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Abstract: Almost 17% of Western patients affected by non-small cell lung cancer (NSCLC) have
an activating epidermal growth factor receptor (EGFR) gene mutation. Del19 and L858R are the
most-common ones; they are positive predictive factors for EGFR tyrosine kinase inhibitors (TKIs).
Currently, osimertinib, a third-generation TKI, is the standard first-line therapy for advanced NSCLC
patients with common EGFR mutations. This drug is also administered as a second-line treatment for
those patients with the T790M EGFR mutation and previously treated with first- (erlotinib, gefitinib) or
second- (afatinib) generation TKIs. However, despite the high clinical efficacy, the prognosis remains
severe due to intrinsic or acquired resistance to EGRF-TKIs. Various mechanisms of resistance have
been reported including the activation of other signalling pathways, the development of secondary
mutations, the alteration of the downstream pathways, and phenotypic transformation. However,
further data are needed to achieve the goal of overcoming resistance to EGFR-TKIs, hence the
necessity of discovering novel genetic targets and developing new-generation drugs. This review
aimed to deepen the knowledge of intrinsic and acquired molecular mechanisms of resistance to
EGFR-TKIs and the development of new therapeutic strategies to overcome TKIs’ resistance.

Keywords: EGFR mutations; non-small cell lung cancer; tyrosine kinase inhibitors; resistance
mechanisms

1. Introduction

Non-small cell lung cancer (NSCLC) is the most-frequent cause of cancer-related
deaths in the world [1]. Platinum-based chemotherapy was the only therapeutic option
for advanced NSCLC patients for many years with a poor prognosis because of a median
overall survival (OS) < 12 months [2]. However, the discovery of NSCLC oncogenic
drivers led to the development of targeted drugs with an impressive survival benefit for
select patients. In particular, the most-important oncogenic drivers are the epidermal
growth factor receptor (EGFR) gene mutations [3]. Currently, various EGFR tyrosine kinase
inhibitors (EGFR-TKIs) are standard treatment options for patients with activating EGFR
gene mutations.

1.1. Epidermal Growth Factor Receptor Pathway in NSCLC

EGFR (ERBb1/HER1) belongs to the HER (ERBb) family with three other members:
HER2 (ErbB2), HER3 (ErbB3), and HER4 (ErbB4) [4]. The binding of specific ligands, such
as epidermal growth factor (EGF) and transforming growth factor-α (TGF-α), to the EGFR
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extracellular domain led to receptor dimerisation with other HER family members [5].
Consequently, the autophosphorylation at the receptor key tyrosine residues takes place. In
this way, various downstream signalling pathways are activated including the rat sarcoma
(RAS)/rapidly accelerated fibrosarcoma (RAF)/mitogen-activated protein kinase (MAPK)
pathway, the phosphatidylinositol-3-kinase (PI3K)/protein kinase B (AKT) pathway, the
phospholipase C-protein kinase C (PLC-PKC) pathway, and the janus kinase (JAK)/signal
transducer and activator of transcription (STAT) pathway, which regulate cellular prolifera-
tion, survival, and apoptosis [6]. EGFR exons 18 to 24 encode the tyrosine kinase domain
of the receptor. EGFR-activating gene mutations are located in exons 18, 19, 20, and 21
(the most-common ones in exons 19 and 21) and are responsible for the constitutive EGFR
activation, which leads to cell proliferation [7]. These mutations are present in 10–15%
of Caucasian NSCLC patients and 30–50% of Asian ones. They regard a more typically
adenocarcinoma histotype, women, non-smokers, or Asian NSCLC patients [3].

The EGFR-activating gene mutations in exons 18, 19, 20, and 21 are classically divided
into common (exon 19 deletion, exon 21 L858R point mutation), which correspond to
85–90% and generally confer sensitivity to EGFR-TKIs treatment, and uncommon (rare
EGFR mutations and complex EGFR mutations), which account for 10–15% and present
variable predictive values, from sensitivity to resistance [4,8]. Moreover, it is also possible
to find other EGFR alterations consisting of the combination of EGFR mutations with other
EGFR mutations or with one or more mutations of other genes (tumour suppressor gene or
oncogene). In some cases, only a small percentage of tumour cells has the specific EGFR mu-
tation. The variable sensitivities to EGFR-TKIs could be explained by the variable tertiary
structure of the EGFR protein under the influence of the different EGFR mutations [8].

Table 1 summarises all categories of EGFR alterations.

Table 1. EGFR mutations: common, uncommon, and other alterations.

EGFR
Mutations Specific Alteration Frequency Clinical

Characteristics

Response to
EGFR-TKIs

Gefitinib/Erlotinib Afatinib Osimertininb

Common
Exon 19 deletion 45–50% Adenocarcinoma

Female gender
Never smoker status

Asian ethnicity

Sensitive Sensitive Sensitive

Exon 21 L858R
point mutation 37–40% Sensitive Sensitive Sensitive

Uncommon
or

rare

Exon 18

G719X 3%

Adenocarcinoma
Male gender

Smoker history
Asian ethnicity

Intermediate Sensitive Inter./sensitive

E709X 0.3% E709K
Intermediate Sensitive Sensitive

Del18 0.3% Intermediate Sensitive Sensitive

Exon 19 Ins19 <0.6% Intermediate Inter./Sens. Inter./Sens.

Exon 20
Ins20 >5.8% Resistant Resistant/Sens. Inter./Sens.

S768I <1.5% Intermediate Inter./Sens. Sensitive

Exon 21 L861Q 0.9–3% Intermediate Inter./Sens. Inter./Sens.

Other EGFR
alterations

• Complex mutations are a combination
between:

- common and rare mutations
- rare and rare mutations
- common and common mutations

5–15%

Depend on
the specific

combination
of mutations

Depend on
the specific

combination
of mutations

• Co-mutations are combinations of EGFR
mutation(s) with one or more mutations
of another gene

(tumour suppressor gene or oncogene)

3–6%

• Subclonal mutations: the presence of the
specific mutation only in a small
percentage of tumour cells

Variable
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1.1.1. Common EGFR mutations

Several studies reported that Del19 (45–50%) appears more frequently than L858R
(37–40%) in Asian, as well as in Caucasian populations [4].

The Del19 and L858R mutations lead to elevated receptor dimerisation and activity
due to the destabilisation of the inactive conformation of the EGFR receptor [9].

While the L858R mutation corresponds to the substitution of leucine to arginine
at codon 858 (c.2573T > G, p.L858R), Del19 presents more than 30 variants, and the
most-common is delE746_A750 corresponding to 73% of cases, with a deletion of 9 to
24 nucleotides [9]. In 25% of cases, Del19 variants start at position E747. The remaining
percentage is known as entitled non-LRE (2%) [5,9].

1.1.2. Uncommon EGFR Mutations

Approximatively 600 EGFR uncommon or rare mutations have been described, ac-
counting for 10–15% of cases, with variable sensitivity to EGFR-TKI treatment [10] and a
similar clinical presentation in comparison with common ones. Examples of rare EGFR
mutations are some EGFR exon point mutations such as exon 18, G719X; exon 20, S768I;
and exon 21, L861Q [4,11].

1.1.3. Other EGFR Alterations

Complex mutations have a prevalence of 5–15% of all EGFR mutations. They are de-
fined by the combination of common and rare EGFR mutations or rare and rare EGFR muta-
tions or common and common ones. The most-frequent EGFR mutations involved in com-
plex mutations are G179X (90%), G709X (75%), and S768I (50%) [12–15]. The sensitivity to
EGFR-TKIs depends on the specific combination of mutations. It is better when one of them
is a sensitivity mutation, such as Del19 or L858R, and lower when the combination includes
a resistance mutation. For example, E709A + G719C, G787R + L858R, H870R + L858R,
and E884K + L858R are sensitive complex mutations, while T790M + L858R is a resistant
one [12–15].

Co-mutations correspond to the combination of EGFR mutation(s) with one or more
mutations of another gene (tumour suppressor gene or oncogene) [16]. Co-mutations
account for similar prevalence across the common EGFR mutations. Their incidence
seems to be correlated with prior treatment. These genetic alterations often are found
in several genes such as TP53, RB1, CTNNB1 (β-catenin), NKX2-1, or PI3KCA [17–19].
Some co-mutations are correlated with a worse prognosis; for example, TP53 mutations,
ATM alterations, PTEN-inactivating mutations, KRAS mutations, and IDH1 mutations are
associated with lower clinical results following EGFR-TKI treatment [17].

Subclonal mutations have a low variant allele frequency (VAF), which may be due
to the presence of the specific mutation only in a small percentage of tumour cells [20].
All types of EGFR mutations could be subject to these genetic alterations, in particular
the resistant ones. For example, a retrospective analysis of the AURA study, the AURA3
trial, and the study performed by the French Cooperative Thoracic Intergroup showed that
the T790 mutation was present only in a small proportion of patients with worse clinical
outcomes under third-generation EGFR-TKIs [21–24].

