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Abstract: Amifampridine is a drug used for the treatment of Lambert–Eaton myasthenic syndrome
(LEMS) and was approved by the Food and Drug Administration (FDA) of the United States (US)
in 2018. It is mainly metabolized by N-acetyltransferase 2 (NAT2); however, investigations of
NAT2-mediated drug interactions with amifampridine have rarely been reported. In this study,
we investigated the effects of acetaminophen, a NAT2 inhibitor, on the pharmacokinetics of ami-
fampridine using in vitro and in vivo systems. Acetaminophen strongly inhibits the formation of
3-N-acetylamifmapridine from amifampridine in the rat liver S9 fraction in a mixed inhibitory manner.
When rats were pretreated with acetaminophen (100 mg/kg), the systemic exposure to amifampri-
dine significantly increased and the ratio of the area under the plasma concentration–time curve for
3-N-acetylamifampridine to amifampridine (AUCm/AUCp) decreased, likely due to the inhibition of
NAT2 by acetaminophen. The urinary excretion and the amount of amifampridine distributed to the
tissues also increased after acetaminophen administration, whereas the renal clearance and tissue
partition coefficient (Kp) values in most tissues remained unchanged. Collectively, co-administration
of acetaminophen with amifampridine may lead to relevant drug interactions; thus, care should be
taken during co-administration.

Keywords: amifampridine; N-acetyltransferase 2; acetaminophen; 3-N-acetylamifampridine; drug
interactions

1. Introduction

Lambert–Eaton myasthenic syndrome (LEMS) is a rare autoimmune disorder of the
neuromuscular junction. In patients with LEMS, antibodies against voltage-gated calcium
channels decrease the release of acetylcholine into neuromuscular synapses, resulting in
muscle weakness [1]. Amifampridine (Figure 1A), a potassium channel blocker, increases
calcium influx, resulting in exocytosis of synaptic vesicles containing acetylcholine [2].
Clinical trials have confirmed that amifampridine effectively controls fatigability and
weakness in patients with LEMS, and its adverse effects are generally tolerable, with mild
to moderate severity [3]. The Food and Drug Administration (FDA) of the United States
(US) approved amifampridine tablets for the treatment of LEMS in adults (Firdapse®) as
well as in patients 6 to 17 years of age (Ruzurgi®) in 2018 [4]. Amifampridine remains the
only FDA-approved evidence-based treatment option for LEMS.

In humans, amifampridine is rapidly absorbed after oral administration and reaches
its maximum plasma concentration (Cmax) within 1 h, which is delayed by food intake [5].
It is extensively metabolized to 3-N-acetylamifampridine (Figure 1B), a pharmacologi-
cally inactive metabolite mainly formed by N-acetyltransferase 2 (NAT2). NAT1 is also
involved in the metabolism of amifampridine to 3-N-acetylamifampridine at a much
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slower rate [6]. NAT2 genes are highly polymorphic in humans, and slow acetylators
exhibit significantly higher blood levels of amifampridine, with more frequent adverse
events [4,7], suggesting a significant contribution of NAT2 to the pharmacokinetics and
safety of amifampridine. More than 90% of the dose of amifampridine (parent drug, 19%)
and 3-N-acetylamifampridine (metabolite, 74.0–81.7%) is excreted via the urine within 24 h
after administration. The elimination half-life is approximately 2.5 h for amifampridine
and 4 h for 3-N-cetylamifampridine in humans [4].
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Figure 1. Chemical structures of amifampridine (A) and its metabolite, 3-N-acetylamifampridine (B).

Acetylation is one of the pathways involved in the detoxification and biotransfor-
mation of many drugs [8]. NATs are phase II metabolizing enzymes that transfer an
acetyl group from acetyl coenzyme A (acetyl-CoA) to a xenobiotic acceptor substrate [9,10]
and are responsible for the acetylation of aromatic and heterocyclic amines as well as
hydrazines. The mechanism is a ping-pong bi-bi reaction involving two successive steps.
First, catalytic Cys68 is acetylated by binding to acetyl-CoA. Acetyl-CoA is then released,
followed by substrate binding and transfer of an acetyl group to the exocyclic amine or
the oxygen of the hydroxylated amine in the second reaction [11,12]. NAT2 is an enzyme
found in many organs, such as the liver, lungs, breast, colon, ureter, and prostate [13],
and catalyzes numerous clinically used drugs such as dapsone, procainamide, isoni-
azid, phenelzine, and sulfonamide [14,15]. Additionally, several NAT2 inhibitors, in-
cluding acetaminophen, apocynin, and cimetidine, have been reported [16–18]. Especially,
the inhibitory effects of acetaminophen on NAT2 have been reported both in vitro and
in vivo [8,16]. Acetaminophen inhibited sulfamethazine acetylation in human liver cytosol
isolated from fast and slow acetylators (Ki value of 2144 and 712 µM in fast and slow
acetylators, respectively) and also the acetylation of sulfamethazine decreased in humans
when acetaminophen was co-administered. These previous findings indicate that acetyla-
tion inhibition by acetaminophen is likely to induce clinically relevant drug interactions.
However, drug interaction studies of acetaminophen with drugs mainly metabolized by
the N-acetylation process, such as amifampridine, are still quite limited. Considering its
widespread use and high therapeutic dose (usual dose of 1000–2000 mg/day and maxi-
mum recommended therapeutic dose of 4000 mg/day), the potential for drug interactions
between acetaminophen and NAT2 substrate drugs should be thoroughly investigated.

