-Loaded MBs Targeted with Two Different Ligands

Drug-, gene- or cell-loaded MB can be targeted with two different ligands (dual-
tMBs) to achieve higher adhesion efficiency, enhance ultrasound contrast signal, and
have more control over drug delivery at the target site (Figure 4C, Table 4). Adipose-
derived stem cells conjugated with CD90/ICAM-1-tMBs, known as StemBells, have been
proposed as an image-guided treatment for myocardial infarction (MI) [130] and to prevent
atherosclerosis acceleration post-MI [131]. Studies have shown that StemBells can improve
cardiac function, reach the infarct area without complications, increase cap thickness,
decrease intra-plaque macrophage density, and promote the presence of anti-inflammatory
macrophages and chemokines in both the plaque and infarcted myocardium, as well as in
circulating monocytes.

Additionally, dual-tMBs loaded with genes or chemotherapeutic agents have shown
superior performance in treating breast and pancreatic cancer compared to those conjugated
with only one ligand [132–134]. These studies have shown that dual-tMBs had 2–3 times
higher adhesion efficiency, resulting in a 2–4 times greater ultrasound contrast signal for
tumor visualization. Additionally, localized release has improved the accumulation of
molecules in the tumor region, resulting in tumor suppression 1.5–4 times greater. This has
led to reduced side-effects and better drug tolerability.

3.4. MBs Conjugated with Magnetically or Molecularly Targeted Loaded Carriers

MBs can be conjugated with other magnetically [106,107,135–139] or molecularly [140–143]
targeted drug/gene-loaded carriers such as nanoparticles, liposomes, and nanodroplets to
increase drug loading capacity, stability in circulation, and delivery efficiency (Figure 4D,
Table 5). Drug-loaded superparamagnetic iron oxide nanoparticles (SPIONs) conjugated with
MBs have been developed to control drug delivery in brain tumors through magnetic targeting
and enabling direct delivery visualization using magnetic resonance imaging (MRI) [107,136].
This conjugation provided significant superparamagnetic/acoustic properties for imaging,
resulting in a two-fold increase in MB half-life and US contrast signal, as well as 2–4 times more
drug and SPION deposition in the tumor region, leading to enhanced MRI signals.

Recently, a magnetically responsive and ultrasound-sensitive delivery system, called
doxorubicin-loaded magneto-liposome MBs, has been proposed for enhanced therapy of
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pancreatic tumors [139]. This combination resulted in a 1.5-fold improvement in drug
penetration at the tumor site and a 2-fold increase in tumor suppression compared to the
control group without magnetic targeting. Additionally, formulations of drug- or gene-
molecularly targeted liposomes conjugated to MBs have shown the potential to enhance the
cytotoxic effects in breast, glioma, and colorectal cancer treatment [140–142], by increasing
the concentration of encapsulated drug in circulation, promoting drug accumulation in
tumors, and reducing toxicity in normal tissues. Moreover, liposomes conjugated to MBs,
which are molecularly and magnetically responsive, can increase the targeting efficiency to
tumor neovasculature, enhance MRI, enhance US tumor imaging by 2.5-fold, prolong the
MB half-life by 5-times, and decrease the tumor growth by 2-fold [138].

4. Targeted Microbubbles for Immunotherapy Applications

The combination of MBs with US has demonstrated promising potential in modulating
and modifying the tumor microenvironment. This is achieved by promoting the penetration
of immunotherapeutic agents, enhancing blood perfusion, increasing therapeutic delivery,
and inducing tumor cell death [28,30–32]. To further enhance the performance of MBs in
cancer immunotherapy, the use of loaded-tMBs with drugs, genes or cells has emerged
as an attractive strategy. This approach enables precise control of immune stimulation,
and it enhances the delivery and pharmacokinetics of immunomodulatory agents at the
target site. This strategy has been shown for various cancer immunotherapy modalities,
including monoclonal antibodies, immune checkpoint inhibitors, adoptive cell transfer,
cytokine therapy, and vaccines (Table 6).