1.2. Clinical Trials

EGFR-TKIs became the standard therapy for advanced EGFR-mutation-positive NSCLC
patients after the evaluation of their safety and efficacy in several clinical trials performed
in the last decade. Moreover, some clinical studies documented a better prognosis, in terms
of progression-free survival (PFS) and OS, for Del19 compared to L858R-mutation NSCLC
patients under treatment with EGFR-TKIs [25–27].

Table 2 summarises all clinical trials evaluating EGFR-TKIs.
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Table 2. Clinical trials evaluating all generations of EGFR-TKIs.

Generation
EGFR-TKI Clinical Trail EGFR Status Comparison Results

First-generation

NEJ002 [28,29] Common mutations Gefitinib vs. carboplatin
plus paclitaxel

* PFS: 10.8 vs. 5.4 mo.
** OS: 27.7 vs. 26.6 mo.

IPASS [30,31] Common mutations Gefitinib vs. carboplatin
plus paclitaxel

* PFS: 9.5 vs. 6.3 mo.
** OS: 18.8 vs. 17.4 mo.

WJTOG3405 [32,33] Common mutations Gefitinib vs. cisplatin plus
docetaxel

* PFS: 9.2 vs. 6.3 mo.
** OS: 34.9 vs. 37.3 mo.

OPTIMAL [34,35] Common mutations Erlotinib vs. gemcitabine
plus carboplatin

* PFS: 13.1 vs. 4.6 mo.
** OS: 22.8 vs. 27.2 mo.

ENSURE [36] Common mutations Erlotinib vs. gemcitabine
plus cisplatin

* PFS: 11 vs. 5.5 mo.
** OS: 26.3 vs. 25.5 mo.

EUTARC [37] Common mutations
Erlotinib vs. cisplatin plus

docetaxel or
gemcitabine

* PFS: 9.7 vs. 5.2 mo.
** OS: 22.8 vs. 27.2 mo.

CONVINCE [38] Common mutations Icotinib vs. cisplatin plus
pemetrexed

* PFS: 11.2 vs. 7.9 mo.
** OS: 30.5 vs. 32.1 mo.

Second-generation

LUX-Lung 3 [39] Common mutations
Afatinib vs. cisplatin plus

gemcitabine or
pemetrexed

* PFS: 13.6 vs. 6.9 mo.
** OS: 28.2 vs. 28.2 mo.

LUX-Lung 6 [40] Common mutations
Afatinib vs. cisplatin plus

gemcitabine or
pemetrexed

* PFS: 11 vs. 5.6 mo.
** OS: 23.1 vs. 23.5 mo.

ARCHER 1050 [40,41] Common mutations +/−
T790M Dacotinib vs. gefitinib * PFS: 14.7 vs. 9.2 mo.

** OS: 34.1 vs. 27 mo.

Third-generation

AURA3 [42] T790M mutation

Osimertinib vs.
cis/carboplatin plus

pemetrexed after first-line
EGFR-TKI therapy

* PFS: 10.1 vs. 4.4 mo.
** OS: 26.8 vs. 22.5 mo.

FLAURA [26] Common mutations Osimertinib vs. gefitinib or
erlotinib

* PFS: 18.9 vs. 10.2 mo.
** OS: 38.6 vs. 31.8 mo.

ADAURA [43] Common mutations Osimertinib for 3 years as
adjuvant therapy * 4ys-DFS: 73% vs. 38%

EGFR-TKIs
specific for Ins20

ZENITH20-2 [44] Exon 20 insertions Poziotininb
ORR: 27.8%
DCR: 70%

PFS: 5.5 mo.

EXCLAIM [45] Exon 20 insertions Mobocertinib ORR: 43%
PFS: 7.3 mo.

*: statistically significant difference; **: no statistically significant difference.

1.2.1. First-Generation EGFR-TKIs: Gefitinib, Erlotinib, and Icotinib

The NEJ002 study compared gefitinib versus carboplatin plus paclitaxel as a first-line
therapy for advanced NSCLC patients with a common EGFR mutation [28,29].

The IPASS trial investigated gefitinib with carboplatin plus paclitaxel in the same
population of the NEJ002 study [30,31].

WJTOG3405 is a phase 3 study in which common-EGFR-mutation NSCLC patients
were randomised between gefitinib and cisplatin plus docetaxel [32,33].

The OPTIMAL trial evaluated erlotinib with respect to standard chemotherapy as a
first-line therapy for common-EGFR-mutation NSCLC patients [34,35].

The ENSURE study analysed erlotinib in comparison with gemcitabine plus cisplatin
in Asian patients affected by common-EGFR-mutation NSCLC [36].

In the EURTAC trial, erlotinib was compared to standard chemotherapy as a first-line
treatment for European patients affected by common-EGFR-mutation NSCLC [37].

The CONVINCE study was designed to evaluate the efficacy and safety of icotinib as
a first-line therapy compared to cisplatin/pemetrexed plus pemetrexed maintenance for
common-EGFR-mutation NSCLC patients [38].
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All these trials reported a significant improvement in terms of PFS, but no statistical
difference was seen for OS, maybe because of the high percentage of crossover from
standard therapy to the experimental one after disease progression.

Table 2 summarises all the reported clinical trials.

1.2.2. Second-Generation EGFR-TKIs

The LUX-Lung 3 trial evaluated afatinib versus cisplatin plus gemcitabine or peme-
trexed for EGFR-mutation NSCLC patients stratified according to mutation type (exon
19 deletion, L858R, or other) [39].

In the LUX-Lung 6 study, common-EGFR-mutation NSCLC patients were randomised
between afatinib versus cisplatin plus gemcitabine or pemetrexed [40].

ARCHER 1050 investigated the safety and efficacy of dacomitinib with respect to
gefitinib as a first-line treatment of advanced NCSLC patients with a common EGFR
mutation [46].

All these trials reported a significant improvement in terms of PFS, but no statistical
difference was seen for OS, maybe because of the high percentage of crossover from
standard therapy to the experimental one after disease progression.

1.2.3. Third-Generation EGFR-TKI

AURA3 was designed to evaluate the safety and efficacy of osimertinib in comparison
with cis/carboplatin plus pemetrexed for advanced NSCLC patients who experienced dis-
ease progression after first-line EGFR-TKI therapy and developed the EGFR T790 mutation.
Indeed, osimertinib is the third-generation TKI selective for T790M resistance mutations.
The authors reported a longer PFS (10.1 versus 4.4 months; HR 0.30; p < 0.001) and OS
(26.8 versus 22.5 months; HR 0.87, p = 0.277) for the osimertinib group, although the lat-
ter had no significant difference. This is probably due to the high crossover rate from
chemotherapy to osimertinib of patients with progressive disease. After crossover adjust-
ment, there was an HR of 0.54 for OS. The ORR was significantly better with osimertinib
(71%) than the control group (31%) (odds ratio for OR: 5.39; p < 0.001). Encephalic PFS was
also significantly longer for patients treated with osimertinib (8.5 months vs. 4.2 months;
HR 0.32) [42].

The FLAURA trial tested osimertinib versus standard EGFR-TKIs (gefitinib or er-
lotinib) in previously untreated patients with common-EGFR-mutation NSCLC. The results
reported PFS and OS significantly longer for the osimertinib group (PFS: 18.9 months vs.
10.2 months; HR 0.46; p < 0.001. OS: 38.6 months vs. 31.8 months; HR 0.80 p = 0.046). The
ORR was similar (80% with osimertinib and 76% with standard EGFR-TKIs; odds ratio: 1.27;
p = 0.24) [26]. As a consequence of the good results reported in this trial, osimertinib has
become the first-line treatment for advanced or metastatic EGFR-mutant-positive NSCLC,
regardless of T790M status.

The ADAURA study analysed osimertinib for 3 years as an adjuvant therapy for
NSCLC patients with stage IB-IIIA and common EGFR mutations who have or have not
previously received adjuvant chemotherapy. The DFS rate was 73% and 38% at 4 years (HR
0.27; p < 0.001) for the overall population in the osimertinib and control group, respectively.
As regards CNS disease, at 24 months, 98% and 85% of patients in the experimental and
placebo group were alive and did not have central nervous system disease (HR 0.18). The
OS results are still immature [43].

1.2.4. EGFR-TKIs Specific for Ins20

ZENITH20-2 is a multicentre, multicohort, open-label phase 2 trial that investigated
poziotinib for previously treated advanced NSCLC patients with EGFR exon 20 insertions
that demonstrated resistance to approved TKIs. This type of mutation is an oncogenic
driver and accounts for 2–5% of NSCLCs. The ORR was 27.8%. The disease control rate
(DCR) was 70.0%, and PFS was 5.5 months [44].
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Mobocertinib was tested in a phase 1/2, dose-escalation and dose-expansion trial that
enrolled pretreated patients with advanced NSCLC and EGFR exon 20 insertions. This
drug is a TKI targeting EGFR exon 20 insertions in NSCLC. The ORR was 43%, and PFS
was 7.3 months [45].