Unexpected alterations in drug pharmacokinetics may lead to decreased efficacy and
increased toxicity, eventually resulting in treatment failure. In the case of amifampridine,
increased systemic exposure may induce nervous system disorders based on its mechanism
of action [19]. However, investigations on NAT2-mediated drug interactions with amifam-
pridine have rarely been reported. Therefore, this study aimed to investigate the effects of
NAT2 inhibitors, including acetaminophen, on the pharmacokinetics of amifampridine, a
NAT2 substrate, using in vitro and in vivo systems.

2. Materials and Methods
2.1. Materials

Acetaminophen, acetyl-CoA, amifampridine, apocynin, cimetidine, dimethyl sul-
foxide (DMSO), formic acid, phosphate-buffered saline (PBS), Rompun 2% injection,
and sodium chloride were purchased from Sigma Aldrich (St Louis, MO, USA). 3-N-
acetylamifampridine and ondansetron were obtained from Toronto Research Chemicals
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(North York, ON, Canada) and Cadila (Ahmedabad, India), respectively. Heparin was pur-
chased from Huons (Seongnam, Korea) and Zoletil was obtained from Vibrac SA (Carros,
France). High-performance liquid chromatography (HPLC) grade methanol and acetoni-
trile from Honeywell Burdick and Jackson Co. (Ulsan, Korea) were used in this study.
Liver S9 fractions of rats, humans, mice, and rat plasma were purchased from Sekisui
XenoTech (Kansas City, KS, USA). Water was purified using an AquaMAX ultrapure water
purification system (YL Instruments, Anyang, Korea). All other chemicals and solvents
were of reagent or HPLC grade and were used as received without further purification.

2.2. In Vitro Metabolic Profiles of Amifampridine in Rat Liver S9 Fraction

An in vitro metabolic study was performed to investigate the metabolic profile of
amifampridine in the rat liver S9 fraction. The reaction mixture, which consisted of rat
liver S9 fraction (2 mg/mL protein) and 2 mM acetyl-CoA in potassium phosphate buffer,
was prepared and incubated for 5 min in a thermal mixer (200 oscillations/min) at 37 ◦C.
Then, amifampridine was added to the reaction mixture to make the final concentrations
of amifampridine at 2, 10, 20, 50, 100, 500, and 1000 µM. After further incubation for
15 min at 37 ◦C, 50 µL of the sample was transferred into the tube containing 200 µL of
ice-cold potassium phosphate buffer and mixed by vortexing. An amount of 50 µL of
the mixture was then transferred into the tube containing 100 µL of internal standard
(IS; 5 ng/mL ondansetron in acetonitrile), followed by vortexing and centrifugation at
14,000 rpm for 15 min at 4 ◦C. The supernatant was transferred into vials for HPLC-tandem
mass spectrometry (MS/MS) analysis and the concentration of 3-N-acetylamifampridine
was determined.

2.3. In Vitro Inhibition of Amifampridine Acetylation in the Liver and Intestinal S9 Fractions

To determine the half maximal inhibitory concentration (IC50) value of NAT2 inhibitors
(acetaminophen, apocynin, and cimetidine) on the metabolism of amifampridine to 3-N-
acetylamifampridine, the reaction mixture consisted of a liver S9 fraction (2 mg/mL protein)
and 2 mM acetyl-CoA in potassium phosphate buffer was pre-incubated for 5 min in a
thermomixer at 37 ◦C. Then, the NAT2 inhibitors (final concentrations of 0, 1, 5, 10, 50,
100, 500, 1000, and 5000 µM) and amifampridine (final concentration of 50 µM) were
added to the reaction mixture and incubated for 15 min at 37 ◦C. An amount of 50 µL
of the mixture was then transferred into the tube and mixed with 100 µL of IS (5 ng/mL
ondansetron in acetonitrile). The mixture was vortexed and centrifuged at 14,000 rpm for
15 min at 4 ◦C. The supernatant was transferred into vials for HPLC-MS/MS analysis and
the concentration of 3-N-acetylamifampridine was determined.

