Next Issue
Volume 15, July
Previous Issue
Volume 15, May
 
 

Pharmaceutics, Volume 15, Issue 6 (June 2023) – 213 articles

Cover Story (view full-size image): Localized photodynamic therapy (PDT) is a promising approach to treating breast cancer since it triggers immunity against recurrence and metastasis distant from the treated area. Despite that, the widespread application of PDT is limited by a photosensitizer's (PS) tendency to aggregate and lack of selectivity for cancer cells. In this work, we report a nanotechnological biomimetic formulation for transporting the PS meso-tetraphenylchlorin disulfonate (TPCS2a). Poly(lactic-co-glycolic) acid nanoparticles efficiently loaded TPCS2a and were coated with mesenchymal stem cell-derived plasma membranes to avoid premature clearance by the mononuclear phagocytes system and favor tumor accumulation. Encapsulation of TPCS2a into nanoparticles prevents its aggregation, facilitating the administration while maintaining therapeutic efficacy. View this paper
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
41 pages, 16719 KiB  
Review
Synthesis and Modification of Morphine and Codeine, Leading to Diverse Libraries with Improved Pain Relief Properties
by Mona Kamelan Zargar Zarin, Wim Dehaen, Peyman Salehi and Amir Ata Bahmani Asl
Pharmaceutics 2023, 15(6), 1779; https://doi.org/10.3390/pharmaceutics15061779 - 20 Jun 2023
Cited by 2 | Viewed by 2920
Abstract
Morphine and codeine, two of the most common opioids, are widely used in the clinic for different types of pain. Morphine is one of the most potent agonists for the μ-opioid receptor, leading to the strongest analgesic effect. However, due to their [...] Read more.
Morphine and codeine, two of the most common opioids, are widely used in the clinic for different types of pain. Morphine is one of the most potent agonists for the μ-opioid receptor, leading to the strongest analgesic effect. However, due to their association with serious side effects such as respiratory depression, constriction, euphoria, and addiction, it is necessary for derivatives of morphine and codeine to be developed to overcome such drawbacks. The development of analgesics based on the opiate structure that can be safe, orally active, and non-addictive is one of the important fields in medicinal chemistry. Over the years, morphine and codeine have undergone many structural changes. The biological investigation of semi-synthetic derivatives of both morphine and codeine, especially morphine, shows that studies on these structures are still significant for the development of potent opioid antagonists and agonists. In this review, we summarize several decade-long attempts to synthesize new analogues of morphine and codeine. Our summary placed a focus on synthetic derivatives derived from ring A (positions 1, 2, and 3), ring C (position 6), and N-17 moiety. Full article
(This article belongs to the Special Issue Recent Advances in Natural Product Drugs)
Show Figures

Figure 1

13 pages, 1369 KiB  
Review
Correlation between PPARG Pro12Ala Polymorphism and Therapeutic Responses to Thiazolidinediones in Patients with Type 2 Diabetes: A Meta-Analysis
by Eun Jeong Jang, Da Hoon Lee, Sae-Seul Im, Jeong Yee and Hye Sun Gwak
Pharmaceutics 2023, 15(6), 1778; https://doi.org/10.3390/pharmaceutics15061778 - 20 Jun 2023
Viewed by 1098
Abstract
Background: Thiazolidinediones (TZDs) are a type of oral drug that are utilized for the treatment of type 2 diabetes mellitus (T2DM). They function by acting as agonists for a nuclear transcription factor known as peroxisome proliferator-activated receptor-gamma (PPAR-γ). TZDs, such as pioglitazone and [...] Read more.
Background: Thiazolidinediones (TZDs) are a type of oral drug that are utilized for the treatment of type 2 diabetes mellitus (T2DM). They function by acting as agonists for a nuclear transcription factor known as peroxisome proliferator-activated receptor-gamma (PPAR-γ). TZDs, such as pioglitazone and rosiglitazone, help enhance the regulation of metabolism in individuals with T2DM by improving their sensitivity to insulin. Previous studies have suggested a relationship between the therapeutic efficacy of TZDs and the PPARG Pro12Ala polymorphism (C > G, rs1801282). However, the small sample sizes of these studies may limit their applicability in clinical settings. To address this limitation, we conducted a meta-analysis assessing the influence of the PPARG Pro12Ala polymorphism on the responsiveness of TZDs. Method: We registered our study protocol with PROSPERO, number CRD42022354577. We conducted a comprehensive search of the PubMed, Web of Science, and Embase databases, including studies published up to August 2022. We examined studies investigating the association between the PPARG Pro12Ala polymorphism and metabolic parameters such as hemoglobin A1C (HbA1C), fasting plasma glucose (FPG), triglyceride (TG), low-density lipoprotein cholesterol (LDL), high-density lipoprotein cholesterol (HDL), and total cholesterol (TC). The mean difference (MD) and 95% confidence intervals (CIs) between pre- and post-drug administration were evaluated. The quality of the studies included in the meta-analysis was assessed by using the Newcastle–Ottawa Scale (NOS) tool for cohort studies. Heterogeneity across studies was assessed by using the I2 value. An I2 value greater than 50% indicated substantial heterogeneity, and a random-effects model was used for meta-analysis. If the I2 value was below 50%, a fixed-effects model was employed instead. Both Begg’s rank correlation test and Egger’s regression test were performed to detect publication bias, using R Studio software. Results: Our meta-analysis incorporated 6 studies with 777 patients for blood glucose levels and 5 studies with 747 patients for lipid levels. The included studies were published between 2003 and 2016, with the majority involving Asian populations. Five of the six studies utilized pioglitazone, while the remaining study employed rosiglitazone. The quality scores, as assessed with the NOS, ranged from 8 to 9. Patients carrying the G allele exhibited a significantly greater reduction in HbA1C (MD = −0.3; 95% CI = −0.55 to −0.05; p = 0.02) and FPG (MD = −10.91; 95% CI = −19.82 to −2.01; p = 0.02) levels compared to those with the CC genotype. Furthermore, individuals with the G allele experienced a significantly larger decrease in TG levels than those with the CC genotype (MD = −26.88; 95% CI = −41.30 to −12.46; p = 0.0003). No statistically significant differences were observed in LDL (MD = 6.69; 95% CI = −0.90 to 14.29; p = 0.08), HDL (MD = 0.31; 95% CI = −1.62 to 2.23; p = 0.75), and TC (MD = 6.4; 95% CI = −0.05 to 12.84; p = 0.05) levels. No evidence of publication bias was detected based on Begg’s test and Egger’s test results. Conclusions: This meta-analysis reveals that patients with the Ala12 variant in the PPARG Pro12Ala polymorphism are more likely to exhibit positive responses to TZD treatment in terms of HbA1C, FPG, and TG levels compared to those with the Pro12/Pro12 genotype. These findings suggest that genotyping the PPARG Pro12Ala in diabetic patients may be advantageous for devising personalized treatment strategies, particularly for identifying individuals who are likely to respond favorably to TZDs. Full article
(This article belongs to the Special Issue Association Studies in Clinical Pharmacogenetics—Volume II)
Show Figures

Figure 1

16 pages, 2607 KiB  
Article
The C-Terminus of Panusin, a Lobster β-Defensin, Is Crucial for Optimal Antimicrobial Activity and Serum Stability
by Roberto Bello-Madruga, Javier Valle, M. Ángeles Jiménez, Marc Torrent, Vivian Montero-Alejo and David Andreu
Pharmaceutics 2023, 15(6), 1777; https://doi.org/10.3390/pharmaceutics15061777 - 20 Jun 2023
Cited by 2 | Viewed by 1397
Abstract
β-defensins are one of the most abundant and studied families of antimicrobial peptides (AMPs). Because of their selective toxicity to bacterial membranes and a broad spectrum of microbicidal action, β-defensins are regarded as potential therapeutic agents. This work focuses on a β-defensin-like AMP [...] Read more.
β-defensins are one of the most abundant and studied families of antimicrobial peptides (AMPs). Because of their selective toxicity to bacterial membranes and a broad spectrum of microbicidal action, β-defensins are regarded as potential therapeutic agents. This work focuses on a β-defensin-like AMP from the spiny lobster Panulirus argus (hereafter referred to as panusin or PaD). This AMP is structurally related to mammalian defensins via the presence of an αβ domain stabilized by disulfide bonds. Previous studies of PaD suggest that its C-terminus (Ct_PaD) contains the main structural determinants of antibacterial activity. To confirm this hypothesis, we made synthetic versions of PaD and Ct_PaD to determine the influence of the C-terminus on antimicrobial activity, cytotoxicity, proteolytic stability, and 3D structure. After successful solid-phase synthesis and folding, antibacterial assays of both peptides showed truncated Ct_PaD to be more active than native PaD, confirming the role of the C-terminus in activity and suggesting that cationic residues in that region enhance binding to negatively charged membranes. On the other hand, neither PaD nor Ct_PaD were hemolytic or cytotoxic in human cells. Proteolysis in human serum was also studied, showing high (>24 h) t1/2 values for PaD and lower but still considerable for Ct_PaD, indicating that the missing native disulfide bond in Ct_PaD alters protease resistance, albeit not decisively. NMR-2D experiments in water agree with the results obtained by circular dichroism (CD), where in SDS micelles, CD showed both peptides adopting an increasingly ordered structure in a hydrophobic environment, in tune with their ability to perturb bacterial membrane systems. In conclusion, while the β-defensin features of PaD are confirmed as advantageous in terms of antimicrobial activity, toxicity, and protease stability, the results of the present work suggest that these same features are preserved, even enhanced, in the structurally simpler Ct_PaD, which must therefore be viewed as a valuable lead for the development of novel anti-infectives. Full article
(This article belongs to the Special Issue State of the Art of Membrane Active Peptides)
Show Figures