1.2.5. EGFR-TKI Treatment Combinations as First-Line Therapy

Therapeutic approaches based on treatment combination have been designed with the
aim to delay cancer progression by limiting the heterogeneity of resistance mechanisms.
In this regard, the combination of an EGFR-TKI (afatinib) with an anti-EGFR antibody
(cetuximab) has been evaluated in both preclinical and clinical data with interesting results.
In detail, this approach demonstrated overcoming the resistance correlated with the T790M
mutation by inducing a degradation of EGFR. On these bases, IFCT-1503 ACE-Lung, a
randomised and open-label phase 2 study, has been designed to compare afatinib plus
cetuximab versus the afatinib single agent as a first-line therapy of advanced EGFR-mutant
NSCLC. However, the study ended early after a futility analysis documented the compara-
ble results between the two groups [47].

There is strong biologic rationale for therapeutic approaches targeting both the vascular
endothelial growth factor (VEGF) and EGFR pathways in NSCLC because they are closely
related to each other. In detail, VEGF is known to be downregulated by EGFR inhibition
through hypoxia-inducible factor-1alpha-dependent and -independent mechanisms. In
addition, acquired resistance to EGFR-TKIs is correlated with increased levels of VEGF, and
dual-VEGF/EGFR inhibition has demonstrated activity in the case of EGFR-TKI-resistant
disease [48–51]. To this end, some clinical studies evaluated this type of combination.
BELIEF is a multicentre, single-arm, phase 2 trial that investigated the safety and efficacy of
erlotinib plus bevacizumab for advanced NSCLC patients with common EGFR mutations.
Moreover, the enrolled patients were stratified according to the pretreatment presence of
the T790M mutation to test the hypothesis that the coexistence of the T790M resistance
mutation with another EGFR mutation correlates with a shorter PFS. The overall PFS was
13.2 months; however, the primary endpoint was met only for T790M-positive patients
(PFS of 16 months), unlike the T790M-negative group (PFS of 10.5 months) [52].

JO25567 is a multicentre, open-label, randomised, phase 2 study that evaluated the
erlotinib single agent or with bevacizumab as a first-line treatment in patients with ad-
vanced NSCLC and common EGFR mutations. PFS was 16 months in the experimental
group and 9.7 months in the control one (HR 0.54, p = 0.0015). No significant benefit in OS
was observed [53].

RELAY is a randomised, double-blind, placebo-controlled, phase 3 trial that compared
erlotinib plus ramucirumab with erlotinib monotherapy in patients suffering from untreated
common-EGFR-mutated advanced NSCLC and no CNS metastases. PFS was significantly
longer in the experimental group (19.4 months versus 12.4 months; HR 0.59, p < 0.0001).
The OS data are still immature [54]. Preclinical data about osimertinib in association with
chemotherapy (pemetrexed or cisplatin) reported a delay in the occurrence of acquired
resistance and long-lasting effects, even after treatment discontinuation. However, efficacy
was lower when osimertinib was administered before chemotherapy; a possible explanation
could be that the EGFR-TKI-induced G1-phase blockade protects cells from chemotherapy
toxicity. Wu et al., in a meta-analysis, investigated the efficacy and safety of EGFR-TKI plus
chemotherapy compared to EGFR-TKI alone as a first-line treatment in advanced NSCLC
patients with the common EGFR mutation. The combination and concurrent therapy
groups experienced a significantly higher OS (p = 0.02 and p = 0.002, respectively) [55].

FLAURA2 is a phase 3 trial that is currently testing the combination of chemotherapy
with osimertinib [56].

Table 3 summarises all clinical trials evaluating EGFR-TKI treatment combinations as
first-line therapy.
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Table 3. Clinical trials evaluating EGFR-TKI treatment combinations.

Clinical Trail EGFR Status Comparison Results

IFCT-1503
ACE-Lung [47]

Exon 19 deletions, L858R, G719X,
L861Q, and S768I mutations or exon

19 insertions

Afatinib plus cetuximab vs.
afatinib Ended for futility

BELIEF [52] Common mutations +/− T790M Erlotinib plus bevacizumab
PFS in ITT: 13.2 mo.

PFS in T790M-positive group: 16 mo.
PFS in the T790M-negative group: 10.5 mo.

JO25567 [53] Common mutations Erlotinib single agent or with
bevacizumab

* PFS: 16 vs. 9.7
** OS: 47.0 vs. 47.4 mo.

RELAY [54] Common mutations Erlotinib plus ramucirumab vs.
erlotinib

* PFS: 19.4 vs. 12.4 mo.
OS: immature data

FLAURA2 [56] Common mutations +/− T790M Chemotherapy plus osimertinib Ongoing

*: statistically significant difference; **: no statistically significant difference.

2. Mechanisms of Resistance

Although all generations of EGFR-TKIs have been proven to be very effective for
NSCLC with common EGFR mutations, almost 5–25% of these patients do not experience a
clinical benefit with these drugs due to intrinsic resistance [57,58]. On the other hand, the
major part of patients treated with EGFR-TKIs became resistant to these therapies despite
an initial response or stable disease. The various mechanisms of resistance to EGFR-TKIs
could be explained by the high molecular heterogeneity of NSCLCs (Figures 1 and 2) [59].
Therefore, deepening the knowledge about the EGFR-TKI resistance mechanisms is one of
the most-important aims in order to improve the treatment strategy of these patients.

2.1. Intrinsic Resistance

Patients with intrinsic resistance report an early tumour progression without prior
tumour response; some of them respond for a very short period (<3 months) [60].

A possible cause regards the pharmacokinetics. In detail, treatment can fail due to the
ineffective drug dose in the target area. This event can occur because of drug competition
or the difficulty of first-/second-generation EGFR-TKIs to reach sanctuary localisations,
such as the brain [61]. However, intrinsic resistance is often due to the lack of a target
dependency (i.e., EGFR exon 20 mutations) or the genes alterations from other pathways
(downstream or parallel pathways) [62,63]. Mechanisms of intrinsic resistance have been
reported above all in patients with uncommon mutations and, more rarely, with common
ones [62,63]. This type of resistance often depends on the presence of a drug-resistant
EGFR mutation; the most-important ones are the exon 20 insertions (1–10% of all EGFR
mutations) and the T790M EGFR mutation (approximately <1–65% of cases, based on the
detection method employed) [64–67]. The lack of first-/second-generation EGFR-TKIs’
efficacy for the T790M mutation and exon 20 insertions is the reason for the development
of third-generation EGFR-TKIs and EGFR-Ins20-specific inhibitors, respectively.

2.1.1. Intrinsic Resistance to First-/Second-Generation EGFR-TKIs

Exon 20 insertions correspond to the addition of residues at the N-lobe of EGFR (M766
to C775), while the C-helix (A767 to C775) is their preferential location [68]. This area is
fundamental to regulate ATP and EGFR-TKI binding with the consequent activation of
the kinase domain through a conformation change [68]. Commonly, exon 20 insertion
mutations led to a reduced sensitivity to EGFR-TKIs; however, in vitro studies described
that some insertion mutations, such as the insertion EGFR-A763_Y764insFQEA, confer
high sensitivity to EGFR-TKIs [69,70]. These data have been confirmed by clinical trials
in which NSCLC patients with some types of insertion mutations experienced prolonged
periods of disease control under EGFR-TKI treatment [69].
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Figure 2. EGFR signaling pathway and EGFR-TKIs’ resistance mechanism.

The presence of the EGFR T790M mutation at diagnosis is a rare event, which suggests,
in some cases, a germinal EGFR mutation [66,67,71]. It is associated with the worst response
to first- or second-generation EGFR-TKIs and poor clinical outcomes [66,67,72]. The EGFR
T790M mutation regards exon 20 and consists of a substitution of the threonine at position
790 with a methionine in the ATP-binding pocket of the kinase domain. This change
prevents the binding of EGFR-TKIs to the receptor due to a steric hindrance; on the other
hand, it leads to an in increased affinity between ATP and EGFR. Therefore, the receptor
affinity for ATP becomes greater than that for the drug with a severe reduction in EGFR-TKI
activity [73].

Another EGFR mutation that is responsible for intrinsic resistance to EGFR-TKIs
in vitro is the variant III (vIII) in-frame deletion of exons 2–7 in the extracellular domain [74].
This mutation is present in almost 5% of human lung squamous cell carcinoma and de-
termines the unsuccessful binding of EGF and other growth factors to EGFRvIII [75,76].
The reason behind the constitutive activation of EGFRvIII and the EGFR-TKI resistance
is probably the structural changes of the EGFR protein affecting the ATP pocket and the
intracellular domain conformation [74].