4.1. Monoclonal Antibody Immunotherapy

Monoclonal antibody immunotherapy aims to induce cell death by targeting specific
antigens, sequences, or epitopes expressed at the disease target site [178]. Therapeu-
tic monoclonal antibodies (mAb) can be administered unconjugated or conjugated with
chemotherapeutic drugs and radioisotopes to target tumors and minimize the toxicity
effects of conventional chemotherapy [179]. Although mAb immunotherapy has poten-
tial therapeutic benefits, poor penetration and heterogenous distribution can impact the
therapeutic effectiveness [178,179]. High concentrations are often required, which can
result in adverse side effects due to the rapid metabolism and clearance rate through the
kidneys [180]. mAb-tMBs + US have been proposed as an image-guided delivery method
to increase targeting, enhance local penetration, and potentiate the therapeutic effect of
mAbs in different cancer therapies (Table 6). Liao et al. [144] improved glioma treatment
by administrating EGFR-tMB + US, resulting in increased tumor vessel permeability and
enhanced tumor-suppressing effect 7 days after treatment, with no tumor regrowth in
the following 10 days. Kang et al. [145] found that combining anti-DLL4-tMBs + US with
DAPT for gastric tumor therapy was more effective than DAPT alone, showing synergistic
antitumor proapoptotic effects. These effects were attributed to the regulation of apoptosis-
related proteins Bcl-2 and BAX, as well as the tumor suppressor protein P53. Recently,
Sun et al. [146] developed a tMB construct that delivers pyropheophorbide sensitizer and
therapeutic trastuzumab mAbs for targeted combination of sonodynamic and antibody
therapies in gastric cancer. The therapy resulted in enhanced antibody accumulation at the
tumor site, increased tumor cell apoptosis and tumor growth inhibition by suppressing
AKT phosphorylation.

4.2. Immune Checkpoint Inhibitor Therapy

Immune checkpoint inhibitors (ICI) are mAbs variants that activate T cells by blocking
immune checkpoint receptors [178]. Approved ICIs for therapy include programmed cell
death protein-1 (PD-1), programmed death ligand-1 (PD-L1), and cytotoxic T-lymphocyte-
associated antigen-4 (CTLA-4) [178,181]. However, systemic ICI therapy is limited by
severe side effects associated with dosage, low treatment response, and overactivation of
the immune response [182]. To address these limitations, a controlled delivery strategy
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called PD-L1 mAb–tMBs + US has been proposed (Table 6). Kim et al. [147] reported
that PD-L1 mAb–tMBs can improve therapeutic efficacy, increase the therapeutic index,
reduce toxicity, and avoid immune responses and fatalities associated with PD-L1 mAb
systemic administration in the treatment of colon cancer. Ma et al. [148] and Liu et al. [149]
both demonstrated that combining PD-L1 mAb–tMBs with chemotherapeutic drugs or
loading PD-L1 mAb–tMBs with genes exhibited strong synergistic effects in inhibiting
cervical tumor growth, improving survival rates, and reducing side effects compared to
using either drug/gene or PD-L1 mAb–tMBs alone. The combination treatment showed
better immunological activity, indicated by increased CD8+ T cell infiltration and cytokine
expression, ultimately resulting in an effective antitumor immune killing effect.

4.3. Adoptive Cell Immunotherapy

Adoptive cell-mediated immunotherapy (ACT) involves the intravenous transfer
in vitro of resident T cells or genetically modified T cells to target tumor antigens and
mediate anti-tumor function. The three types of ACT are tumor-infiltrating lymphocytes
(TIL), T cell receptor (TCR) gene therapy, and chimeric antigen receptor-modified T cells
(CAR-T) [178,183]. However, ACT is limited by the lack of in vivo persistence of transferred
cells, toxicities related to lymphodepletion, immune response, and cytokine release [183].
Preliminary studies using MBs targeted with specific antibodies and retroviruses (CD3,
CD8, CD45RA, CD62L, CD3/CD28, and CD-19CAR) have shown that tMBs represent a
potential method to stimulate [184,185], activate, transduce, and precisely sort specific
phenotypes of CAR-T cells [184]. These stimulations lead to greater in vivo persistence,
decreased toxicity, and improved antitumor response of adoptively transferred CAR-T cells
when compared to CAR-T cells obtained through conventional methods [185].

4.4. Cytokine Immunotherapy

Cytokine-mediated immunotherapy involves the systemic administration of cytokines
to enhance the immune response [178]. Commonly used cytokines for immunotherapy in
clinics and research include Interferon-alpha (IFN-α), Interleukins (ILs), and granulocyte-
macrophage colony-stimulating factor (GM-CSF) [178,186,187]. However, this therapy has
several limitations, including low efficacy, high levels of toxicity, and immune response ac-
tivation [188]. IL-27-tMBs have shown promising results by enhancing cytokine bioactivity,
inhibiting prostate tumor growth, and efficiently improving the recruitment of natural killer
cells (NKT) and CD8+ cells to the tumor compared to untargeted delivery [189]. Addition-
ally, IL-16–tMBs [190] have been introduced to evaluate myocardial ischemia–reperfusion,
detect atherosclerosis, and detect ovarian tumors, respectively.