The inhibitory effects of acetaminophen on amifampridine acetylation were compared
in rat liver and intestine S9 fractions. The rat S9 fraction was prepared following a method
previously reported [20]. The reaction mixture consisted of rat liver or intestinal S9 fraction
(2 mg/mL protein), and 2 mM acetyl-CoA in potassium phosphate buffer was pre-incubated
for 5 min in a thermomixer at 37 ◦C. Then, acetaminophen (final concentration of 300 µM)
and amifampridine (final concentration of 50 µM) were added to the reaction mixture and
incubated for 15 min at 37 ◦C. The reaction mixture was then pre-treated and analyzed as
mentioned above.

2.4. Mechanism of Metabolism Inhibition of Amifampridine by Acetaminophen

To determine the inhibition mechanism of amifampridine metabolism by acetaminophen,
various concentrations of amifampridine (40, 80, 160, and 320 µM) were incubated with the
rat liver S9 fraction in the presence of different concentrations of acetaminophen (0, 10, 50,
100, and 500 µM). After pre-incubating the reaction mixture containing 2 mM acetyl-CoA for
5 min in a thermomixer at 37 ◦C, acetaminophen and amifampridine were added and further
incubated for 15 min at 37 ◦C. The samples were diluted five-fold using potassium phosphate
buffer, then 50 µL of the diluted samples was transferred into the tube containing 100 µL
of IS (5 ng/mL ondansetron in acetonitrile). The mixture was vortexed and centrifuged at
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14,000 rpm for 15 min at 4 ◦C. The supernatant was transferred into vials for HPLC-MS/MS
analysis and the concentration of 3-N-acetylamifampridine was determined.

To examine whether acetaminophen could inhibit the metabolic activity of amifampri-
dine in a time-dependent manner, the experiment was conducted by using a high concentra-
tion of amifampridine (approximately four-fold Km value) for different pre-incubation times
(0, 10, 30, and 60 min) in the presence of different concentrations of acetaminophen (0, 10, 50,
100, and 500 µM). The reaction mixture contained the liver S9 fraction (2 mg/mL protein)
and 2 mM acetyl-CoA in potassium phosphate buffer. Then, acetaminophen was added and
pre-incubated at different times in a thermomixer at 37 ◦C. The reaction was then initiated
by adding amifampridine (240 µM as a final concentration) and vortex mixing followed
by incubation at 37 ◦C for 15 min. After incubation, the 50 µL aliquot was transferred
into a tube containing 200 µL of ice-cold potassium phosphate to dilute it five-fold. Then,
the 50 µL of the mixture was transferred into the tube containing 100 µL of IS (5 ng/mL
ondansetron in acetonitrile) to terminate the reaction, followed by vortexing and centrifu-
gation at 14,000 rpm for 15 min at 4 ◦C. Finally, the supernatant was transferred to liquid
chromatography (LC) vials for analysis, and the concentration of 3-N-acetylamifampridine
was determined by LC-MS/MS.

2.5. In Vivo Pharmacokinetic Interaction Study in Rats

Male Sprague Dawley (SD) rats (7–8 weeks old, 260–330 g) were purchased from Orient
Bio, Inc. (Seongnam, Korea). The rats were housed under a light/dark cycle for 12 h and
were left for at least a week before the experiment to adapt to the laboratory environment.
Water and food were provided ad libitum. The rats were fasted overnight with free access
to water prior to pharmacokinetic studies. The protocols for animal experiments were
approved in accordance with the Guidelines for Animal Care and Use of Gachon University
(approval no.: GIACUC-R2021006; 13 May 2021).

The rats were anesthetized with a mixture of Rompun and Zoletil by intramuscular
injection and received an intraperitoneal injection of vehicle (40:60 PEG400:normal saline;
n = 8) or 100 mg/kg acetaminophen (n = 8). After 10 min, 2 mg/kg amifampridine
(dissolved in saline) was administered orally. Blood samples were collected at 0, 5, 15,
30, 60, 90, 120, 240, and 360 min and centrifuged at 14,000 rpm for 15 min at 4 ◦C. For
analysis of amifampridine and 3-N-acetylamifampridine, 50 µL of plasma samples was
mixed with 100 µL IS solution (5 ng/mL ondansetron in acetonitrile) and the mixture was
vortexed followed by centrifugation at 14,000 rpm for 15 min at 4 ◦C. For the analysis
of acetaminophen, 200 µL of IS (tolbutamide 200 ng/mL in methanol) was added to the
plasma samples which were diluted 10-fold using the blank plasma and then vortexed for
one minute. Further, the samples were centrifuged at 14,000 rpm for 15 min at 4 ◦C. The
supernatants were transferred to LC vials for quantification.

Urine samples were collected at intervals of 0–4, 4–8, and 8–24 h after the adminis-
tration of amifampridine to control and acetaminophen-treated rats (n = 6), as described
above, and were diluted 500-fold with potassium phosphate buffer. An amount of 200 µL
of IS was then added to the samples and vortexed for a minute. After centrifugation at
14,000 rpm for 15 min at 4 ◦C, the supernatant was transferred into vials for quantification
of amifampridine and 3-N-acetylamifampridine.