Some genetic alterations could occur in NSCLC patients with common EGFR muta-
tions with the consequent reduction of sensitivity to EGFR-TKI therapy. In this regard, BIM
is a proapoptotic member of the Bcl-2 family that plays a critical role in apoptosis mediated
by EGFR-TKIs [77]. NSCLC patients with deletion polymorphisms or low-to-intermediate
levels of BIM mRNA have poor clinical efficacy under EGFR-TKIs [77,78]. Furthermore,
low levels of NF1 and the overexpression of RhoB are correlated with poor clinical effi-
cacy [79,80]. Moreover, the plasma detection of TP53 gene co-mutations within two months
of EGFR-TKI treatments is related to the worst PFS and OS [81]. CRIPTO1 is a member of
the EGF-CFC family; it is a cell membrane protein linked to glycosylphosphatidylinositol.
High basal levels of CRIPTO1 lead to a reduced EGFR-TKI sensitivity through the activation
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of ZEB1 and SRC. In this way, ZEB1 promotes epithelial-to-mesenchymal transition (EMT),
while SCR stimulates AKT and MEK signalling [82].

The major part of oncogenic driver mutations in NSCLC is mutually exclusive, al-
though some of them are present simultaneously, such as PI3KCA or TP53 mutations, with
some other oncogenic driver mutations [83,84]. If, on the one hand, co-mutations of the
PI3KCA and EGFR genes have no clinical impact [83], on the other hand, the co-mutation
of EGFR Del19 and non-disruptive TP53 exon 8 is correlated with intrinsic resistance to
first-generation EGFR-TKIs [84].

In some cases, pretreatment AXL and CDCP1 RNA overexpression coexist with EGFR
mutations and correlate with poor response to first-generation EGFR-TKIs [85] and, like-
wise, co-alterations in some cell cycle genes or genes of the PI3K, MAPK, and Wnt/β-
catenin pathways [16,60].

2.1.2. Intrinsic Resistance to Third-Generation EGFR-TKIs

Although most studies regard resistance to osimertinib during second-line therapy,
some literature data report intrinsic resistance when it is administered as a first-line treat-
ment [86]. In this regard, the transformation of NSCLC to SCLC has been considered a
possible mechanism of intrinsic resistance [87].

The HER2 and MET genes’ amplification was associated in in vitro studies with re-
duced sensitivity to third-generation EGFR-TKIs such as osimertinib and rolecitinib [88,89].
The combination of the KRAS G12D mutation and PTEN loss was also detected in NSCLC
patients with intrinsic resistance to osimertinib [60]. The worst response to third-generation
EGFR-TKIs was reported also in NSCLC patients with the EGFR mutation and CDCP1 or
AXL RNA overexpression at baseline [85].

2.2. Acquired Resistance

All the patients treated with EGFR-TKIs experience a progression of disease (PD)
after a variable period of treatment. Patients usually develop acquired resistance after
9–12 months of treatment with first-/second-generation EGFR-TKIs, almost 10 months
with second-line third-generation EGFR-TKIs [42], and about 19 months with first-line
third-generation EGFR-TKIs [27].

Clinical criteria of acquired resistance to EGFR-TKIs in NSCLC patients have been
proposed by Jackman et al., although further clinical validation is needed. The criteria by
Gandara et al. are based on the type of PD: central nervous system (CNS), systemic, and
oligo-progression. In the consideration of the undefined management of NSCLC patients
who progressed to EGFR-TKIs because of acquired resistance, this classification could
help clinicians establish the best treatment strategy based on the PD patterns [88]. For
example, the same treatment with EGFR-TKI could be continued in patients with slow-PD
and without clinical deterioration. A similar strategy could be applied for those patients
with CNS PD or oligo-PD in association with local treatment to the site of progression
(e.g., radiotherapy or surgery) [90].

The comprehension of the mechanisms leading to the acquired resistance is complex
due to different aspects such as: (1) the type of EGFR-TKI; (2) the line of treatment with
a specific EGFR-TKI; (3) the tumour biology, in particular histology, intrinsic mutability,
microenvironment, and the type of initial EGFR mutation.

In the literature, there are several studies regarding the development of acquired
resistance to the first-line treatment with first- or second-generation EGFR-TKIs or second-
line treatment with third-generation EGFR-TKIs, usually due to the occurrence of the
T790M mutation. In contrast, few data have been published about the acquired resistance
to first-line osimertinib treatment. However, given the increasingly larger number of
patients who will be treated with this drug, it is crucial to deepen the knowledge about the
biological mechanisms of EGFR-TKI resistance.
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Below, we describe the acquired resistance mechanisms to EGFR-TKIs known today. In
detail, they can be classified into EGFR-dependent due to the insurgence of new EGFR mu-
tations and EGFR-independent mechanisms due to the activation of alternative pathways.

2.2.1. EGFR-Dependent Mechanisms: Secondary EGFR Mutations

Acquired resistance based on EGFR-dependent mechanisms is due to the insurgence
of secondary and tertiary mutations and/or amplifications of the EGFR gene with the
consequent alteration of the receptor aminoacidic structure. Therefore, this leads to a
conformational change that can regard the kinase or the ATP-binding pocket of the mutant
EGFR, limiting drug accessibility or increasing the ATP affinity.

The incidence of EGFR-dependent acquired resistance is variable based on the type of
EGFR-TKI administered and the line of treatment. To be specific, approximately 50% of
patients develop this type of resistance under first-/second-generation EGFR-TKIs, 20%
of them if they are treated with third-generation EGFR-TKI as a second-line therapy, and
10–15% with first-line third-generation EGFR-TKIs [91].

EGFR T790 Mutation

This is the most-frequent (49–63%) secondary mutation resulting in the insurgence of ac-
quired resistance under treatment with first-/second-generation EGFR-TKIs [92]. Therefore,
third-generation inhibitors were specifically designed to target the EGFR T790 mutation.

The EGFR T790M mutation regards exon 20 and consists of a substitution of the
threonine at position 790 with a methionine in the ATP-binding pocket of the kinase
domain. This change prevents the binding of EGFR-TKIs to the receptor due to a steric
hindrance; on the other hand, it leads to an increased affinity between ATP and EGFR.
Therefore, the receptor affinity for ATP becomes greater than that for the drug with a severe
reduction in EGFR-TKI activity [93].

Some studies have hypothesised that this type of resistance might depend on the
selection of pre-existing drug-resistant EGFR-T790M-positive clones during treatment
with first-/second-generation EGFR-TKIs or on de novo acquisition of the EGFR-T790M
mutation by initially drug-tolerant cells, negative for the EGFR T790M mutation [94].
Experimental data on gefitinib-resistant PC9 cells showed that the early EGFR T790M
mutant clones derived from pre-existing EGFR T790M mutated cells were selected for
gefitinib treatment. The other theory includes the late de novo occurrence of this type of
mutation in drug-tolerant cells due to the prolonged exposure to a first-/second-generation
EGFR inhibitor [64]. In an in vitro study, Hata et al. documented the restorations of late-
emerging T790M cells’ sensitivity to third-generation EGFR-TKIs thanks to the treatment of
tumour cells with navitoclax, an inhibitor of the antiapoptotic factors BCL-2 and BCL-xL [95].

Approximately 43% of NSCLC patients lose the EGFR T790M mutation with the
PD [30,64,68]. This event suggests the existence of subclones with the EGFR T790M mu-
tation [88]. Usually, the loss of T790M is associated with the presence of exon 19 deletion
(83%) and, only rarely, with the L858R mutation (14%) [68]. Moreover, from a clinical
point of view, this event at the time of progression is correlated with the worst clinical
outcomes [23,96–98]. From a molecular point of view, it is associated with the loss of EGFR
dependence and dependence on non-EGFR mechanisms [96].

Tertiary EGFR Mutations: Resistance to Second-Line Third-Generation EGFR-TKI

The AURA3 trial was the first study that showed the insurgence of acquired resistance
to second-line osimertinib by means of the employment of cell-free DNA (cfDNA) genomic
profiles [96,99]. To be specific, the results demonstrated that about 50% of the NSCLC
patients maintained the EGFR T790M mutation, including those that experienced the
insurgence of the tertiary EGFR mutation. The authors reported that acquired tertiary
EGFR mutations occurred in 21% of cases, and the most-common one (15%) was the EGFR
exon 20 C797S mutation [42,100,101]. In contrast, the FLAURA study, in which osimertinib
was administered as a first-line therapy, reported a C797S mutation frequency of 7%.
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The C797S mutation corresponds to a substitution in the ATP-binding site of a cysteine
with a serine at codon 797, resulting in the inability of osimertinib to covalently bond
with the mutant EGFR [102]. Moreover, some studies showed that this mutation also
prevents the binding of other irreversible third-generation EGFR-TKIs such as olmutinib,
rociletinib, and narzatinib to the EGFR active site [103,104]. Interestingly, the allelic context
of the C797S mutation can predict the response to subsequent EGFR-TKI therapies. In
detail, when NSCLC patients have the T790M and C797S mutations on the same allele
(cis-mutations), they experience resistance to all available generations of EGFR-TKIs as a
single agent or combined with other drugs [104,105]. On the other hand, when patients
have these mutations on different alleles (trans-mutations), they experience sensitivity to
first- and second-generation EGFR-TKIs. However, mutations in trans are rare, regarding
less than 30% of cases [105,106].