Graphical abstract

15 pages, 2703 KiB  
Article
Fluorescent and Magnetic Radical Dendrimers as Potential Bimodal Imaging Probes
by Songbai Zhang, Vega Lloveras, Yufei Wu, Juan Tolosa, Joaquín C. García-Martínez and José Vidal-Gancedo
Pharmaceutics 2023, 15(6), 1776; https://doi.org/10.3390/pharmaceutics15061776 - 20 Jun 2023
Cited by 2 | Viewed by 991
Abstract
Dual or multimodal imaging probes have emerged as powerful tools that improve detection sensitivity and accuracy in disease diagnosis by imaging techniques. Two imaging techniques that are complementary and do not use ionizing radiation are magnetic resonance imaging (MRI) and optical fluorescence imaging [...] Read more.
Dual or multimodal imaging probes have emerged as powerful tools that improve detection sensitivity and accuracy in disease diagnosis by imaging techniques. Two imaging techniques that are complementary and do not use ionizing radiation are magnetic resonance imaging (MRI) and optical fluorescence imaging (OFI). Herein, we prepared metal-free organic species based on dendrimers with magnetic and fluorescent properties as proof-of-concept of bimodal probes for potential MRI and OFI applications. We used oligo(styryl)benzene (OSB) dendrimers core that are fluorescent on their own, and TEMPO organic radicals anchored on their surfaces, as the magnetic component. In this way, we synthesized six radical dendrimers and characterized them by FT-IR, 1H NMR, UV-Vis, MALDI-TOF, SEC, EPR, fluorimetry, and in vitro MRI. Importantly, it was demonstrated that the new dendrimers present two properties: on one hand, they are paramagnetic and show the ability to generate contrast by MRI in vitro, and, on the other hand, they also show fluoresce emission. This is a remarkable result since it is one of the very few cases of macromolecules with bimodal magnetic and fluorescent properties using organic radicals as the magnetic probe. Full article
(This article belongs to the Special Issue Fluorescent Organic Nanoparticles for Bioimaging and Theragnostics)
Show Figures

Figure 1

13 pages, 2802 KiB  
Article
Newly Designed Cysteine-Based Self-Assembling Prodrugs for Sepsis Treatment
by Yuta Koda and Yukio Nagasaki
Pharmaceutics 2023, 15(6), 1775; https://doi.org/10.3390/pharmaceutics15061775 - 20 Jun 2023
Cited by 1 | Viewed by 1047
Abstract
Reactive oxygen species (ROS) are essential signaling molecules that maintain intracellular redox balance; however, the overproduction of ROS often causes dysfunction in redox homeostasis and induces serious diseases. Antioxidants are crucial candidates for reducing overproduced ROS; however, most antioxidants are less effective than [...] Read more.
Reactive oxygen species (ROS) are essential signaling molecules that maintain intracellular redox balance; however, the overproduction of ROS often causes dysfunction in redox homeostasis and induces serious diseases. Antioxidants are crucial candidates for reducing overproduced ROS; however, most antioxidants are less effective than anticipated. Therefore, we designed new polymer-based antioxidants based on the natural amino acid, cysteine (Cys). Amphiphilic block copolymers, composed of a hydrophilic poly(ethylene glycol) (PEG) segment and a hydrophobic poly(cysteine) (PCys) segment, were synthesized. In the PCys segment, the free thiol groups in the side chain were protected by thioester moiety. The obtained block copolymers formed self-assembling nanoparticles (NanoCys(Bu)) in water, and the hydrodynamic diameter was 40–160 nm, as determined by dynamic light scattering (DLS) measurements. NanoCys(Bu) was stable from pH 2 to 8 under aqueous conditions, as confirmed by the hydrodynamic diameter of NanoCys(Bu). Finally, NanoCys(Bu) was applied to sepsis treatment to investigate the potential of NanoCys(Bu). NanoCys(Bu) was supplied to BALB/cA mice by free drinking for two days, and lipopolysaccharide (LPS) was intraperitoneally injected into the mice to prepare a sepsis shock model (LPS = 5 mg per kg body weight (BW)). Compared with the Cys and no-treatment groups, NanoCys(Bu) prolonged the half-life by five to six hours. NanoCys(Bu), designed in this study, shows promise as a candidate for enhancing antioxidative efficacy and mitigating the adverse effect of cysteine. Full article
(This article belongs to the Special Issue Symbiotic Materials for Pharmaceutics)
Show Figures

Figure 1

18 pages, 6822 KiB  
Article
The Chemometric Evaluation of the Factors Influencing Cloud Point Extraction for Fluoroquinolones
by Aleksandra Michałowska, Olga Kupczyk and Andrzej Czyrski
Pharmaceutics 2023, 15(6), 1774; https://doi.org/10.3390/pharmaceutics15061774 - 20 Jun 2023
Cited by 2 | Viewed by 726
Abstract
This study aimed to analyze the factors that impact the cloud point extraction of ciprofloxacin, levofloxacin, and moxifloxacin. The following independent variables were analyzed: Triton X-114 concentration, NaCl concentration, pH, and incubation temperature. The dependent variable studied was recovery. A central composite design [...] Read more.
This study aimed to analyze the factors that impact the cloud point extraction of ciprofloxacin, levofloxacin, and moxifloxacin. The following independent variables were analyzed: Triton X-114 concentration, NaCl concentration, pH, and incubation temperature. The dependent variable studied was recovery. A central composite design model was used. The applied quantitation method was HPLC. The method was validated for linearity, precision, and accuracy. The results underwent ANOVA® analysis. The polynomial equations were generated for each analyte. The response surface methodology graphs visualized them. The analysis showed that the factor most affecting the recovery of levofloxacin is the concentration of Triton X-114, while the recovery of ciprofloxacin and moxifloxacin is most affected by pH value. However, the concentration of Triton X-114 also plays an important role. The optimization resulted in the following recoveries: for ciprofloxacin, 60%; for levofloxacin, 75%; and for moxifloxacin, 84%, which are identical to those estimated with regression equations—59%, 74% and 81% for ciprofloxacin, levofloxacin, and moxifloxacin, respectively. The research confirms the validity of using the model to analyze factors affecting the recovery of the analyzed compounds. The model allows for a thorough analysis of variables and their optimization. Full article
Show Figures

Figure 1

12 pages, 965 KiB  
Article
Dipropyleneglycol Dimethylether, New Green Solvent for Solid-Phase Peptide Synthesis: Further Challenges to Improve Sustainability in the Development of Therapeutic Peptides
by Giovanni Vivenzio, Maria Carmina Scala, Pasquale Marino, Michele Manfra, Pietro Campiglia and Marina Sala
Pharmaceutics 2023, 15(6), 1773; https://doi.org/10.3390/pharmaceutics15061773 - 20 Jun 2023
Viewed by 1250
Abstract
In recent years, peptides have gained more success as therapeutic compounds. Nowadays, the preferred method to obtain peptides is solid-phase peptide synthesis (SPPS), which does not respect the principles of green chemistry due to the large number of toxic reagents and solvents used. [...] Read more.
In recent years, peptides have gained more success as therapeutic compounds. Nowadays, the preferred method to obtain peptides is solid-phase peptide synthesis (SPPS), which does not respect the principles of green chemistry due to the large number of toxic reagents and solvents used. The aim of this work was to research and study an environmentally sustainable solvent able to replace dimethylformamide (DMF) in fluorenyl methoxycarbonyl (Fmoc) solid-phase peptide synthesis. Herein, we report the use of dipropyleneglycol dimethylether (DMM), a well-known green solvent with low human toxicity following oral, inhalant, and dermal exposure and that is easily biodegradable. Some tests were needed to evaluate its applicability to all the steps of SPPS, such as amino acid solubility, resin swelling, deprotection kinetics, and coupling tests. Once the best green protocol was established, it was applied to the synthesis of different length peptides to study some of the fundamental parameters of green chemistry, such as PMI (process mass intensity) and the recycling of solvent. It was revealed that DMM is a valuable alternative to DMF in all steps of solid-phase peptide synthesis. Full article
(This article belongs to the Section Gene and Cell Therapy)
Show Figures