To investigate the effects of acetaminophen on the tissue distribution of amifampri-
dine and 3-N-acetylamifampridine, rats were sacrificed at 60 min after administration of
amifampridine in control and acetaminophen-treated rats (n = 6) as mentioned above,
and the tissues, including liver, kidney, heart, lungs, spleen, brain, and muscle tissues,
were obtained. Tissue samples were homogenized using a WheatonTM Dounce tissue
grinder (Wheaton Millipore, Billerica, MA, USA) after adding a three-fold volume of PBS.
An amount of 100 µL of tissue homogenates was transferred to the tube and 200 µL of
IS solution was then added and vortexed followed by centrifugation at 14,000 rpm for
15 min at 4 ◦C. The supernatants were transferred to LC vials for quantification. For muscle
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samples, the supernatant was concentrated using a desiccator and reconstituted with the
mobile phase solvent.

2.6. Quantification of In Vitro and In Vivo Samples Using LC-MS/MS

An Agilent 6490 Triple Quadrupole MS coupled with an Agilent Technologies 1260
HPLC system (LC-MS/MS) was used to quantify amifampridine and 3-N-acetylamifampridine.
The mass spectrometer was operated in multiple reaction monitoring (MRM) modes
with positive electrospray ionization (ESI+). The MRM transitions for amifampridine,
3-N-acetylamifampridine, and IS (ondansetron) were m/z 110.1→93.0, 152.1→110.1, and
294.1→170.0, respectively. The collision energy was 20, 16, and 28 V for amifampridine,
3-N-acetylamifampridine, and IS, respectively. Simultaneous chromatographic separation
of amifampridine and 3-N-acetylamifampridine was performed using a reversed-phase
HPLC column (Synergi Polar—RP column 80 Å, 150 × 2.0 mm, 4 µm; Phenomenex (Tor-
rance, CA, USA)) with a linear gradient of 0.1% formic acid in water and acetonitrile
(95%:5%→30%:70%) at a flow rate of 0.2 mL/min for 17 min. The column oven was set to
25 ◦C and the injection volume was 2 µL.

For the analysis of acetaminophen, MRM mode with ESI+ was used with the MRM
transitions of m/z 152.1→110 and 271.1→155 for acetaminophen and IS (tolbutamide),
respectively. The collision energy for both acetaminophen and IS was 14 V. The chro-
matographic separation was performed with Synergi 4 µM and a Polar-RP column 80 Å
(150 × 2.0 mm; Phenomenex) with a linear gradient of 0.1% formic acid in water and ace-
tonitrile (80%:20%→20%:80%) at a flow rate of 0.2 mL/min for 20 min. The column oven
was set to 25 ◦C and the injection volume was 2 µL.

Calibration curves were constructed by plotting the peak area ratios of the analytes to
IS on the y-axis against their concentration on the x-axis using weighted (1/x) least-squares
linear regression analysis.

2.7. Data Analysis

The Vm and Km values, Michaelis–Menten parameters, were determined by linear
regression using Lineweaver–Burk equation, as follows:

1
v
=

Km

Vmax
× 1

[S]
+

1
Vmax

where v is the rate of amifampridine metabolism to 3-N-acetylamifampridine in the S9
fraction, [S] is the concentration of amifampridine, Vmax is the maximum metabolic rate of
amifampridine, and Km is the concentration of amifampridine at half Vmax. The intrinsic
clearance (CLint) was calculated using Vmax/Km, with the assumption that Km is much
greater than [S], as is usual in clinical practice.

The inhibition mode was determined using Lineweaver–Burk plots, and Ki was calcu-
lated using the following equation, assuming mixed inhibition:

v =
Vmax × [S]

Km ×
(

1 + I
Ki

)
+ [S]×

(
1 + I

α×Ki

)
where v is the rate of metabolism to 3-N-acetylamifampridine at each concentration of ami-
fampridine, Vmax is the maximum rate of metabolism, Km is the Michaelis constant, I is the
concentration of acetaminophen, Ki is the inhibition constant, and [S] is the amifampridine
concentration. The α value is the degree to which the binding of acetaminophen changes
the affinity of the enzyme for amifampridine.

Kobs, the observed rate of enzyme loss, was estimated from the negative slopes of the
lines using a linear regression analysis of the natural logarithm of metabolite formation
as a function of incubation time [21]. The first-order rate constant, Kinact, which represents
the maximum rate of enzyme inactivation, was calculated using a nonlinear regression
analysis as follows:
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Kobs =
Kinact × [I]

Ki + [I]

Non-compartment analysis (NCA) was performed to calculate the pharmacokinetic
parameters for the in vivo study using WinNonlin (Version 8.3. (Pharsight Corporation,
Mountain View, CA, USA)). The area under the plasma concentration–time curve from
time 0 to infinity (AUCinf) was calculated by the linear trapezoidal method and standard
extrapolation using λ, where λ represents the slope of the terminal phase in a semi-log
graph for plasma concentration–time profiles. Renal clearance (CLr) was determined by
dividing the accumulated amount of drug excreted in the urine by AUCinf.