Rare point EGFR mutations in exon 20 have been also identified in the C796 residue
such as the G796R (0.56% of patients with lung adenocarcinoma treated with osimertinib),
G796S, and G796D mutations, which are adjacent to C797 in exon 20 and can sterically
impair the binding of osimertinib to EGFR [103,107–109].

L792 exon 20 mutations, including L792H, L792Y, and L792F, consist of the addition of
a benzene or imidazole ring to the side chain of L792, resulting in the binding disruption
of osimertinib to the EGFR kinase domain [108,110]. This mutation usually is located in
cis with T790M, but less frequently, it can also occur in trans with EGFR C796/C797X
mutations [105].

The L718Q, L718V, and L798I mutations in exon 18 affect the ATP-binding site of the
EGFR kinase domain. Therefore, they determine steric restriction, preventing the binding
of osimertinib [97,105,110]. These mutations are responsible for osimertinib resistance
independent of the C797 mutation; in fact, they are not co-existent. L718Q/V are associated
with sensitivity to first- and second-generation EGFR-TKIs, above all when T790M has
been lost [111]. Osimertinib resistance is also caused by the G719A mutation located close
to the L718 residue [105].

G724S is a very rare EGFR mutation located in exon 20, usually associated with EGFR
exon 19 deletion. This mutation regards the P-loop of the kinase domain interfering with the
binding of osimertinib [112–114]. However, this altered structure does not confer resistance
to second-generation EGFR inhibitors [62].

SV768IL (S768I + V769L) is another rare (3%) mutation of EGFR exon 20 that has been
identified in second-line therapy with osimertinib [101].

Rarely, tertiary EGFR mutations such as G724S, L718Q, V834L, and L718V can occur
in patients that lost the T790M mutation [97].

Secondary EGFR Mutations: Resistance to First-Line Third-Generation EGFR-TKI

FLAURA was the first study that evaluated resistance to osimertinib as a first-line
treatment [27,115]. Other literature data derive from some case reports or small case
series [96,116].

This phase 3 trial analysed cfDNA samples through NGS, but no emergent T790M
mutation has been detected. This discovery is in line with the well-known activity of
osimertinib towards EGFR-sensitising and T790M mutations [115]. In this study, EGFR
mutation/amplification was rare (9%), as well as C797S mutation frequency (7%), although
it is the most-common mechanism after MET amplification (15%) [101]. S768I or combined
EGFR mutation, such as Del19 + G724S (exon18), L718Q + EGFR ex20ins (exon 18 + 20),
C797X, or S768I (exon 20), or L718Q + C797S, L718Q + L797S (exon 18 + 20) are very rare
secondary mutations, each corresponding to about 1% of cases [11,12,115,117].

Interestingly, this study gave evidence that the mechanisms of resistance to first-line
osimertinib depend on EGFR only for a small proportion of cases, and no EGFR T790M
mutation was observed. Alternatively, EGFR-dependent mechanisms of acquired resistance
are typical for those patients who receive osimertinib as a second-line therapy. Therefore,
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the T790M mutation will be less common due to the more-frequent use of osimertinib as
the first-line therapy.

Rare EGFR Mutations

Although the underlying mechanisms are not well-defined yet, literature data de-
scribed other rare EGFR point mutations that are responsible for acquired resistance to
first-/second-generation EGFR-TKIs and regard less than 10% of NSCLC patients. They
include D761Y and L747S (exon 19) or T854A (exon 21), Asp761Tyr, 39 Thr854Ala, and
40 Leu747Ser [71,110,118].

Other rare molecular alterations, such as the β-catenin mutation, have been detected
in association with the EGFR T790M mutation [92].

2.2.2. EGFR-Independent Mechanisms: Alternative Pathways
Oncogene Amplification

The second-most-frequent mechanism of acquired resistance corresponds to the ac-
tivation of alternative pathways. In this regard, MET oncogene amplification (a copy
number of the MET gene ≥ 5 or a MET/CEP7 ratio of ≥2) is the most-important one
and represents about 5–22% of cases, regardless of the EGFR-TKI generation or line of
therapy [92,119,120]. MET is a tyrosine kinase receptor that is activated by the hepatocyte
growth factor (HGF). This leads to the activation of the downstream AKT pathway, result-
ing in cell proliferation [121]. MET amplification results in receptor overexpression with a
continuous ErbB3-AKT signalling, which is kept despite the blockade of EGFR [122].

MET amplification is usually seen concurrently with EGFR exon 19 deletion, and it
has been detected with or without the loss of the T790M mutation [92,119]. Moreover, MET
amplification was observed in association with the C797S EGFR mutation in 7% of cases
in the AURA3 trial, but also with CDK6 or BRAF amplification [96]. In some cases, it was
reported concurrently with the EGFR mutation before treatment [123].

Moreover, more than 20 oncogenic mutations of MET have been detected, and most
of them are germline. However, MET mutations are rare (P97K/Q, I865F) in NSCLC with
the most-common ones that affect the semaphorin domain (avoiding the growth factor
binding), the juxtamembrane domain (altering the actin cytoskeleton of the cell), and the
TK domain (with the consequent constitutive activation of the receptor, even in the absence
of its ligand) [101,103,124–126].

The HER2 gene encodes the ErbB2 receptor tyrosine kinase [127]. It is responsible for
EGFR-TKI resistance by means of alternative activation via the MAPK or PI3K pathway.
Although ErbB2 amplification occurs only in 1% of untreated lung adenocarcinoma, it
is responsible for 12% of cases of acquired resistance to first-generation TKIs and 5% to
second-line treatment with osimertinib, mutually exclusive with the T790M mutation in
both cases [128,129].

Furthermore, 2% of NSCLC patients have ErbB2 mutations at exon 20 encoding for
the kinase domain of the receptor [128]. The ErbB2 receptor has a strong kinase activity,
although a ligand-binding domain has not been identified; therefore, it is activated follow-
ing the formation of heterodimers with the other members of EGFR family members [130].
On these bases, the wild-type state of ErbB2 is sensible to EGFR-TKIs in consideration of
the EGFR-mediated activation of ErbB2. On the other hand, the mutated state of ErbB2
regarding the kinase domain makes it EGFR-independent and become responsible for
resistance to EGFR-TKIs.

Rare Gene Mutations

Other rare gene mutations (<1%) have been reported.
KRAS G12S, G12D, G13D, Q61R, and Q61K were described as resistance mutations to

second-line osimertinib [23,61,88,96,101].
An in vitro study documented NRAS mutations (and the novel E63K) in NSCLC

EGFR-mutated cell lines resistant to first-, second-, and third-generation TKIs [131]. Other
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experimental data reported that the combination of osimertinib with selumintinib prevents
EGFR-TKI resistance [132–134].

BRAF V600E was another resistance mutation to second-line treatment that has
been identified in 3% of cases in cfDNA [96], concurrently or not, with the T790M muta-
tion [98,135]. An in vitro study documented BRAF V600E NSCLC cell lines as resistant
to osimertinib and sensible to the combination of osimertinib with encorafenib (BRAF
inhibitor) [135].

PI3KCA mutations/amplifications and PTEN loss lead to an increased PI3K sig-
naling [110]. They are usually present at baseline concurrently with some other driver
mutations in NSCLC, although PI3KCA mutations or amplification were also reported at
progression after gefitinib and erlotinib in 3–5% of cases [110]. On the other hand, some
PI3KCA mutations such as E454K, E452K, R88Q, N345K, and E418K were identified at pro-
gression after second-line osimertinib in 4–11% of patients [23,136]. Moreover, an in vitro
study showed the PI3KCA E545K mutation as involved in osimertinib resistance [23]. In
the AURA3 trial, the co-existence of PI3KCA amplification and HER2 amplification was
reported through NGS analysis of cfDNA [96]. PTEN loss was also identified as an acquired
mechanism of resistance [137].

AXL gene upregulation with the consequent protein overexpression was described as
another mechanism of acquired resistance to EGFR-TKIs [110,138].

Amplifications of genes regulating the cell cycle such as cyclin D1, cyclin D2, cyclin-
dependent kinase N2A, cyclin E1, and CDK4/6 were reported in 12% of cfDNA samples
after second-line third-generation EGFR-TKI treatment [96].

Gene Fusions

Gene fusions were reported after first-generation EGFR-TKIs very rarely and in 3–10%
of patients after second-line osimertinib [139]. They were seen concurrently with the EGFR
C797S mutation, MET amplification, or BRAF mutation [96]. The most-common gene
fusions regard RET (46%), in particular RET-ERC1, RET-CCDC6, RET-RUFY2, and RET-
NCOA4 [101,140]. Second are ALK fusions (26%) such as ALK-EML4 after second-line
osimertinib [141], ALK-SPTBN1, and ALK-PLEKHA7 after first-line osimertinib [116,142].
Third are NTRK1 fusions (16%) including NTRK1-TPM3, which has been described in
association with the EGFR Del19 and T790M mutations. Fourth are FGFR3 fusions (11%)
such as FGFR3-TACC3, which was reported in combination with the EGFR Del19, C797X,
and T790M mutations [96].