Graphical abstract

35 pages, 2038 KiB  
Review
Use of Poly Lactic-co-glycolic Acid Nano and Micro Particles in the Delivery of Drugs Modulating Different Phases of Inflammation
by Chiara Puricelli, Casimiro Luca Gigliotti, Ian Stoppa, Sara Sacchetti, Deepika Pantham, Anna Scomparin, Roberta Rolla, Stefania Pizzimenti, Umberto Dianzani, Elena Boggio and Salvatore Sutti
Pharmaceutics 2023, 15(6), 1772; https://doi.org/10.3390/pharmaceutics15061772 - 20 Jun 2023
Cited by 6 | Viewed by 2494
Abstract
Chronic inflammation contributes to the pathogenesis of many diseases, including apparently unrelated conditions such as metabolic disorders, cardiovascular diseases, neurodegenerative diseases, osteoporosis, and tumors, but the use of conventional anti-inflammatory drugs to treat these diseases is generally not very effective given their adverse [...] Read more.
Chronic inflammation contributes to the pathogenesis of many diseases, including apparently unrelated conditions such as metabolic disorders, cardiovascular diseases, neurodegenerative diseases, osteoporosis, and tumors, but the use of conventional anti-inflammatory drugs to treat these diseases is generally not very effective given their adverse effects. In addition, some alternative anti-inflammatory medications, such as many natural compounds, have scarce solubility and stability, which are associated with low bioavailability. Therefore, encapsulation within nanoparticles (NPs) may represent an effective strategy to enhance the pharmacological properties of these bioactive molecules, and poly lactic-co-glycolic acid (PLGA) NPs have been widely used because of their high biocompatibility and biodegradability and possibility to finely tune erosion time, hydrophilic/hydrophobic nature, and mechanical properties by acting on the polymer’s composition and preparation technique. Many studies have been focused on the use of PLGA-NPs to deliver immunosuppressive treatments for autoimmune and allergic diseases or to elicit protective immune responses, such as in vaccination and cancer immunotherapy. By contrast, this review is focused on the use of PLGA NPs in preclinical in vivo models of other diseases in which a key role is played by chronic inflammation or unbalance between the protective and reparative phases of inflammation, with a particular focus on intestinal bowel disease; cardiovascular, neurodegenerative, osteoarticular, and ocular diseases; and wound healing. Full article
(This article belongs to the Special Issue PLGA Nanoparticles for Drug Delivery)
Show Figures

Figure 1

20 pages, 21346 KiB  
Article
CD44-Targeted Lipid Polymer Hybrid Nanoparticles Enhance Anti-Breast Cancer Effect of Cordyceps militaris Extracts
by Jiraphong Suksiriworapong, Nutthachai Pongprasert, Somnuk Bunsupa, Vincenzo Taresco, Valentina Cuzzucoli Crucitti, Thitapa Janurai, Pornpoj Phruttiwanichakun, Krisada Sakchaisri and Amaraporn Wongrakpanich
Pharmaceutics 2023, 15(6), 1771; https://doi.org/10.3390/pharmaceutics15061771 - 20 Jun 2023
Cited by 3 | Viewed by 1676
Abstract
This study aimed to improve the anticancer effect of Cordyceps militaris herbal extract (CME) on breast cancer cells with hyaluronic acid (HYA) surface-decorated lipid polymer hybrid nanoparticles (LPNPs) and evaluate the applicability of a synthesized poly(glycerol adipate) (PGA) polymer for LPNP preparation. Firstly, [...] Read more.
This study aimed to improve the anticancer effect of Cordyceps militaris herbal extract (CME) on breast cancer cells with hyaluronic acid (HYA) surface-decorated lipid polymer hybrid nanoparticles (LPNPs) and evaluate the applicability of a synthesized poly(glycerol adipate) (PGA) polymer for LPNP preparation. Firstly, cholesterol- and vitamin E-grafted PGA polymers (PGA-CH and PGA-VE, respectively) were fabricated, with and without maleimide-ended polyethylene glycol. Subsequently, CME, which contained an active cordycepin equaling 9.89% of its weight, was encapsulated in the LPNPs. The results revealed that the synthesized polymers could be used to prepare CME-loaded LPNPs. The LPNP formulations containing Mal-PEG were decorated with cysteine-grafted HYA via thiol-maleimide reactions. The HYA-decorated PGA-based LPNPs substantially enhanced the anticancer effect of CME against MDA-MB-231 and MCF-7 breast cancer cells by enhancing cellular uptake through CD44 receptor-mediated endocytosis. This study demonstrated the successful targeted delivery of CME to the CD44 receptors of tumor cells by HYA-conjugated PGA-based LPNPs and the new application of synthesized PGA-CH- and PGA-VE-based polymers in LPNP preparation. The developed LPNPs showed promising potential for the targeted delivery of herbal extracts for cancer treatment and clear potential for translation in in vivo experiments. Full article
Show Figures

Graphical abstract

11 pages, 2998 KiB  
Article
Arginine-Rich Cell-Penetrating Peptide-Mediated Transduction of Mouse Nasal Cells with FOXP3 Protein Alleviates Allergic Rhinitis
by Toru Miwa, Yumi Takemiya, Kazuki Amesara, Hiroko Kawai and Yuichi Teranishi
Pharmaceutics 2023, 15(6), 1770; https://doi.org/10.3390/pharmaceutics15061770 - 19 Jun 2023
Viewed by 1080
Abstract
Intranasal corticosteroids are effective medications against allergic rhinitis (AR). However, mucociliary clearance promptly eliminates these drugs from the nasal cavity and delays their onset of action. Therefore, a faster, longer-lasting therapeutic effect on the nasal mucosa is required to enhance the efficacy of [...] Read more.
Intranasal corticosteroids are effective medications against allergic rhinitis (AR). However, mucociliary clearance promptly eliminates these drugs from the nasal cavity and delays their onset of action. Therefore, a faster, longer-lasting therapeutic effect on the nasal mucosa is required to enhance the efficacy of AR management. Our previous study showed that polyarginine, a cell-penetrating peptide, can deliver cargo to nasal cells; moreover, polyarginine-mediated cell-nonspecific protein transduction into the nasal epithelium exhibited high transfection efficiency with minimal cytotoxicity. In this study, poly-arginine-fused forkhead box P3 (FOXP3) protein, the “master transcriptional regulator” of regulatory T cells (Tregs), was administered into the bilateral nasal cavities of the ovalbumin (OVA)-immunoglobulin E mouse model of AR. The effects of these proteins on AR following OVA administration were investigated using histopathological, nasal symptom, flow cytometry, and cytokine dot blot analyses. Polyarginine-mediated FOXP3 protein transduction induced Treg-like cell generation in the nasal epithelium and allergen tolerance. Overall, this study proposes FOXP3 activation-mediated Treg induction as a novel and potential therapeutic strategy for AR, providing a potential alternative to conventional intranasal drug application for nasal drug delivery. Full article
(This article belongs to the Special Issue Advances and Challenges in Nasal Formulation Developments)
Show Figures

Figure 1

2 pages, 433 KiB  
Correction
Correction: Kazimir et al. Metallodrugs against Breast Cancer: Combining the Tamoxifen Vector with Platinum(II) and Palladium(II) Complexes. Pharmaceutics 2023, 15, 682
by Aleksandr Kazimir, Benedikt Schwarze, Peter Lönnecke, Sanja Jelača, Sanja Mijatović, Danijela Maksimović-Ivanić and Evamarie Hey-Hawkins
Pharmaceutics 2023, 15(6), 1769; https://doi.org/10.3390/pharmaceutics15061769 - 19 Jun 2023
Viewed by 679
Abstract
In the original publication [...] Full article
(This article belongs to the Special Issue Recent Advances in the Development of Hybrid Drugs)
Show Figures