A two-tailed unpaired Student’s t-test was performed to determine statistically signifi-
cant differences between groups and p-values less than 0.05 were considered significant.
Data are presented as means ± SD.

3. Results
3.1. In Vitro Metabolic Profiles of Amifampridine in Rat Liver S9 Fractions

The formation rate of 3-N-acetylamifampridine, a metabolite of amifampridine, in
the rat liver S9 fraction was saturated with an increase in the concentration of amifam-
pridine (Figure 2A). Based on the Lineweaver–Burk plot, the Km, Vmax, and CLint val-
ues were calculated to be 66.6 ± 24.2 µM, 5130 ± 1100 pmol/min/mg protein, and
0.078 ± 0.011 mL/min/mg protein, respectively, in rat liver S9 fractions (Figure 2B).
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Figure 2. Velocities of 3-N-acetylamifampridine formation in rat liver S9 fraction at various concen-
trations of amifampridine (A). The Km and Vmax values were determined using a Lineweaver–Burk
plot (B). Data are expressed as the means ± SD (n = 3).

3.2. In Vitro Inhibitory Effects of NAT2 Inhibitors on Amifampridine Metabolism

The inhibitory effects of NAT2 inhibitors (acetaminophen, apocynin, and cimeti-
dine) on the formation of 3-N-acetylamifampridine from amifampridine were determined
in vitro using S9 fractions obtained from human, rat, and mouse livers (Figure 3). The
effect of acetaminophen on the formation of 3-N-acetylamifampridine was more potent
in rats than in mice and humans (IC50 values of 4485 ± 742 µM, 155.1 ± 27.5 µM, and
1734 ± 226.2 µM for humans, rats, and mice, respectively, Figure 3A–C). The IC50 val-
ues of apocynin in human, rat, and mouse liver S9 fractions were 843.5 ± 160.4 µM,
278.3 ± 12.8 µM, and 1655 ± 385.3 µM, respectively (Figure 3D–F). The inhibitory potency
of cimetidine in rats was similar to that observed in mouse and human S9 fractions (IC50
values of 2449 ± 257.9 µM, 2367 ± 163.5 µM, and 2711 ± 339.3 µM in human, rat, and
mouse S9 fractions, respectively, Figure 3G–I). All NAT2 inhibitors tested in this study
showed inhibitory effects on the metabolism of amifampridine to 3-N-acetylamifampridine,
suggesting pharmacokinetic interactions between amifampridine and NAT2 inhibitors.
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Figure 3. Inhibitory effects of acetaminophen (A–C), apocynin (D–F), and cimetidine (G–I) on the
metabolism of amifampridine to 3-N-acetylamifampridine in vitro in human, rat, and mouse liver S9
fractions. Data are expressed as the means ± SD (n = 3).

The inhibitory effects of acetaminophen on amifampridine acetylation were compared
in rat liver and intestinal S9 fractions. When 300 µM of acetaminophen was incubated with
amifampridine (50 µM) in rat liver or intestinal S9 fractions, the acetylation of amifam-
pridine decreased by 64.7 or 63.3%, respectively (Supplementary Figure S1), suggesting
that the inhibitory effects of acetaminophen on amifampridine acetylation in rat liver and
intestinal S9 fractions are comparable.

3.3. Determination of Inhibition Mode for Acetaminophen on the Metabolism of Amifampridine

The reversible inhibition of amifampridine metabolism by acetaminophen was further de-
termined using rat liver S9 fractions treated with various concentrations of amifampridine and
acetaminophen. As shown in Figure 4A, acetaminophen inhibited the metabolism of amifampri-
dine in a mixed inhibition manner, increasing the Km value and decreasing the Vmax value. The Ki
value calculated from the secondary plot was 68.66± 11.85 µM (Figure 4B) and the α value was
determined as 3.48, which is not close to 1 (αKi = 238.8 ± 25.6 µM, Figure 4C), indicating
that acetaminophen inhibits the acetylation of amifampridine in a mixed inhibition manner,
as observed in the Lineweaver–Burk plot.