Other gene fusions have been described regarding ROS1 (ROS1-GOPC), MET (MET-
SPECC1L), and BRAF (BRAF-ESYT2, BRAF-AGK, BRAF-BAIAP2L1, BRAF-PCBP2, BRAF-
TRIM24, and BRAF-PJA2) [23,139,143,144].

Activation of Cell Receptors

The activation of the insulin-like growth factor 1 receptor (IGF-1R) seems to be related
to EGFR-TKI resistance as shown in in vitro studies on lung cancer cell lines resistant to
gefitinib or erlotinib [145]. A possible mechanism could depend on IGF-1R activation as
a consequence of the heterodimerisation with EGFR after erlotinib treatment [145]. This
event leads to the transmission of extracellular survival signals to downstream intra-cellular
factors such as MAPK and AKT. On this basis, the combination of IGF-1R inhibitors such
as AG1024, α-IR3, or R1507 with EGFR-TKIs might be a new strategy to overcome the
resistance [146].

The activation of FGFR2 and 3 could also play a pivotal role in the drug resistance of
cancer cells [147].

Phenotypic Transformation

In rare cases, a histological transformation from NSCLC (adenocarcinoma) to SCLC
was observed [92]. In particular, this event was reported for some patients under EGFR-TKI
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treatment of first-, second-, and third-generations [101,106,148]. Therefore, it is considered
a mechanism of acquired resistance.

A possible explanation of this phenomenon could be the existence of one shared multi-
potent stem cell for both adenocarcinoma and SCLC. On the other hand, other hypotheses
suggest the development of SCLC through the expansion of minor pre-existent cells un-
der the selection pressure of EGFR-TKIs or transdifferentiation from the adenocarcinoma
cells [149].

A genomic study showed that transformed SCLC tumour samples retain the original
EGFR-activating mutation detected at the baseline biopsy sample. This suggests that the
transformed phenotype was not generated by de novo clones, but rather by cancer cells [92].

EMT plays a pivotal role in tumour transformation, invasion, and metastasis [150,151].
It is characterised by an important remodelling of the cell cytoskeleton due to the loss
of polarity and cell–cell contacts by the epithelial cell layers. Therefore, these cells ac-
quire a mesenchymal phenotype through the loss of E-cadherin and overexpression of
mesenchymal proteins such as fibronectin, vimentin, and N-cadherin [152]. EMT is also
characterised by AXL upregulation, which is considered a novel mechanism of acquired
resistance to EGFR-TKI in NSCLCs. In this regard, pre-clinical studies documented that, on
the one hand, the pharmacological inhibition of AXL reduced tumour cells’ proliferation
and invasion and, on the other hand, increased cancers cells’ chemosensitivity [138].

The activation of the Hedgehog (Hh) pathway is implicated in tumourigenesis, metas-
tatisation, and treatment resistance in various types of human tumours. Recent find-
ings about EMT documented that gene amplification of SMO, a Hh receptor, is another
mechanism of acquired resistance to first-generation EGFR-TKIs in EGFR-mutant NSCLC
cells [153]. In particular, preclinical results showed that Hh-mediated EGFR-TKI resistance
matched with the mesenchymal transformation of EGFR-mutated NSCLC cells [154]. In
addition, these preclinical data were confirmed by the results of clinical studies on patients
with EGFR-mutant NSCLC under treatment with EGFR-TKIs. In detail, the authors no-
ticed the co-amplification of SMO and MET genes in tumour samples taken as the clinical
evidence of EGFR-TKI resistance in 2 of the 16 patients.

Preclinical models of acquired resistance to EGFR-TKIs in EGFR-mutated NSCLC
cells showed that the concomitant inhibition of both SMO and MET led to significant
antiproliferative and proapoptotic effects, as well as the loss of the mesenchymal phenotype,
suggesting new combination strategies [154].

These data confirmed that the upregulation of the Hh pathway results in EGFR-TKI
resistance through EMT induction, while the inhibition of this signalling pathway increased
EGFR-TKI sensitivity [154].

3. Future Perspectives

Cancer’s heterogeneity favours the occurrence of molecular resistance mechanisms,
hence the difficulty in developing new effective treatment strategies. On the bases of the
known resistance mechanisms, platinum-based chemotherapy, targeted therapies, and
immunotherapy, or their combinations (Table 4), correspond to the potential therapeutic
regimens for patients who progressed on EGFR-TKIs. The reassessment of tumour genetic
alterations through tissue biopsy and/or liquid biopsy becomes of supreme importance to
define the mechanisms of resistance and to guide the therapeutic strategy. Indeed, a specific
treatment will be administered to patients if effective therapies currently exist. Conversely,
preclinical studies and clinical trials will be considered to offer new therapeutic strategies.
Figure 3 summarises the procedures after the occurrence of resistance.
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Table 4. Early-phase combinations for EGFR-mutated NSCLC patients with osimertinib resistance.

Clinical Trail Phase Arm(s) Endpoint

NCT02143466 [155] 1b Osimertinib + savolitinib ORR: 33%
PFS: 5.4 mo.

SAVANNAH 2 Osimertinib + savolitinib ORR (ongoing)

SACHI 3 Osimertinib + savolitinib vs. pemetrexed + platinum PFS (ongoing)

TATTON [133] 1b Osimertinib plus: selumetinib (MEK1/2 inhibitor),
savolitinib (MET-TKI), or durvalumab (anti-PD-L1). Safety and tollerability

INC280 [156] 1b/2 Capmatinib plus gefitinib ORR: 27%

GEOMETRY-E 3 Capmatinib + osimertinib vs. pemetrexed + platinum DLT, PFS (ongoing)

INSIGHT [157] 1b/2 Tepotinib plus gefitinib vs. standard platinum
chemotherapy

PFS: 4.9 vs. 4.4 mo.
OS: 17.3 vs. 18.7 mo.

MARIPOSA [158] 3 Amivantanab + lazertinib vs. osimertinib PFS (ongoing)

NCT04545710 2 Osimertinib + abemaciclib PFS

NCT03455829 1/2 Osimertinib + lerociclib DLT, RP2D, AEs, PFS

NCT01090011 [159] 1b Afatinib + cetuximab ORR: 30%
PFR: 5 mo.

NCT01861223 [160] 1b/2 Afatinib + nimotuzumab
ORR: 23%

PFS: 4.3 mo.
OS: 11.7 mo.

SQUIRE [161] 3 Necitumumab + gemcitabine + cisplatin vs. gemcitabine +
cisplatin OS: 11.5 vs. 9.9 mo.

NCT02520778 [162] 1b Osimertinib plus navitoclax ORR: 100%
PFS: 16.8 mo.

IMPRESS [163] 3 Gefitinib + cisplatin + pemetrexed vs. cisplatin +
pemetrexed

OS: 13.4 vs. 19.5 mo.
PFS: 5.4 vs. 5.4 mo.

NEJ009 [164] 3 Gefitinib vs. gefitinib + carboplatin+ pemetrexed OS: 49 vs. 38.5 mo.
PFS: 20.9 vs. 11.9 mo.

jRCTs071180062 [165] 2 Osimertinib + carboplatin + pemetrexed vs. osimertinib PFS: 15.8 vs. 14.6 mo.
ORR: 71.4% vs. 53.6%

FLAME 2 Osimertinib plus chemotherapy vs. osimertinib PFS (ongoing)

COMPEL 2 Osimertinib plus chemotherapy vs. osimertinib PFS (ongoing)

FLAURA 2 [56] 3 Osimertinib + platinum–pemetrexed vs.
platinum–pemetrexed

PFS (ongoing)
OS (ongoing)

CheckMate 012 [166] 1 Nivolumab + erlotinib ORR:15%

CAURAL [167] 3 Osimertinib + durvalumab vs. osimertinib AEs

IMpower150 [168] 3 Atezolizumab plus bevacizumab plus carboplatin plus
paclitaxel vs. bevacizumab plus carboplatin plus paclitaxel OS: 19.5 vs. 14.7 mo.

ORIENT-31 [169] 3 Sintilimab + bevacizumab biosimilar IBI305 +
chemotherapy vs. chemotherapy alone PFS: 6.9 vs. 4.3 mo.
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regimens. In the case of a lack of valid targets, clinical trials should be considered.

3.1. Other Third-Generation EGFR-TKIs

In addition to osimertinib, other third-generation EGFR-TKIs have been evaluated in
NSCLC patients with T790M and EGFR-activating mutations.

Almonertinib has an optimised structure compared to osimertinib. It has been tested
in a phase 2 study on 244 NSCLC patients with EGFR T790M who experienced PD to the
previous EGFR-TKI line. The results showed a DCR of 93.4% and an ORR of 68.9%, as well
as a PFS of 12.3 months. Moreover, this drug provided an important encephalic response
rate for those patients with CNS metastases: the DCR and ORR were 91.3% and 60.9%,
respectively, while CNS PFS was 10.8 months [170].

Alflutinib inhibits both EGFR-sensitive mutations and acquired EGFR-T790M-positive
NSCLC. This drug led to an ORR of 73.6% and mPFS of 7.6 months in a phase 2b in which
patients with EGFR-T790M-mutated NSCLC were enrolled [171].