Scheme 1

20 pages, 6234 KiB  
Article
Propolis as a Cariostatic Agent in Lozenges and Impact of Storage Conditions on the Stability of Propolis
by Anna Kurek-Górecka, Paweł Ramos, Małgorzata Kłósek, Elżbieta Bobela, Zenon P. Czuba, Radosław Balwierz and Paweł Olczyk
Pharmaceutics 2023, 15(6), 1768; https://doi.org/10.3390/pharmaceutics15061768 - 19 Jun 2023
Cited by 1 | Viewed by 1177
Abstract
Propolis is known as a source of compounds with strong antibacterial activity. Due to the antibacterial effect against streptococci of the oral cavity, it seems to be a useful agent in decreasing the accumulation of dental plaque. It is rich in polyphenols which [...] Read more.
Propolis is known as a source of compounds with strong antibacterial activity. Due to the antibacterial effect against streptococci of the oral cavity, it seems to be a useful agent in decreasing the accumulation of dental plaque. It is rich in polyphenols which are responsible for a beneficial impact on the oral microbiota and antibacterial effect. The aim of the study was to evaluate the antibacterial effect of Polish propolis against cariogenic bacteria. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were determined on cariogenic streptococci related to the occurrence of dental caries. Lozenges based on xylitol, glycerin, gelatin, water, and ethanol extract of propolis (EEP) were prepared. The effect of prepared lozenges on cariogenic bacteria was assessed. Propolis was compared to chlorhexidine which is used in dentistry as the gold standard. In addition, the prepared propolis formulation was stored under stress conditions to assess the influence of physical conditions (i.e., temperature, relative humidity, and UV radiation). In the experiment, thermal analyses were also performed to evaluate the compatibility of propolis with the substrate used to create the base of lozenges. The observed antibacterial effect of propolis and prepared lozenges with EEP may suggest directing subsequent research on prophylactic and therapeutic properties decreasing the accumulation of dental plaque. Therefore, it is worth highlighting that propolis may play an important role in the management of dental health and bring advantages in preventing periodontal diseases and caries as well as dental plaque. The colorimetric analyses carried out in the CIE L*a*b* system, microscopic examinations, and TGA/DTG/c-DTA measurements indicate the unfavorable effect of the tested storage conditions on the lozenges with propolis. This fact is particularly evident for lozenges stored under stress conditions, i.e., 40 °C/75% RH/14 days, and lozenges exposed to UVA radiation for 60 min. In addition, the obtained thermograms of the tested samples indicate the thermal compatibility of the ingredients used to create the formulation of lozenges. Full article
Show Figures

Figure 1

17 pages, 3017 KiB  
Review
Shining a Light on Prostate Cancer: Photodynamic Therapy and Combination Approaches
by Hicham Wahnou, Ibtissam Youlyouz-Marfak, Bertrand Liagre, Vincent Sol, Mounia Oudghiri, Raphaël Emmanuel Duval and Youness Limami
Pharmaceutics 2023, 15(6), 1767; https://doi.org/10.3390/pharmaceutics15061767 - 19 Jun 2023
Cited by 8 | Viewed by 2451
Abstract
Prostate cancer is a major health concern worldwide, and current treatments, such as surgery, radiation therapy, and chemotherapy, are associated with significant side effects and limitations. Photodynamic therapy (PDT) is a promising alternative that has the potential to provide a minimally invasive and [...] Read more.
Prostate cancer is a major health concern worldwide, and current treatments, such as surgery, radiation therapy, and chemotherapy, are associated with significant side effects and limitations. Photodynamic therapy (PDT) is a promising alternative that has the potential to provide a minimally invasive and highly targeted approach to treating prostate cancer. PDT involves the use of photosensitizers (PSs) that are activated by light to produce reactive oxygen species (ROS), which can induce tumor cell death. There are two main types of PSs: synthetic and natural. Synthetic PSs are classified into four generations based on their structural and photophysical properties, while natural PSs are derived from plant and bacterial sources. Combining PDT with other therapies, such as photothermal therapy (PTT), photoimmunotherapy (PIT), and chemotherapy (CT), is also being explored as a way to improve its efficacy. This review provides an overview of conventional treatments for prostate cancer, the underlying principles of PDT, and the different types of PSs used in PDT as well as ongoing clinical studies. It also discusses the various forms of combination therapy being explored in the context of PDT for prostate cancer, as well as the challenges and opportunities associated with this approach. Overall, PDT has the potential to provide a more effective and less invasive treatment option for prostate cancer, and ongoing research is aimed at improving its selectivity and efficacy in clinical settings. Full article
(This article belongs to the Special Issue Novel Anticancer Strategies (Volume III))
Show Figures

Graphical abstract

15 pages, 3888 KiB  
Review
Precision Vaccinology Approaches for the Development of Adjuvanted Vaccines Targeted to Distinct Vulnerable Populations
by Branden Lee, Etsuro Nanishi, Ofer Levy and David J. Dowling
Pharmaceutics 2023, 15(6), 1766; https://doi.org/10.3390/pharmaceutics15061766 - 19 Jun 2023
Viewed by 1420
Abstract
Infection persists as one of the leading global causes of morbidity and mortality, with particular burden at the extremes of age and in populations who are immunocompromised or suffer chronic co-morbid diseases. By focusing discovery and innovation efforts to better understand the phenotypic [...] Read more.
Infection persists as one of the leading global causes of morbidity and mortality, with particular burden at the extremes of age and in populations who are immunocompromised or suffer chronic co-morbid diseases. By focusing discovery and innovation efforts to better understand the phenotypic and mechanistic differences in the immune systems of diverse vulnerable populations, emerging research in precision vaccine discovery and development has explored how to optimize immunizations across the lifespan. Here, we focus on two key elements of precision vaccinology, as applied to epidemic/pandemic response and preparedness, including (a) selecting robust combinations of adjuvants and antigens, and (b) coupling these platforms with appropriate formulation systems. In this context, several considerations exist, including the intended goals of immunization (e.g., achieving immunogenicity versus lessening transmission), reducing the likelihood of adverse reactogenicity, and optimizing the route of administration. Each of these considerations is accompanied by several key challenges. On-going innovation in precision vaccinology will expand and target the arsenal of vaccine components for protection of vulnerable populations. Full article
(This article belongs to the Special Issue Designing and Developing the Next Generation of Vaccine Adjuvants)
Show Figures

Figure 1

15 pages, 3126 KiB  
Article
Preparation and In Vitro Characterization of Microneedles Containing Inclusion Complexes Loaded with Progesterone
by Hongji He, Zhaozhi Wang, Kadireya Aikelamu, Jingya Bai, Qi Shen, Xiaoli Gao and Mei Wang
Pharmaceutics 2023, 15(6), 1765; https://doi.org/10.3390/pharmaceutics15061765 - 19 Jun 2023
Cited by 1 | Viewed by 1131
Abstract
Objective: In order to improve patient compliance and the ease of use during progesterone application, and to increase the clinical application of progesterone, progesterone was made into a microneedle. Methods: Progesterone complexes were prepared using a single-factor and central composite design. In the [...] Read more.
Objective: In order to improve patient compliance and the ease of use during progesterone application, and to increase the clinical application of progesterone, progesterone was made into a microneedle. Methods: Progesterone complexes were prepared using a single-factor and central composite design. In the preparation of the microneedles, the tip loading rate was used as an evaluation index. The selection of tip materials among the biocompatible materials of gelatin (GEL), hyaluronic acid (HA), and polyvinylpyrrolidone (PVP), and the use of polyvinyl alcohol (PVA) and hydroxypropyl cellulose (HPC) as backing layers, respectively, were carried out and the resulting microneedles were evaluated accordingly. Results: The progesterone inclusion complexes prepared at a molar ratio of 1:2.16 progesterone and hydroxypropyl-β-cyclodextrin (HP-β-CD), a temperature of 50 °C, and reaction time of 4 h had high encapsulation and drug-loading capacities of 93.49% and 9.55%, respectively. Gelatine was finally chosen as the material for the preparation of the micro-needle tip based on the drug loading rate of the tip. Two types of microneedles were prepared: one with 7.5% GEL as the tip and 50% PVA as the backing layer, and one with 15% GEL as the tip and 5% HPC as the backing layer. The microneedles of both prescriptions exhibited good mechanical strength and penetrated the skin of rats. The needle tip loading rates were 49.13% for the 7.5% GEL-50% PVA microneedles and 29.31% for the 15% GEL-5% HPC microneedles. In addition, in vitro release and transdermal experiments were performed using both types of microneedles. Conclusion: The microneedles prepared in this study enhanced the in vitro transdermal amount of progesterone drug by releasing the drug from the microneedle tip into the subepidermis. Full article
(This article belongs to the Section Drug Delivery and Controlled Release)
Show Figures