4.5. Vaccine Immunotherapy

Vaccine-mediated immunotherapy involves administering specific antigens or pro-
tein fragments to stimulate an immune response [178]. Different types of vaccines are
used, including peptide-based vaccines [191], DNA-based vaccines [192], and cell-based
vaccines such as NK cells, dendritic cells (DC), and CAR-T cells [193]. However, the effec-
tiveness of vaccine therapy is limited by tissue-specific antigens, low humoral responses,
and heterogenous immune responses [178,194]. Gene- and protein-loaded MBs targeted
with tumor-specific antigens offer promising image-guided vaccine immunotherapy for
breast and melanoma tumors, as demonstrated by Li et al. [150] and Gao et al. [151]. This
approach can increase delivery efficiency, prolong survival rates, activate systemic anti-
tumor immunity, inhibit and delay tumor growth [150,151], reduce systemic toxicity, and
inhibit cancer metastasis by bridging the innate and adaptive immune responses [150].
Recently, Jungio et al. [152] introduced the first cell-free vaccine in the form of tMBs with
activated DC plasma membranes to enhance breast cancer tumor targeting, reduce tumor
growth, and increase survival rates. Studies also showed tumor growth inhibition and/or
antigen-specific protection through DCs activated by mRNA-loaded MBs [195] or tMBs
conjugated with NK cells to promote the controlled delivery at the target site [196].
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5. Challenges of tMBs in Therapy and Immunotherapy

Tables 2–6 highlight the potential of combining drug-, gene- or cell-loaded tMBs with
US for treating various cancers and cardiovascular diseases. However, before exploring
future clinical applications, it is crucial to address the in vivo safety of tMBs. The diversity
of MB compositions, ligands, therapeutic molecules, and US settings applied pose a sig-
nificant challenge for clinical translation. While the studies report enhanced therapeutic
uptake associated with MB cavitation without side effects, evidence of the latter is lacking.
Depending on the US and MB parameters, cavitation can induce adverse bioeffects, such as
endothelial cell damage, endothelial dysfunction [197,198], vascular rupture [199,200], and
petechial hemorrhages [66,201–203]. Moreover, acoustic cavitation can cause long-term
side effects on the target tissues [35,197]. Therefore, a deeper understanding of how cavita-
tion events interact with cells and tissues, along with the resulting cellular and molecular
responses, can lead to the development of novel design strategies that improve treatment
efficacy while minimizing potential safety concerns.

The MB doses and US parameters used in current studies are based on the reference
dose of clinically approved MBs, but comparing bioeffects among different MB formulations
and animal models is challenging due to the differences in size distribution, dose, shell
composition, gas core, and half-life [66,109,111,113,114,204]. Strategies for approximating
equivalent MB or cavitation doses are necessary to improve understanding of induced
bioeffects. While US and MB doses are critical factors in comparing bioeffects, physiological
variations also significantly impact biological outcomes [22]. Therefore, understanding MB
pharmacokinetics and accounting for physiological variability is essential for developing
safe and consistent treatment protocols.

On the other hand, the reported experimental therapy durations are typically shorter
than those in clinic applications and success is limited to reporting tumor growth sup-
pression, tumor cell apoptosis, and survival time. However, MB cavitation can trigger the
activation of immune cells, cytokine secretion or protein production, which can modulate
and modify the tumor microenvironment to fight against cancer [28,30–32]. These immune
cells, such as T cells, macrophages, neutrophils, fibroblasts, and B cells, participate in
the tumor suppression [205]. Therefore, to explain the molecular mechanisms associated
with tumor suppression in detail, it is desirable to extend the analysis to characterize the
activation and production of these immune components during therapy and immunother-
apy protocols. Moreover, the evaluation of only one or four doses of tMB formulations
is insufficient, and further pharmacological and toxicological experiments are necessary
to identify the optimal dose, administration frequency and protocols, as well as the US
parameters, to increase the delivery and maximize therapeutic effects in future studies.

The majority of experimental studies have used murine-origin monoclonal antibodies
linked to the MB surface via avidin and biotin coupling, which could potentially cause
severe immune responses in human patients [206,207]. To eliminate immunogenic effects,
future studies should consider using humanized antibodies, antibody fragments or peptides
linked by covalent binding.