Lazertinib is another third-generation EGFR-TKI that showed an important sys-
temic and intracranial activity on EGFR-T790M-positive NSCLC patients in a phase 1/2
study [172]. Currently, a phase 3 clinical trial is ongoing to compare lazertininb and gefitinib
as a first-line therapy in NSCLC patients with EGFR-sensitising mutations.

Abivertinib is an irreversible third-generation EGFR-TKI that selectively targets EGFR-
sensitising mutations and the T790M mutation through the formation of a covalent bond
with C797 in the ATP-binding pocket. In a phase 2 clinical trial, it led to a DCR of 88.0%
and an ORR of 52.2% [173,174].
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Nazartinib is a covalent and irreversible EGFR-TKI targeting the exon 19 deletion,
L858R, and T790M mutations. Preliminary results from a multicentre, open-label, phase 1/2
trial reported an ORR of 44% and a DCR of 91% with a median duration of response of 9.2
months and an excellent safety profile [175]. Ongoing clinical trials have been evaluating
nazartinib combined with capmatinib in patients with advanced NSCLC with EGFR L858R,
ex19del, or T790M in various lines of therapy including T790M-negative or treatment-naive
patients (NCT02335944).

Olmutinib has potent inhibitory activity against L858R-/T790M-mutant NSCLC cells
(44). A single-arm, open-label, phase 1/2 trial analysed olmutinib for EGFR-T790M-positive
patients showing an ORR of 55% and a PFS of 6.9 months [176,177]. However, the safety
profile of this drug is unfavourable relative to osimertinib, in particular due to skin toxicity
including toxic epidermolysis necrosis and Stevens–Johnson syndrome.

Naquotinib is a small irreversible TKI that binds at C797 and targets the common
EGFR mutations including T790M while sparing wild-type EGFR. This drug was tested
in a phase 1 trial as a second-line therapy for T790M-positive patients, showing an ORR
of 31% and a median PFS of 6.0 months [178]. On the other hand, the first-line naquotinib
resulted in an ORR of 52%, DCR of 94%, and PFS of 11.3 months. However, the phase 3
clinical trial of naquotinib was closed due to limited predicted efficacy and toxicity [177].

Mavelertinib has a potent cellular inhibitory activity against EGFR L858R, the EGFR
del19 mutation, EGFR L858R/T790M, and EGFR del19/T790M, while sparring WT EGFR.
A phase 1 study tested this drug with an ORR of 42.3% and a DCR of 65,4% [176,179,180].
Further analyses will evaluate the efficacy and safety of mavelertininb plus palbociclib,
according to preclinical data demonstrating synergy (NCT02349633) [179,180].

3.2. Therapeutic Options in T790M-cis-C797S Mutations

As mentioned above, if the C797S and T790M mutations are in trans, the cancer will
be sensitive to the combination therapy of first- and third-generation EGFR-TKIs, while
if they are in cis, EGFR-TKIs alone or in combination will be ineffective [111,181]. For the
latter, alternative treatment strategies have been described. A preclinical study and a case
report documented an interesting activity of brigatinib, a dual ALK and EGFR inhibitor,
when administered in combination with cetuximab (anti-EGFR antibody), for NSCLC
patients with T790M/cis-C797S EGFR mutations [182,183]. Moreover, a retrospective study
showed that this combination led to an ORR of 60% and a median PFS of 14 months
with respect to an ORR of 10% and a median PFS of 3 months for those patients treated
with chemotherapy. Other combinations have been described in some case reports for
patients with C797S and T790M mutations in cis with promising results [184,185]. The latter
suggest that the combination of EGFR-TKIs with anti-VEGFR might be a promising therapy
for this subset of patients. Further clinical trials should evaluate an ICI plus platinum-
based doublet chemotherapy since it exhibited efficacy against T790M-cis-C797S [186]. The
administration of osimertinib plus first-/second-generation EGFR-TKIs could be effective
in cases of in trans C797X and T790M mutations, as well as the first-/second-generation
EGFR-TKIs in cases with the C997X and without the T790M mutation [111,181].

However, currently, no standard therapeutic regimens are recommended for this set
of patients.

3.3. Next-Generation EGFR Allosteric Inhibitors

Various therapeutic strategies have been studied to solve the issue of C797S-mediated
resistance to osimertinib. In particular, several next-generation EGFR allosteric inhibitors
have been developed [91,187–189]. They bind to EGFR at a site away from the tyrosine
kinase domain, which bypasses the C797S-mediated resistance mechanism [190].

EAI045 selectively changes the space configuration of mutated EGFR and hinders its
binding to EGFR ligands. In this way, it blocks the phosphorylation and the downstream
signalling pathway, including p-STATs, p-AKT, and p-ERK1/2 [187]. In vitro and in vivo
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data reported a remarkable synergistic effect on Ba/F3 cells with triple mutants (L858R/
C797S/T790M) from EAI045 plus cetuximab [187,190].

Another next-generation EGFR allosteric inhibitor is JBJ-04-125-02, which exhibited,
in vitro and in vivo, an increased apoptosis of NSCLC cells with EGFR triple mutants when
combined with osimertinib than JBJ-04-125-02 or osimertinib as a single agent [188,191].

Unlike EAI045, CH7233163 proved to inhibit the growth of NSCLC cells with the
Del19/T790M/C797S triple EGFR mutants [192].

BLU-701 is another fourth-generation EGFR-TKI against the C797S-resistance muta-
tion that demonstrated antitumour activity in a PC9-cell-line-derived tumour xenograft
model [193,194]. In addition, a phase 1/2 clinical study (SYMPHONY trial) is testing
BLU-945 against the EGFR-sensitised mutation/T790M/C797S [195–198].

Despite these new drugs having demonstrated a potent activity on osimertinib-
resistant NSCLC cells in preclinical studies, most of them have not been tested in clinical
trials yet.

3.4. Osimertinib Plus MET Inhibitors

As mentioned above, MET amplification corresponds to the most-frequent EGFR-
independent mechanism of osimertinib resistance (5–24%) [23,199,200]. Therefore, some
MET-TKIs have been tested in MET-amplification NSCLC patients to overcome this type of
resistance to osimertinib.

In a phase 1b trial (NCT02143466), savolitinib demonstrated an ORR of 33% and a
median PFS of 5.4 months when administered with osimertinib [91,155]. The SACHI phase
3 trial is ongoing with the aim to compare this combination with pemetrexed plus platinum.
Interestingly, the TATTON study was designed to analyse the safety of osimertinib plus
selumetinib (MEK1/2 inhibitor), savolitinib (MET inhibitor), or durvalumab (anti-PD-L1
monoclonal antibody) in advanced EGFR-mutant NSCLC patients who progressed on
a previous EGFR-TKI line. The interim results showed that osimertinib combined with
savolitinib had acceptable toxicity and favourable antitumour activity [133,155]. Capma-
tinib, another MET inhibitor, showed an ORR of 27% in combination with gefitinib [91,156].
GEOMETRY-E is an ongoing phase 3 clinical trial testing the combination of capmatinib
plus osimertinib compared to platinum–pemetrexed doublet chemotherapy as a second-
line therapy for advanced NSCLC [201]. In the INSIGHT trial, tepotinib, a MET inhibitor,
in association with gefitinib, documented an mPFS of 4.9 months versus the 4.4 months
of the chemotherapy group (HR 0.67, 90% CI 0.35–1.28); mOS was 17.3 months in the
combination group versus 18.7 months in the chemotherapy group (15.9–20.7; HR 0.69,
0.34–1.41) [91,157].

Amivantanab is a bispecific EGFR and MET antibody that is under evaluation in
combination with lazertinib, another third-generation EGFR-TKI, in a phase 3 clinical
study [158]. Some case reports and a retrospective analysis revealed important clinical and
radiographic responses in EGFR-mutation-positive NSCLC patients treated with crizotinib
plus osimertinib [202–204].

3.5. Osimertinib Plus CDK4/6 Inhibitors

Cyclin-dependent kinase (CDK) inhibitors, such as palbociclib and abemaciclib, act
through the reduction of CDK-induced phosphorylation of downstream Rb [205–207].
Thus, this class of drug can inhibit the switch from the G1 to S phase of the cell cycle [205].
Experimental data reported as the combination of CDK4/6 inhibitors plus osimertinib
led to an increased proportion of cells in the G1 phase and the block of the proliferation
of osimertinib-resistant cells [205,206]. In addition, other studies revealed that CDK7
inhibitors might be effective to counter EMT-mediated resistance to osimertinib [208]. Two
clinical trials are investigating the clinical efficacy of CDK4/6 inhibitors (abemaciclib or
lerociclib) plus osimertinib in EGFR-mutation-positive metastatic NSCLC patients who
progressed on osimertinib therapy in NCT04545710 and NCT03455829, respectively.
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3.6. EGFR-TKIs Plus Anti-EGFR Antibodies

Preclinical data reported that the combination of the dual inhibition with an EGFR-TKI
and anti-EGFR antibody was characterised by an elevated activity on EGFR L858R/T790M
erlotinib-resistant tumours [209]. Phase 1b/2 clinical trials evaluated afatinib plus cetux-
imab, afatinib plus nimotuzumab, or osimertinib plus necitumumab for patients affected
by EGFR-mutant NSCLC with acquired resistance to gefitinib or erlotinib, regardless of
the EGFR T790M mutation [159,160,210,211]. These studies showed an important clinical
activity and a safe profile of toxicity. Furthermore, another study investigated necitu-
mumab, an anti-EGFR monoclonal antibody, in combination with chemotherapy versus
chemotherapy alone as the first-line therapy. The results reported a longer OS (11.5 months
vs. 9.9 months) for advanced squamous NSCLC patients in the experimental group [161].
Finally, several clinical trials (NCT03944772, NCT04285671, and NCT02496663) are testing
the efficacy of necitumumab plus osimertinib in NSCLC with progression on EGFR-TKIs,
including osimertinib.