Graphical abstract

12 pages, 313 KiB  
Review
Expanding the Availability of Onasemnogene Abeparvovec to Older Patients: The Evolving Treatment Landscape for Spinal Muscular Atrophy
by Charlotte A. René and Robin J. Parks
Pharmaceutics 2023, 15(6), 1764; https://doi.org/10.3390/pharmaceutics15061764 - 19 Jun 2023
Viewed by 2083
Abstract
Spinal muscular atrophy (SMA) is a devastating neuromuscular disorder caused by mutations in the survival of motor neuron 1 (SMN1) gene, which leads to a reduced level in the SMN protein within cells. Patients with SMA suffer from a loss of [...] Read more.
Spinal muscular atrophy (SMA) is a devastating neuromuscular disorder caused by mutations in the survival of motor neuron 1 (SMN1) gene, which leads to a reduced level in the SMN protein within cells. Patients with SMA suffer from a loss of alpha motor neurons in the spinal cord leading to skeletal muscle atrophy in addition to deficits in other tissues and organs. Patients with severe forms of the disease require ventilator assistance and typically succumb to the disease due to respiratory failure. Onasemnogene abeparvovec is an adeno-associated virus (AAV)-based gene therapeutic that has been approved for infants and young children with SMA, and it is delivered through intravenous administration using a dose based on the weight of the patient. While excellent outcomes have been observed in treated patients, the greater viral dose necessary to treat older children and adults raises legitimate safety concerns. Recently, onasemnogene abeparvovec use was investigated in older children through a fixed dose and intrathecal administration, a route that provides a more direct delivery to affected cells in the spinal cord and central nervous system. The promising results observed in the STRONG trial may support approval of onasemnogene abeparvovec for a greater proportion of patients with SMA. Full article
20 pages, 11199 KiB  
Article
Evaluation of the In Vitro Antimicrobial Efficacy against Staphylococcus aureus and epidermidis of a Novel 3D-Printed Degradable Drug Delivery System Based on Polycaprolactone/Chitosan/Vancomycin—Preclinical Study
by Iván López-González, Ana Belén Hernández-Heredia, María Isabel Rodríguez-López, David Auñón-Calles, Mohamed Boudifa, José Antonio Gabaldón and Luis Meseguer-Olmo
Pharmaceutics 2023, 15(6), 1763; https://doi.org/10.3390/pharmaceutics15061763 - 18 Jun 2023
Cited by 3 | Viewed by 1282
Abstract
Acute and chronic bone infections, especially those caused by methicillin-resistant Staphylococcus aureus (MRSA), remains a major complication and therapeutic challenge. It is documented that local administration of vancomycin offers better results than the usual routes of administration (e.g., intravenous) when ischemic areas are [...] Read more.
Acute and chronic bone infections, especially those caused by methicillin-resistant Staphylococcus aureus (MRSA), remains a major complication and therapeutic challenge. It is documented that local administration of vancomycin offers better results than the usual routes of administration (e.g., intravenous) when ischemic areas are present. In this work, we evaluate the antimicrobial efficacy against S. aureus and S. epidermidis of a novel hybrid 3D-printed scaffold based on polycaprolactone (PCL) and a chitosan (CS) hydrogel loaded with different vancomycin (Van) concentrations (1, 5, 10, 20%). Two cold plasma treatments were used to improve the adhesion of CS hydrogels to the PCL scaffolds by decreasing PCL hydrophobicity. Vancomycin release was measured by means of HPLC, and the biological response of ah-BM-MSCs growing in the presence of the scaffolds was evaluated in terms of cytotoxicity, proliferation, and osteogenic differentiation. The PCL/CS/Van scaffolds tested were found to be biocompatible, bioactive, and bactericide, as demonstrated by no cytotoxicity (LDH activity) or functional alteration (ALP activity, alizarin red staining) of the cultured cells and by bacterial inhibition. Our results suggest that the scaffolds developed would be excellent candidates for use in a wide range of biomedical fields such as drug delivery systems or tissue engineering applications. Full article
(This article belongs to the Special Issue Polymers Enhancing Bioavailability in Drug Delivery, 2nd Edition)
Show Figures

Figure 1

19 pages, 6982 KiB  
Article
Discrete Element Method Evaluation of Triboelectric Charging Due to Powder Handling in the Capsule of a DPI
by Francesca Orsola Alfano, Alberto Di Renzo and Francesco Paolo Di Maio
Pharmaceutics 2023, 15(6), 1762; https://doi.org/10.3390/pharmaceutics15061762 - 18 Jun 2023
Cited by 1 | Viewed by 1134
Abstract
The generation and accumulation of an electrostatic charge from handling pharmaceutical powders is a well-known phenomenon, given the insulating nature of most APIs (Active Pharmaceutical Ingredients) and excipients. In capsule-based DPIs (Dry Powder Inhalers), the formulation is stored in a gelatine capsule placed [...] Read more.
The generation and accumulation of an electrostatic charge from handling pharmaceutical powders is a well-known phenomenon, given the insulating nature of most APIs (Active Pharmaceutical Ingredients) and excipients. In capsule-based DPIs (Dry Powder Inhalers), the formulation is stored in a gelatine capsule placed in the inhaler just before inhalation. The action of capsule filling, as well as tumbling or vibration effects during the capsule life cycle, implies a consistent amount of particle–particle and particle–wall contacts. A significant contact-induced electrostatic charging can then take place, potentially affecting the inhaler’s efficiency. DEM (Discrete Element Method) simulations were performed on a carrier-based DPI formulation (salbutamol–lactose) to evaluate such effects. After performing a comparison with the experimental data on a carrier-only system under similar conditions, a detailed analysis was conducted on two carrier–API configurations with different API loadings per carrier particle. The charge acquired by the two solid phases was tracked in both the initial particle settling and the capsule shaking process. Alternating positive–negative charging was observed. Particle charging was then investigated in relation to the collision statistics, tracking the particle–particle and particle–wall events for the carrier and API. Finally, an analysis of the relative importance of electrostatic, cohesive/adhesive, and inertial forces allowed the importance of each term in determining the trajectory of the powder particles to be estimated. Full article
(This article belongs to the Special Issue Recent Advances in Secondary Processing of Pharmaceutical Powders)
Show Figures

Graphical abstract

18 pages, 1051 KiB  
Review
Business Risk Mitigation in the Development Process of New Monoclonal Antibody Drug Conjugates for Cancer Treatment
by Balázs Kiss and János Borbély
Pharmaceutics 2023, 15(6), 1761; https://doi.org/10.3390/pharmaceutics15061761 - 18 Jun 2023
Viewed by 2131
Abstract
Recent developments aim to extend the cytotoxic effect and therapeutic window of mAbs by constructing antibody–drug conjugates (ADCs), in which the targeting moiety is the mAb that is linked to a highly toxic drug. According to a report from mid of last year, [...] Read more.
Recent developments aim to extend the cytotoxic effect and therapeutic window of mAbs by constructing antibody–drug conjugates (ADCs), in which the targeting moiety is the mAb that is linked to a highly toxic drug. According to a report from mid of last year, the global ADCs market accounted for USD 1387 million in 2016 and was worth USD 7.82 billion in 2022. It is estimated to increase in value to USD 13.15 billion by 2030. One of the critical points is the linkage of any substituent to the functional group of the mAb. Increasing the efficacy against cancer cells’ highly cytotoxic molecules (warheads) are connected biologically. The connections are completed by different types of linkers, or there are efforts to add biopolymer-based nanoparticles, including chemotherapeutic agents. Recently, a combination of ADC technology and nanomedicine opened a new pathway. To fulfill the scientific knowledge for this complex development, our aim is to write an overview article that provides a basic introduction to ADC which describes the current and future opportunities in therapeutic areas and markets. Through this approach, we show which development directions are relevant both in terms of therapeutic area and market potential. Opportunities to reduce business risks are presented as new development principles. Full article
(This article belongs to the Special Issue Biopolymer-Based Nanosystem for Drug Delivery)
Show Figures