Finally, the issue of MB dose is oftentimes ambiguous. We have proposed the use
of microbubble volume dose (MVD) as a unifying dose metric that combines MB size
distribution and concentration dose to provide a useful metric for correlating pharmacoki-
netic parameters (e.g., half-life), acoustic response, and the amount of drug delivered to
target tissue (Figure 3) [116]. For approved, commercially available MB ultrasound contrast
agents, the MVD ranges from 6 to 25 µL/kg (Table 1). However, for targeted MBs, the
MVD typically ranges from 1 to 50 µL/kg, although some reports have very low MVD
(<0.1 µL/kg), while others have very high MVD (>100 µL/kg). Note that these MVDs
were calculated by multiplying the dose given to the animal, usually in number of MBs
per animal weight (although sometimes animal weights were not reported, so we had to
use average for the species and age). Importantly, there is often a significant difference
between the number-weighted distribution (Figure 5D) and volume-weighted distribution
(Figure 5E). Note the difference in mean diameters, for example (Figure 5G), even for
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monodisperse size-isolated microbubbles. For example, as a basis of 1010 MB/mL, the
volume fractions estimated by the number and volume distributions are quite different
(208, 350, and 698 µL/kg vs. 406, 699, and 1170 µL/kg for 2, 3, and 5 µm diameter MBs,
respectively). Additionally, the size distribution is often skewed from a normal distribution,
even for monodisperse MBs, owing to Ostwald ripening and other colloidal mechanisms.
Therefore, one should take the area-under-the-curve of the MB volume vs. concentration
plot (Figure 5F) to determine the volume fraction (∅MB), which can then be used to deter-
mine an accurate MVD [117]. Therefore, a major challenge in the field is for researchers
to report an accurate MVD for their tMBs, or at least the combination of dose (number of
MBs/kg body weight) and volume-weighted mean diameter.
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Figure 5. Importance of microbubble volume dose (MVD) as a unifying dose metric. Example of size
characteristics for three size-isolated lipid-coated microbubbles: (A–C) microscope images of MBs
from the three different sizes; (D) number-weighted size distributions; (E) volume-weighted size
distributions; (F) MB volume vs. concentration curve used to determine the gas volume fraction by
taking the area-under-the-curve; (G) corresponding size metrics. Adapted with permission from [117].
Copyright © 2023, American Chemical Society.

6. Future Directions

This review is focused on tMB formulations, which include direct bioconjugation of
a ligand, drug, nanoparticle and/or cell onto the MB shell. One may argue that loading
onto the MB is more efficient because the payload is administered at a lower dose and is
co-localized with the cavitation event. However, it is currently thought that the regulatory
burden of approving a specific MB/drug combination for clinical use makes this approach
less financially viable. Additionally, MBs are cleared quickly from circulation (typically
5–10 min) with accumulation primarily in the lung, liver, kidney, and spleen, leading to loss
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and rapid elimination of the therapeutic cargo before it can become available to the target
cells [9,34]. Therefore, current clinical trials favor co-administration of commercial MBs
(Table 1) and free drug, either as a single cocktail bolus or a sequence of injections. This
co-administration without bioconjugation approach is more amenable as a platform, where
a single MB formulation could be used for multiple drug/disease indications. However,
this simplistic approach also limits the creativity and potential benefits of MB engineering,
several examples of which are reviewed here (Tables 2–6). Therefore, it is advantageous to
continue to develop novel targeted microbubble formulations and applications.

As discussed in this review, targeted MBs offer many benefits as innovative agents
for ultrasound image-guided drug, gene, and cell delivery in therapy and immunother-
apy. While research continues on targeted MBs for research purposes in animal models,
more work is necessary to improve their safety, efficacy, and financial viability for clinical
translation. Further research and advancements should be made in the following areas:

1. The design and characterization of tMB formulations to achieve high payload capacity,
stable drug loading, homogenous and reproducible size distributions and colloidal
stability, and strong echogenicity and ultrasound responsiveness.

2. The understanding of tMB pharmacokinetics with the goal of extending circulation
time and improving biodistribution, and determination of minimum effective dose
and maximum tolerated dose for a given drug and US scheme.

3. The evaluation of tMB interactions with cells and tissues, their correlation to short-
and long-term bioeffects in vivo, and molecular description of biological mechanisms
induced by tMB cavitation.

4. The optimization of US protocols with consideration of tMB pharmacokinetics and
bioeffects to ensure treatment safety and efficacy.

5. The establishment of drug, microbubble, and ultrasound dose metrics to compare
therapeutic index between tMB formulations.

Innovations in these areas may help reduce over-reliance on commercially available
ultrasound contrast agents and promote clinical translation of engineered tMBs.

However, to justify investment into the clinical translation of tMBs, researchers must
show a significant improvement in safety and/or efficacy in comparison to currently
approved and commercially available MB formulations (see Table 1). For example, it would
be helpful to show an increase in therapeutic index for delivery of the target payload using
tMBs vs. commercial MBs (vs. systemic administration without MBs). Additionally, it
would be helpful for comparison to report dose optimization in terms of microbubble MVD
and pharmacokinetics, along with ultrasound MI, duty cycle, and sonication time. Such
characterization and reporting would help the community standardize treatments and
optimize passive cavitation monitoring methods.

7. Conclusions

This review highlights recent developments in targeted MB formulations engineered
for drug and cell delivery for therapy and immunotherapy. Basic MB formulations are
described prior to citing some recent innovative designs for targeted MBs and their applica-
tions. The bioconjugation approach has demonstrated promise in enhancing the delivery
of various drugs, genes, and cells to target tissues. Issues for future research are discussed,
including the need to better define tMB pharmacokinetics and bioeffects, as well as the
standardization of MB and US parameters to compare therapeutic index between different
MB formulations.
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