3.7. Third-Generation EGFR-TKI Plus Bcl-2 Inhibitor

A phase 1b trial is ongoing with the aim to test osimertinib in combination with navi-
toclax in 27 patients with disease progression under an anti-EGFR-TKI [162]. Navitoclax is
a dual-inhibitor of Bcl-2 and BCL-xL, which induces BIM (a proapoptotic protein from Bcl-2
family components) by decreasing the capacity of BCL-xL to neutralise BIM and facilitates
Bax and Bak to initiate caspases, leading to cell death. In the expansion cohort, the ORR
was 100% and the PFS was 16.8 months.

3.8. Chemotherapy

Despite several resistance mechanisms to osimertinib having been defined, 30–50%
of them are still unknown. For the latter, no targeted therapy options exist; therefore,
platinum-based chemotherapy is the best choice of treatment, especially in the case of SCLC
transformation. In particular, a retrospective analysis reported an important activity of
platinum–etoposide for SCLC-transformed patients (ORR of 54%, mPFS of 3.4 months, OS
of 10.9 months). No efficacy was observed for those patients that underwent ICIs [212]. An-
other retrospective study showed that chemotherapy provides a better survival
(25.0 versus 11.8 months) than a non-chemotherapy strategy in advanced NSCLC pa-
tients who progressed under first-line therapy with Osimertinib and without a molecular
target [213].

However, it is controversial if the continuing administration of EGFR-TKIs during
chemotherapy could provide a benefit. To this end, the IMPRESS phase 3 trial evaluated
the efficacy and safety for patients who continued gefitinib in addition to cisplatin and
pemetrexed after progression on first-line gefitinib treatment with respect to chemotherapy
alone [163,214]. The experimental group experienced a similar PFS (5.4 vs. 5.4 months), but
worse OS (13.4 vs. 19.5 months). On the other hand, the NEJ009 phase 3 trial showed that the
combination of gefitinib plus carboplatin and pemetrexed led to a longer PFS (20.9 versus
11.9 months) and OS (49.0 vs. 38.5 months) than gefitinib as a single agent [164,215].
Therefore, the association therapy with gefitinib and chemotherapy provides opposite
results in the different treatment settings. This is probably due to gene alterations in NSCLC
patients after therapy with EGFR-TKIs. However, limited clinical data have been published
about the efficacy of continuing osimertinib in addition to chemotherapy for those patients
who previously received osimertinib as a first-line therapy. A randomised phase 2 clinical
trial evaluated osimertinib plus carboplatin–pemetrexed compared to osimertinib alone
for EGFR-mutated NSCLC patients with T790M in the second-line setting. The results
reported a median PFS of 15.8 months versus 14.6 months and an ORR of 71.4% versus
53.6% in the control group and experimental group, respectively [165]. On the other hand,
the combination of osimertinib with chemotherapy did not provide a survival benefit in
the second-line setting, similar to gefitinib. Currently, some clinical studies are ongoing to
further confirm these results. To be specific, the FLAME and COMPEL trials are enrolling
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EGFR-mutant NSCLC patient to compare osimertinib plus chemotherapy with osimertinib
alone. Furthermore, the FLAURA2 phase 3 trial is evaluating first-line osimertinib plus
platinum-based chemotherapy compared to osimertinib as a single agent [56].

3.9. Immunotherapy

Several phase 3 clinical trials reported very favourable results derived from the ad-
ministration of ICIs for NSCLC patients without targetable mutations and many other
cancers [216]. On the other hand, immunotherapy led to a limited benefit in NSCLC pa-
tients harbouring EGFR alterations [217,218]. In this regard, the IMMUNOTARGET registry
revealed that immune monotherapy determined a low ORR and PFS among EGFR-mutated
NSCLC patients, 12% and 2.1 months, respectively [219]. In addition, the single agent
pembrolizumab provided limited efficacy in the subset of EGFR-mutated NSCLC patients
who did not previously receive EGFR-TKI therapy, even in the case of PD-L1 expression
of more than 50% [220]. A higher incidence of hyperprogressive disease (HPD) was ob-
served with the administration of ICI monotherapy in NSCLC patients harbouring EGFR
alterations [221,222]. On these bases, ICI monotherapy is not considered an appropriate
therapeutic option for this subset of patients. The explanation for this lower sensitivity
to anti-PD-1/-PD-L1 treatment has not been well defined yet, but it might be correlated
with the low tumour mutational burden (TMB) of NSCLC with targetable mutations, with
consequent weak immunogenicity [223].

In consideration of the limited benefit of ICI monotherapy in EGFR-mutated NSCLC
patients, combination strategies have been evaluated. Recently, experimental data showed
that PD-L1 expression and increased tumour-infiltrating lymphocyte density in the tumour
microenvironment are correlated with the EGFR T790M mutation and response to the anti-
PD1 antibody [224,225]. These results led to the evaluation of PD-1 blockade plus EGFR-TKI
treatment for EGFR-driven NSCLC. In detail, the combinations of nivolumab and erlotinib
and of durvalumab and osimertinib were associated with an important efficacy, but, at
the same time, severe toxicity including interstitial pneumonitis, interstitial lung disease,
and liver enzyme elevation [166,167,226–232]. Therefore, this type of combination did not
demonstrate promising results due to the high incidence of Grade 3/4 adverse events (AEs).
Interestingly, Schoenfeld et al. revealed that sequential ICI followed by osimertinib was
associated with severe immune-associated AEs, unlike patients who received osimertinib
followed by ICI [229]. Therefore, caution should be taken when osimertinib is administered
to patients who recently received ICIs.

Recent studies are evaluating the combination of immunotherapy plus chemother-
apy and antiangiogenetic agents for EGFR-mutant NSCLC patients intending to increase
sensitivity to immunotherapy by modulating the tumour microenvironment [91]. In this
regard, the IMpower150 phase 3 trial tested the combination of atezolizumab, carboplatin,
paclitaxel, and bevacizumab with respect to the same chemotherapy plus bevacizumab, in
non-squamous NSCLC patients, including those with EGFR mutations who could have
received prior EGFR-TKIs. This study showed a significant improvement in OS and the PFS
for the experimental group [168]. Similarly, promising results derived from another clinical
trial in which the combination of atezolizumab, bevacizumab, carboplatin, and peme-
trexed was evaluated for advanced EGFR-mutated NSCLC patients who progressed on an
EGFR-TKI [233]. The ORIENT-31 is a phase 3 clinical trial that is evaluating sintilimab plus
IBI305 (bevacizumab biosimilar), cisplatin, and pemetrexed compared to chemotherapy
alone in EGFR-mutated NSCLC patients after EGFR-TKI failure. Interim results revealed a
significantly longer PFS (6.9 months vs. 4.3 months) for the experimental group [169].

Other combination treatments are under investigation.

4. Conclusions

EGFR-TKIs are considered the gold standard treatment for patients affected by EGFR-
mutated advanced NSCLC since these medicines have provided a remarkable improvement
in clinical outcomes. Although osimertinib is the first-line therapy for these patients
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thanks to its potent activity and favourable safety profile, as well as early-generation
EGFR-TKIs, resistance inevitably occurs due to various mechanisms. The reassessment
of molecular alterations thorough tissue biopsy and/or liquid biopsy become of supreme
importance to define the mechanisms of resistance and to guide therapeutic strategy.
Indeed, targeted therapies, immunotherapy, and chemotherapy are providing interesting
results for NSCLC patients harbouring EGFR mutations and with osimertinib resistance.
Moreover, an increasing number of clinical trials is evaluating the efficacy and safety of
several combination regimens.

Resistance to EGFR-TKIs hampers the correct management of EGFR-mutated NSCLC
patients; therefore, the development of novel drugs to overcome this issue is fundamental.
In addition, further studies are necessary to deepen knowledge about resistance mecha-
nisms to osimertinib since a considerable proportion of them are still unknow. Indeed,
in-depth knowledge of the resistance mechanisms would make it possible to individualise
the treatment strategies, providing an improvement in the quality of life and a survival
benefit of NSCLC patients.
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