The time-dependent inhibition of amifampridine metabolism to 3-N-acetylamifampridine
by acetaminophen was also evaluated by pre-incubating the liver S9 fraction with acetaminophen
(Figure 5). Kobs increased with increasing acetaminophen concentration, reaching saturation at
high acetaminophen concentrations. The Kinact value, determined from a nonlinear analysis of
Kobs versus acetaminophen concentrations, was 0.0031 min−1, indicating that the inhibitory
mechanisms of acetaminophen on amifampridine metabolism are time-dependent and that
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the metabolic activity of amifampridine decreases by approximately 0.31% per min when
acetaminophen is pre-incubated with rat liver S9 fractions.
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Figure 4. (A) Lineweaver–Burk plots of amifampridine metabolism to 3-N-acetylamifampridine in
rat liver S9 fractions. Amifampridine was incubated in rat liver S9 fractions in the presence of various
concentrations of acetaminophen and the amount of formed 3-N-acetylamifampridine was measured.
(B) The secondary plot for Ki was developed using the slope obtained in the Lineweaver–Burk plot
versus the concentration of acetaminophen. (C) The secondary plot for αKi was developed using
the y-intercept of the linear regression in the Lineweaver–Burk plot versus the concentration of
acetaminophen. Data are expressed as means ± SD (n = 3).
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Figure 5. Kinetic profiles of amifampridine metabolism to 3-N-acetylamifampridine after pre-
incubation with various concentrations of acetaminophen in rat liver S9 fractions. (A) A linear
regression analysis of the natural logarithm of the percentage of metabolite formation versus pre-
incubation time was performed. (B) A nonlinear analysis of Kobs versus acetaminophen concentrations
was performed to calculate Kinact values (0.0031 min−1). Data are expressed as means ± SD (n = 3).
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3.4. In Vivo Pharmacokinetic Interaction Study in Rats

When acetaminophen was intraperitoneally administered into rats at 100 mg/kg, the
Cmax was observed as 54.8 µg/mL (362.5 µM, Figure 6A), which is higher than the IC50
value of acetaminophen observed in the in vitro study with rat liver S9 fractions, suggest-
ing the potential interactions of acetaminophen with amifampridine in vivo. Therefore,
a pharmacokinetic study was performed in rats to investigate the in vivo pharmacoki-
netic interactions between acetaminophen and amifampridine. When acetaminophen
(100 mg/kg) was administered to rats 10 min prior to oral administration of amifampridine
(2 mg/kg), the systemic exposure to amifampridine significantly increased (208.34% and
185.64% increase in Cmax and AUCinf, respectively, Table 1 and Figure 6B). In the case of 3-N-
acetylamifampridine, the Cmax decreased slightly after pre-treatment with acetaminophen
(27.11% decrease, p < 0.05), and the AUCinf was not significantly altered (Table 2 and
Figure 6C). However, the AUCm/AUCp ratio significantly decreased from 24.48 ± 3.10 to
8.63 ± 2.65 (p < 0.001) after pre-treatment of acetaminophen, indicating that acetaminophen
markedly inhibits the metabolism of amifampridine to 3-N-acetylamifampridine in vivo
in rats.

Table 1. Pharmacokinetic parameters of amifampridine and 3-N-acetylamifampridine after oral
administration of amifampridine (2 mg/kg) in control and acetaminophen-treated rats (100 mg/kg;
n = 8 in each group). Data are expressed as means ± SD.

Amifampridine 3-N-acetylamifampridine

Parameter Control Group Acetaminophen-
Treated Group Control Group Acetaminophen-Treated

Group

Cmax (µg/mL) 0.07 ± 0.02 0.20 ± 0.10 ** 1.21 ± 0.24 0.88 ± 0.26 *
Tmax (min) 46.87 ± 36.25 60 ± 35.86 78.75 ± 31.82 90.00 ± 68.03

AUClast (µg·min/mL) 8.47 ± 1.4 24.85 ± 7.13 *** 204.82 ± 39.12 180.56 ± 20.29
AUCinf (µg·min/mL) 9.11 ± 1.61 26.03 ± 6.99 *** 221.42 ± 40.74 221.33 ± 23.47

t1/2 (min) 83.92 ± 21.12 81.34 ± 24.98 84.94 ± 21.61 142.78 ± 54.62 *
MRT (min) 137.65 ± 42.85 124.94 ± 31.64 159.05 ± 33.42 230.16 ± 77.95 *

CL/F (mL/min/kg) 225.39 ± 38.29 81.74 ± 21.23 *** - -
Vd/F (mL/kg) 26,913.30 ± 6740.87 9830.78 ± 4689.82 *** - -
CLr (mL/min) 4.89 ± 1.71 3.87 ± 0.91 2.94 ± 1.55 3.58 ± 0.6
AUCm/AUCp - - 24.48 ± 3.10 8.63 ± 2.65 ***

AUCinf, area under the plasma concentration–time curve from time 0 to infinity; AUClast, area under the
plasma concentration-time curve from time zero to the last quantifiable point; AUCm/AUCp, AUC ratio of
3-N-acetylamifampridine to amifampridine; CL/F, clearance divided by bioavailability (F); CLr, renal clearance;
Cmax, maximum plasma concentration; Tmax, time to reach Cmax; MRT, mean residence time; t1/2, half-life; Vd/F,
volume of distribution divided by F. *, **, and *** denote p < 0.05, p < 0.01, and p < 0.001, respectively, compared to
the control group.

Table 2. Tissue partition coefficient (Kp) of amifampridine and 3-N-acetylamifampridine after oral
administration of amifampridine (2 mg/kg) at 60 min in control and acetaminophen-treated rats
(100 mg/kg). Data are expressed as means ± SD.