Figure 1

13 pages, 804 KiB  
Review
Immune-Modulating Lipid Nanomaterials for the Delivery of Biopharmaceuticals
by Songhee Kim, Boseung Choi, Yoojin Kim and Gayong Shim
Pharmaceutics 2023, 15(6), 1760; https://doi.org/10.3390/pharmaceutics15061760 - 18 Jun 2023
Cited by 2 | Viewed by 1836
Abstract
In recent years, with the approval of preventative vaccines for pandemics, lipid nanoparticles have become a prominent RNA delivery vehicle. The lack of long-lasting effects of non-viral vectors is an advantage for infectious disease vaccines. With the introduction of microfluidic processes that facilitate [...] Read more.
In recent years, with the approval of preventative vaccines for pandemics, lipid nanoparticles have become a prominent RNA delivery vehicle. The lack of long-lasting effects of non-viral vectors is an advantage for infectious disease vaccines. With the introduction of microfluidic processes that facilitate the encapsulation of nucleic acid cargo, lipid nanoparticles are being studied as delivery vehicles for various RNA-based biopharmaceuticals. In particular, using microfluidic chip-based fabrication processes, nucleic acids such as RNA and proteins can be effectively incorporated into lipid nanoparticles and utilized as delivery vehicles for various biopharmaceuticals. Due to the successful development of mRNA therapies, lipid nanoparticles have emerged as a promising approach for the delivery of biopharmaceuticals. Biopharmaceuticals of various types (DNA, mRNA, short RNA, proteins) possess expression mechanisms that are suitable for manufacturing personalized cancer vaccines, while also requiring formulation with lipid nanoparticles. In this review, we describe the basic design of lipid nanoparticles, the types of biopharmaceuticals used as carriers, and the microfluidic processes involved. We then present research cases focusing on lipid-nanoparticle-based immune modulation and discuss the current status of commercially available lipid nanoparticles, as well as future prospects for the development of lipid nanoparticles for immune regulation purposes. Full article
(This article belongs to the Special Issue Nanomaterials: Immunological Perspective)
Show Figures

Figure 1

28 pages, 5862 KiB  
Article
Development of a Minimalistic Physiologically Based Pharmacokinetic (mPBPK) Model for the Preclinical Development of Spectinamide Antibiotics
by Keyur R. Parmar, Pradeep B. Lukka, Santosh Wagh, Zaid H. Temrikar, Jiuyu Liu, Richard E. Lee, Miriam Braunstein, Anthony J. Hickey, Gregory T. Robertson, Mercedes Gonzalez-Juarrero, Andrea Edginton and Bernd Meibohm
Pharmaceutics 2023, 15(6), 1759; https://doi.org/10.3390/pharmaceutics15061759 - 17 Jun 2023
Viewed by 1731
Abstract
Spectinamides 1599 and 1810 are lead spectinamide compounds currently under preclinical development to treat multidrug-resistant (MDR) and extensively drug-resistant (XDR) tuberculosis. These compounds have previously been tested at various combinations of dose level, dosing frequency, and route of administration in mouse models of [...] Read more.
Spectinamides 1599 and 1810 are lead spectinamide compounds currently under preclinical development to treat multidrug-resistant (MDR) and extensively drug-resistant (XDR) tuberculosis. These compounds have previously been tested at various combinations of dose level, dosing frequency, and route of administration in mouse models of Mycobacterium tuberculosis (Mtb) infection and in healthy animals. Physiologically based pharmacokinetic (PBPK) modeling allows the prediction of the pharmacokinetics of candidate drugs in organs/tissues of interest and extrapolation of their disposition across different species. Here, we have built, qualified, and refined a minimalistic PBPK model that can describe and predict the pharmacokinetics of spectinamides in various tissues, especially those relevant to Mtb infection. The model was expanded and qualified for multiple dose levels, dosing regimens, routes of administration, and various species. The model predictions in mice (healthy and infected) and rats were in reasonable agreement with experimental data, and all predicted AUCs in plasma and tissues met the two-fold acceptance criteria relative to observations. To further explore the distribution of spectinamide 1599 within granuloma substructures as encountered in tuberculosis, we utilized the Simcyp granuloma model combined with model predictions in our PBPK model. Simulation results suggest substantial exposure in all lesion substructures, with particularly high exposure in the rim area and macrophages. The developed model may be leveraged as an effective tool in identifying optimal dose levels and dosing regimens of spectinamides for further preclinical and clinical development. Full article
(This article belongs to the Section Pharmacokinetics and Pharmacodynamics)
Show Figures

Figure 1

21 pages, 5666 KiB  
Article
Synthesis, Characterization, and In Vitro Cytotoxicity Evaluation of Doxorubicin-Loaded Magnetite Nanoparticles on Triple-Negative Breast Cancer Cell Lines
by Jano Markhulia, Shalva Kekutia, Vladimer Mikelashvili, Liana Saneblidze, Tamar Tsertsvadze, Nino Maisuradze, Nino Leladze, Zsolt Czigány and László Almásy
Pharmaceutics 2023, 15(6), 1758; https://doi.org/10.3390/pharmaceutics15061758 - 17 Jun 2023
Cited by 4 | Viewed by 1731
Abstract
In this study, we investigated the cytotoxicity of doxorubicin (DOX)-loaded magnetic nanofluids on 4T1 mouse tumor epithelial cells and MDA-MB-468 human triple-negative breast cancer (TNBC) cells. Superparamagnetic iron oxide nanoparticles were synthesized using sonochemical coprecipitation by applying electrohydraulic discharge treatment (EHD) in an [...] Read more.
In this study, we investigated the cytotoxicity of doxorubicin (DOX)-loaded magnetic nanofluids on 4T1 mouse tumor epithelial cells and MDA-MB-468 human triple-negative breast cancer (TNBC) cells. Superparamagnetic iron oxide nanoparticles were synthesized using sonochemical coprecipitation by applying electrohydraulic discharge treatment (EHD) in an automated chemical reactor, modified with citric acid and loaded with DOX. The resulting magnetic nanofluids exhibited strong magnetic properties and maintained sedimentation stability in physiological pH conditions. The obtained samples were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy, UV-spectrophotometry, dynamic light scattering (DLS), electrophoretic light scattering (ELS), vibrating sample magnetometry (VSM), and transmission electron microscopy (TEM). In vitro studies using the MTT method revealed a synergistic effect of the DOX-loaded citric-acid-modified magnetic nanoparticles on the inhibition of cancer cell growth and proliferation compared to treatment with pure DOX. The combination of the drug and magnetic nanosystem showed promising potential for targeted drug delivery, with the possibility of optimizing the dosage to reduce side-effects and enhance the cytotoxic effect on cancer cells. The nanoparticles’ cytotoxic effects were attributed to the generation of reactive oxygen species and the enhancement of DOX-induced apoptosis. The findings suggest a novel approach for enhancing the therapeutic efficacy of anticancer drugs and reducing their associated side-effects. Overall, the results demonstrate the potential of DOX-loaded citric-acid-modified magnetic nanoparticles as a promising strategy in tumor therapy, and provide insights into their synergistic effects. Full article
Show Figures

Figure 1

16 pages, 4035 KiB  
Article
Mechanistic Insights into the Antibiofilm Mode of Action of Ellagic Acid
by Alessandro Ratti, Enrico M. A. Fassi, Fabio Forlani, Matteo Mori, Federica Villa, Francesca Cappitelli, Jacopo Sgrignani, Gabriella Roda, Andrea Cavalli, Stefania Villa and Giovanni Grazioso
Pharmaceutics 2023, 15(6), 1757; https://doi.org/10.3390/pharmaceutics15061757 - 17 Jun 2023
Cited by 3 | Viewed by 2461
Abstract
Bacterial biofilm is a major contributor to the persistence of infection and the limited efficacy of antibiotics. Antibiofilm molecules that interfere with the biofilm lifestyle offer a valuable tool in fighting bacterial pathogens. Ellagic acid (EA) is a natural polyphenol that has shown [...] Read more.
Bacterial biofilm is a major contributor to the persistence of infection and the limited efficacy of antibiotics. Antibiofilm molecules that interfere with the biofilm lifestyle offer a valuable tool in fighting bacterial pathogens. Ellagic acid (EA) is a natural polyphenol that has shown attractive antibiofilm properties. However, its precise antibiofilm mode of action remains unknown. Experimental evidence links the NADH:quinone oxidoreductase enzyme WrbA to biofilm formation, stress response, and pathogen virulence. Moreover, WrbA has demonstrated interactions with antibiofilm molecules, suggesting its role in redox and biofilm modulation. This work aims to provide mechanistic insights into the antibiofilm mode of action of EA utilizing computational studies, biophysical measurements, enzyme inhibition studies on WrbA, and biofilm and reactive oxygen species assays exploiting a WrbA-deprived mutant strain of Escherichia coli. Our research efforts led us to propose that the antibiofilm mode of action of EA stems from its ability to perturb the bacterial redox homeostasis driven by WrbA. These findings shed new light on the antibiofilm properties of EA and could lead to the development of more effective treatments for biofilm-related infections. Full article
(This article belongs to the Special Issue Phenolic Acids: Handy Molecules for Medicinal Purposes)
Show Figures