Amifampridine 3-N-amifampridine

Tissue Control (n = 5) Acetaminophen
(n = 6) Control (n = 5) Acetaminophen

(n = 6)

Liver 3.8 ± 2.6 3.0 ± 1.5 6.5 ± 5.0 3.0 ± 0.8
Kidney 7.4 ± 2.7 3.6 ± 0.4 * 16.6 ± 12.4 5.1 ± 1.6
Spleen 1.0 ± 0.5 1.6 ± 1.0 3.3 ± 0.7 3.0 ± 0.9
Heart 0.6 ± 0.5 0.7 ± 0.5 1.8 ± 0.5 1.6 ± 0.4
Lungs 1.7 ± 1.1 2.2 ± 2.8 2.9 ± 0.5 2.7 ± 0.9
Brain 0.1 ± 0.3 0.1 ± 0.0 0.2 ± 0.2 0.2 ± 0.2

Muscle 0.5 ± 0.4 0.4 ± 0.2 0.9 ± 0.2 0.9 ± 0.3
Kp values were calculated by dividing the concentration of amifampridine or 3-N-amifampridine in the tissue by
that in the plasma. * p < 0.05, compared with control rats.
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Figure 6. Pharmacokinetic profiles of acetaminophen and amifampridine in rats. (A) Acetaminophen
was administered intraperitoneally at 100 mg/kg to rats and the plasma concentrations of ac-
etaminophen were quantified (n = 6). (B,C) Amifampridine (2 mg/kg) was orally administered
to rats in control (open circles) and acetaminophen-treated rats (closed circles; n = 8 in each group)
and the plasma concentrations of amifampridine and 3-N-acetylamifampridine were determined.
(D,E) Amifampridine (2 mg/kg) was orally administered to rats in control (open circles) and
acetaminophen-treated rats (closed circles; n = 6 in each group) and the amount of amifampridine and
3-N-acetylamifampridine excreted into urine was determined. Data are expressed as means ± SD.

In addition, urine samples were collected for 24 h to investigate the effects of ac-
etaminophen on the urinary excretion of amifampridine and 3-N-acetylamifampridine in
rats. As shown in Figure 6D and 6E, the urinary excretion of amifampridine increased at
each time point after pre-treatment with acetaminophen and the total urinary recovery of
amifampridine was 6.7% and 18.9% (p < 0.001) in the control and acetaminophen-treated
rats, respectively. The amount of 3-N-acetylamifampridine excreted into the urine for up
to 4 h decreased from 49.9% to 12.2% after pre-treatment with acetaminophen (p < 0.05),
whereas the total amount of 3-N-acetylamifampridine excreted via urine for up to 24 h was
not significantly different between the groups. The renal CL (CLr) remained unchanged
for both amifampridine and 3-N-acetylamifampridine (Table 1), which supports that the
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urinary excretion pathway of amifampridine is unlikely to be affected by acetaminophen
treatment in rats.

The effect of acetaminophen on the tissue distribution of amifampridine and 3-N-
acetylamifampridine was investigated by calculating the tissue partition coefficient (Kp:
the ratio calculated by dividing the concentration in the tissue by that in the plasma) after
oral administration of 2 mg/kg amifampridine to the control and acetaminophen-treated
rats. The concentrations of amifampridine in each tissue and the Kp of amifampridine and
3-N-amifampridine in the liver, kidney, spleen, heart, lungs, brain, and muscles at 60 min
are presented in Figure 7 and Table 2. The concentrations of amifampridine in the liver,
spleen, and muscle were significantly increased by 270.26%, 265.17%, and 413.11% (p < 0.05),
respectively, in acetaminophen-treated rats compared with control rats. The kidneys, heart,
lungs, and brain of the acetaminophen-treated group also showed a slight increase in
amifampridine concentration, although the change was not statistically significant. The
calculated Kp of amifampridine in the kidneys of acetaminophen-treated rats decreased by
69.43% compared to that in control rats (Figure 7A). However, there were no significant
differences in the Kp values in other tissues between the control and acetaminophen-treated
rats (Table 2). In contrast to amifampridine, no significant difference was observed between
the control and acetaminophen-treated rats in the concentration of 3-N-acetylamifampridine
in the tissues (Figure 7B). The calculated Kp of 3-N-acetylamifampridine in the kidney in
the acetaminophen-treated rats was decreased compared to control rats (16.6 ± 12.4 and
5.1 ± 1.6 in control and acetaminophen-treated rats, respectively), but the difference was
not statistically significant. In other organs, the calculated Kp values were similar between
the groups (Table 2).
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Figure 7. Tissue concentrations of amifampridine (A) and 3-N-acetylamifampridine (B) at 60 min
after oral administration of amifampridine (2 mg/kg) in control (open bar, n = 5) and acetaminophen-
treated rats (100 mg/kg; closed bar, n = 6). Data are expressed as means ± SD. * denotes p < 0.05,
compared to the control group.