Graphical abstract

23 pages, 990 KiB  
Review
Research Progress of Aluminum Phosphate Adjuvants and Their Action Mechanisms
by Ting Zhang, Peng He, Dejia Guo, Kaixi Chen, Zhongyu Hu and Yening Zou
Pharmaceutics 2023, 15(6), 1756; https://doi.org/10.3390/pharmaceutics15061756 - 17 Jun 2023
Cited by 2 | Viewed by 2468
Abstract
Although hundreds of different adjuvants have been tried, aluminum-containing adjuvants are by far the most widely used currently. It is worth mentioning that although aluminum-containing adjuvants have been commonly applied in vaccine production, their acting mechanism remains not completely clear. Thus far, researchers [...] Read more.
Although hundreds of different adjuvants have been tried, aluminum-containing adjuvants are by far the most widely used currently. It is worth mentioning that although aluminum-containing adjuvants have been commonly applied in vaccine production, their acting mechanism remains not completely clear. Thus far, researchers have proposed the following mechanisms: (1) depot effect, (2) phagocytosis, (3) activation of pro-inflammatory signaling pathway NLRP3, (4) host cell DNA release, and other mechanisms of action. Having an overview on recent studies to increase our comprehension on the mechanisms by which aluminum-containing adjuvants adsorb antigens and the effects of adsorption on antigen stability and immune response has become a mainstream research trend. Aluminum-containing adjuvants can enhance immune response through a variety of molecular pathways, but there are still significant challenges in designing effective immune-stimulating vaccine delivery systems with aluminum-containing adjuvants. At present, studies on the acting mechanism of aluminum-containing adjuvants mainly focus on aluminum hydroxide adjuvants. This review will take aluminum phosphate as a representative to discuss the immune stimulation mechanism of aluminum phosphate adjuvants and the differences between aluminum phosphate adjuvants and aluminum hydroxide adjuvants, as well as the research progress on the improvement of aluminum phosphate adjuvants (including the improvement of the adjuvant formula, nano-aluminum phosphate adjuvants and a first-grade composite adjuvant containing aluminum phosphate). Based on such related knowledge, determining optimal formulation to develop effective and safe aluminium-containing adjuvants for different vaccines will become more substantiated. Full article
(This article belongs to the Section Clinical Pharmaceutics)
Show Figures

Figure 1

19 pages, 4291 KiB  
Article
In Vitro Cytotoxicity and In Vivo Antitumor Activity of Lipid Nanocapsules Loaded with Novel Pyridine Derivatives
by Amr Selim Abu Lila, Mohammed Amran, Mohamed A. Tantawy, Ehssan H. Moglad, Shadeed Gad, Hadil Faris Alotaibi, Ahmad J. Obaidullah and El-Sayed Khafagy
Pharmaceutics 2023, 15(6), 1755; https://doi.org/10.3390/pharmaceutics15061755 - 16 Jun 2023
Cited by 1 | Viewed by 1145
Abstract
This study demonstrates high drug-loading of novel pyridine derivatives (S1–S4) in lipid- and polymer-based core–shell nanocapsules (LPNCs) for boosting the anticancer efficiency and alleviating toxicity of these novel pyridine derivatives. The nanocapsules were fabricated using a nanoprecipitation technique and characterized for particle size, [...] Read more.
This study demonstrates high drug-loading of novel pyridine derivatives (S1–S4) in lipid- and polymer-based core–shell nanocapsules (LPNCs) for boosting the anticancer efficiency and alleviating toxicity of these novel pyridine derivatives. The nanocapsules were fabricated using a nanoprecipitation technique and characterized for particle size, surface morphology, and entrapment efficiency. The prepared nanocapsules exhibited a particle size ranging from 185.0 ± 17.4 to 223.0 ± 15.3 nm and a drug entrapment of >90%. The microscopic evaluation demonstrated spherical-shaped nanocapsules with distinct core–shell structures. The in vitro release study depicted a biphasic and sustained release pattern of test compounds from the nanocapsules. In addition, it was obvious from the cytotoxicity studies that the nanocapsules showed superior cytotoxicity against both MCF-7 and A549 cancer cell lines, as manifested by a significant decrease in the IC50 value compared to free test compounds. The in vivo antitumor efficacy of the optimized nanocapsule formulation (S4-loaded LPNCs) was investigated in an Ehrlich ascites carcinoma (EAC) solid tumor-bearing mice model. Interestingly, the entrapment of the test compound (S4) within LPNCs remarkably triggered superior tumor growth inhibition when compared with either free S4 or the standard anticancer drug 5-fluorouracil. Such enhanced in vivo antitumor activity was accompanied by a remarkable increase in animal life span. Furthermore, the S4-loaded LPNC formulation was tolerated well by treated animals, as evidenced by the absence of any signs of acute toxicity or alterations in biochemical markers of liver and kidney functions. Collectively, our findings clearly underscore the therapeutic potential of S4-loaded LPNCs over free S4 in conquering EAC solid tumors, presumably via granting efficient delivery of adequate concentrations of the entrapped drug to the target site. Full article
(This article belongs to the Special Issue Polymeric Nanocapsules in Drug Delivery, Volume Ⅱ)
Show Figures

Figure 1

25 pages, 7001 KiB  
Article
Protein Corona Attenuates the Targeting of Antitumor Sialyl Lewis X-Decorated Liposomes to Vascular Endothelial Cells under Flow Conditions
by Natalia R. Onishchenko, Alexey A. Moskovtsev, Maria K. Kobanenko, Daria S. Tretiakova, Anna S. Alekseeva, Dmitry V. Kolesov, Anna A. Mikryukova, Ivan A. Boldyrev, Marina R. Kapkaeva, Olga N. Shcheglovitova, Nicolai V. Bovin, Aslan A. Kubatiev, Olga V. Tikhonova and Elena L. Vodovozova
Pharmaceutics 2023, 15(6), 1754; https://doi.org/10.3390/pharmaceutics15061754 - 16 Jun 2023
Cited by 1 | Viewed by 1394
Abstract
Previously, we showed in the human umbilical vein endothelial cells (HUVECs) model that a liposome formulation of melphalan lipophilic prodrug (MlphDG) decorated with selectin ligand tetrasaccharide Sialyl Lewis X (SiaLeX) undergoes specific uptake by activated cells and in an in vivo [...] Read more.
Previously, we showed in the human umbilical vein endothelial cells (HUVECs) model that a liposome formulation of melphalan lipophilic prodrug (MlphDG) decorated with selectin ligand tetrasaccharide Sialyl Lewis X (SiaLeX) undergoes specific uptake by activated cells and in an in vivo tumor model causes a severe antivascular effect. Here, we cultured HUVECs in a microfluidic chip and then applied the liposome formulations to study their interactions with the cells in situ under hydrodynamic conditions close to capillary blood flow using confocal fluorescent microscopy. The incorporation of 5 to 10% SiaLeX conjugate in the bilayer of MlphDG liposomes increased their consumption exclusively by activated endotheliocytes. The increase of serum concentration from 20 to 100% in the flow resulted in lower liposome uptake by the cells. To elucidate the possible roles of plasma proteins in the liposome–cell interactions, liposome protein coronas were isolated and analyzed by shotgun proteomics and immunoblotting of selected proteins. Proteomic analysis showed that a gradual increase in SiaLeX content correlated with the overall enrichment of the liposome-associated proteins with several apolipoproteins, including the most positively charged one, ApoC1, and serum amyloid A4, associated with inflammation, on the one hand, and a decrease in the content of bound immunoglobulins, on the other. The article discusses the potential interference of the proteins in the binding of liposomes to selectins of endothelial cells. Full article
(This article belongs to the Special Issue Liposomal and Lipid-Based Drug Delivery Systems and Vaccines)
Show Figures

Figure 1

18 pages, 9751 KiB  
Article
Novel Fluorescent Benzimidazole-Hydrazone-Loaded Micellar Carriers for Controlled Release: Impact on Cell Toxicity, Nuclear and Microtubule Alterations in Breast Cancer Cells
by Rayna Bryaskova, Nikolai Georgiev, Nikoleta Philipova, Ventsislav Bakov, Kameliya Anichina, Maria Argirova, Sonia Apostolova, Irina Georgieva and Rumiana Tzoneva
Pharmaceutics 2023, 15(6), 1753; https://doi.org/10.3390/pharmaceutics15061753 - 16 Jun 2023
Cited by 2 | Viewed by 1146
Abstract
Fluorescent micellar carriers with controlled release of a novel anticancer drug were developed to enable intracellular imaging and cancer treatment simultaneously. The nanosized fluorescent micellar systems were embedded with a novel anticancer drug via the self-assembling behavior of well-defined block copolymers based on [...] Read more.
Fluorescent micellar carriers with controlled release of a novel anticancer drug were developed to enable intracellular imaging and cancer treatment simultaneously. The nanosized fluorescent micellar systems were embedded with a novel anticancer drug via the self-assembling behavior of well-defined block copolymers based on amphiphilic poly(acrylic acid)-block-poly(n-butyl acrylate) (PAA-b-PnBA) copolymer obtained by Atom Transfer Radical Polymerization (ATRP) and hydrophobic anticancer benzimidazole-hydrazone drug (BzH). Through this method, well-defined nanosized fluorescent micelles were obtained consisting of a hydrophilic PAA shell and a hydrophobic PnBA core embedded with the BzH drug due to the hydrophobic interactions, thus reaching very high encapsulation efficiency. The size, morphology, and fluorescent properties of blank and drug-loaded micelles were investigated using dynamic light scattering (DLS), transmission electron microscopy (TEM), and fluorescent spectroscopy, respectively. Additionally, after 72 h of incubation, drug-loaded micelles released 3.25 μM of BzH, which was spectrophotometrically determined. The BzH drug-loaded micelles were found to exhibit enhanced antiproliferative and cytotoxic effects on MDA-MB-231 cells, with long-lasting effects on microtubule organization, with apoptotic alterations and preferential localization in the perinuclear space of cancer cells. In contrast, the antitumor effect of BzH alone or incorporated in micelles on non-cancerous cells MCF-10A was relatively weak. Full article
(This article belongs to the Special Issue Application of Polymeric Micelles for Drug and Gene Delivery)
Show Figures

Figure 1

22 pages, 5601 KiB  
Article
Characterization of the Antimicrobial Activities of Trichoplusia ni Cecropin A as a High-Potency Therapeutic against Colistin-Resistant Escherichia coli
by Hyeju Lee, Byeongkwon Kim, Minju Kim, Seoyeong Yoo, Jinkyeong Lee, Eunha Hwang and Yangmee Kim
Pharmaceutics 2023, 15(6), 1752; https://doi.org/10.3390/pharmaceutics15061752 - 16 Jun 2023
Cited by 1 | Viewed by 1056
Abstract
The spread of colistin-resistant bacteria is a serious threat to public health. As an alternative to traditional antibiotics, antimicrobial peptides (AMPs) show promise against multidrug resistance. In this study, we investigated the activity of the insect AMP Tricoplusia ni cecropin A (T. [...] Read more.
The spread of colistin-resistant bacteria is a serious threat to public health. As an alternative to traditional antibiotics, antimicrobial peptides (AMPs) show promise against multidrug resistance. In this study, we investigated the activity of the insect AMP Tricoplusia ni cecropin A (T. ni cecropin) against colistin-resistant bacteria. T. ni cecropin exhibited significant antibacterial and antibiofilm activities against colistin-resistant Escherichia coli (ColREC) with low cytotoxicity against mammalian cells in vitro. Results of permeabilization of the ColREC outer membrane as monitored through 1-N-phenylnaphthylamine uptake, scanning electron microscopy, lipopolysaccharide (LPS) neutralization, and LPS-binding interaction revealed that T. ni cecropin manifested antibacterial activity by targeting the outer membrane of E. coli with strong interaction with LPS. T. ni cecropin specifically targeted toll-like receptor 4 (TLR4) and showed anti-inflammatory activities with a significant reduction of inflammatory cytokines in macrophages stimulated with either LPS or ColREC via blockade of TLR4-mediated inflammatory signaling. Moreover, T. ni cecropin exhibited anti-septic effects in an LPS-induced endotoxemia mouse model, confirming its LPS-neutralizing activity, immunosuppressive effect, and recovery of organ damage in vivo. These findings demonstrate that T. ni cecropin exerts strong antimicrobial activities against ColREC and could serve as a foundation for the development of AMP therapeutics. Full article
Show Figures

Graphical abstract

30 pages, 1472 KiB  
Review
Hyaluronic Acid-Mediated Phenolic Compound Nanodelivery for Cancer Therapy
by Simona Serini, Sonia Trombino, Federica Curcio, Roberta Sole, Roberta Cassano and Gabriella Calviello
Pharmaceutics 2023, 15(6), 1751; https://doi.org/10.3390/pharmaceutics15061751 - 16 Jun 2023
Cited by 1 | Viewed by 1347
Abstract
Phenolic compounds are bioactive phytochemicals showing a wide range of pharmacological activities, including anti-inflammatory, antioxidant, immunomodulatory, and anticancer effects. Moreover, they are associated with fewer side effects compared to most currently used antitumor drugs. Combinations of phenolic compounds with commonly used drugs have [...] Read more.
Phenolic compounds are bioactive phytochemicals showing a wide range of pharmacological activities, including anti-inflammatory, antioxidant, immunomodulatory, and anticancer effects. Moreover, they are associated with fewer side effects compared to most currently used antitumor drugs. Combinations of phenolic compounds with commonly used drugs have been largely studied as an approach aimed at enhancing the efficacy of anticancer drugs and reducing their deleterious systemic effects. In addition, some of these compounds are reported to reduce tumor cell drug resistance by modulating different signaling pathways. However, often, their application is limited due to their chemical instability, low water solubility, or scarce bioavailability. Nanoformulations, including polyphenols in combination or not with anticancer drugs, represent a suitable strategy to enhance their stability and bioavailability and, thus, improve their therapeutic activity. In recent years, the development of hyaluronic acid-based systems for specific drug delivery to cancer cells has represented a pursued therapeutic strategy. This is related to the fact that this natural polysaccharide binds to the CD44 receptor that is overexpressed in most solid cancers, thus allowing its efficient internalization in tumor cells. Moreover, it is characterized by high biodegradability, biocompatibility, and low toxicity. Here, we will focus on and critically analyze the results obtained in recent studies regarding the use of hyaluronic acid for the targeted delivery of bioactive phenolic compounds to cancer cells of different origins, alone or in combination with drugs. Full article
Show Figures

Figure 1

19 pages, 8333 KiB  
Review
Toward a New Generation of Bio-Scaffolds for Neural Tissue Engineering: Challenges and Perspectives
by Francisca Villanueva-Flores, Igor Garcia-Atutxa, Arturo Santos and Juan Armendariz-Borunda
Pharmaceutics 2023, 15(6), 1750; https://doi.org/10.3390/pharmaceutics15061750 - 16 Jun 2023
Cited by 3 | Viewed by 1554
Abstract
Neural tissue engineering presents a compelling technological breakthrough in restoring brain function, holding immense promise. However, the quest to develop implantable scaffolds for neural culture that fulfill all necessary criteria poses a remarkable challenge for material science. These materials must possess a host [...] Read more.
Neural tissue engineering presents a compelling technological breakthrough in restoring brain function, holding immense promise. However, the quest to develop implantable scaffolds for neural culture that fulfill all necessary criteria poses a remarkable challenge for material science. These materials must possess a host of desirable characteristics, including support for cellular survival, proliferation, and neuronal migration and the minimization of inflammatory responses. Moreover, they should facilitate electrochemical cell communication, display mechanical properties akin to the brain, emulate the intricate architecture of the extracellular matrix, and ideally allow the controlled release of substances. This comprehensive review delves into the primary requisites, limitations, and prospective avenues for scaffold design in brain tissue engineering. By offering a panoramic overview, our work aims to serve as an essential resource, guiding the creation of materials endowed with bio-mimetic properties, ultimately revolutionizing the treatment of neurological disorders by developing brain-implantable scaffolds. Full article
Show Figures

Graphical abstract

Previous Issue
Next Issue
Back to TopTop