4. Discussion

Amifampridine is primarily eliminated via metabolism to 3-N-acetylamifampridine,
which is formed mainly by NAT2 and NAT1, and the NAT1 has a much slower metabolic
rate than NAT2 [5]. The Cmax and AUC of amifampridine are approximately 3.5-fold and
5–10-fold higher in slow acetylators than in fast acetylators for NAT2 [19]. In addition, a
more than 10-fold higher frequency of drug-related treatment-emergent adverse events
has been reported with slow acetylators than with fast acetylators for NAT2 [19]. Thus,
NAT2 activity is critical for maintaining treatment efficacy with minimal adverse effects.
However, to the best of our knowledge, information regarding the drug interactions of
amifampridine mediated by NAT2 has not yet been reported, which possibly limits the
effective treatment of LEMS with amifampridine. Therefore, we investigated the effects of
NAT2-mediated interactions with amifampridine using in vitro and in vivo systems.
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In this study, we confirmed that amifampridine was metabolized through the acetyla-
tion pathway in the rat liver S9 fraction. We then evaluated the in vitro inhibitory effects of
the well-known NAT2 inhibitors acetaminophen [16], apocynin [17], and cimetidine [18,22]
in liver S9 fractions obtained from humans, rats, and mice (Figure 3). The IC50 value of
cimetidine on NAT2 was calculated as 2367 µM in rat liver S9 fraction, which is similar
to the value in a previous report (IC50 = 2060 µM [22]). In contrast, the IC50 value of
apocynin on NAT2 obtained in this study (278.3 µM in rat liver S9 fractions) was less
than the previous report (690 µM [17]). However, considering the dependency of IC50
values on experimental conditions, such as substrate or enzyme concentrations, the IC50
value obtained in this study seems within a reasonable range. The inhibitory effects of
cimetidine on the acetylation of amifampridine were similar in human, rat, and mouse
liver S9 fractions; acetaminophen and apocynin showed substantial species differences in
their inhibitory effects. In particular, an approximately 29-fold stronger inhibitory effect of
acetaminophen was observed in rats compared to that in humans (IC50 values of 155.1 µM
and 4485 µM in rat and human liver S9 fractions, respectively). These results indicate that
meticulous care is required in the interpretation of NAT2 inhibitory study results obtained
in species other than humans.

To further investigate the inhibitory mechanisms of acetaminophen on N-acetylation
of amifampridine, rat liver S9 fraction was treated with various concentrations of ami-
fampridine and acetaminophen and the formation rate of 3-N-acetylamifampridine was
determined (Figure 4). We observed that acetaminophen inhibits N-acetylation of ami-
fampridine in a mixed inhibition manner, which implies that acetaminophen can bind
not only with unbound NAT2 but also bound NAT2 with amifampridine, resulting in
altered binding affinities of substrates to the enzyme and a maximum metabolism capacity.
Acetaminophen also inhibited the N-acetylation of amifampridine in a time-dependent
manner, with a Kinact of 0.0031 min−1 (Figure 5), indicating that the metabolic activity of
NAT2 on amifampridine decreased by approximately 0.31% per minute in the presence of
acetaminophen. The underlying mechanisms of the acetaminophen-mediated inhibition of
amifampridine acetylation determined in this study will help understand the interactions
between acetaminophen and amifampridine.

Since acetaminophen strongly inhibited the metabolism of amifampridine in the rat
liver and intestinal S9 fractions in vitro, the potential of in vivo pharmacokinetic interac-
tions between amifampridine and acetaminophen was investigated in rats (Figure 6). The
dose of amifampridine (2 mg/kg) was determined based on the clinical dose and sev-
eral pharmacokinetic studies of amifampridine in rats [4,23]. The dose of acetaminophen
(100 mg/kg) was selected based on clinical doses and pharmacokinetic interaction stud-
ies with acetaminophen in rats [24,25]. The systemic exposure to amifampridine was
significantly increased and the total clearance (CL/F) decreased when acetaminophen
was administered to rats. However, t1/2 remained unchanged after treatment with ac-
etaminophen, likely due to both a decreased CL/F and volume of distribution (Vd/F)
(Table 1), which affect t1/2. The reasons behind a decreased Vd/F remain unclear; however,
the increased F, possibly due to inhibition of first-pass intestinal and hepatic metabolism of
amifampridine by acetaminophen before reaching systemic circulation, and the decreased
distribution of amifampridine into several tissues by acetaminophen may be considered as
the relevant mechanisms. Similarly, the increased F can affect the CL/F of amifampridine
in the presence of acetaminophen. To confirm the effect of acetaminophen on the systemic
CL and Vd of amifampridine, an additional in vivo PK study with intravenous adminis-
tration of amifampridine would be necessary. The AUC ratio of 3-N-acetylamifampridine
to amifampridine (AUCm/AUCp) significantly decreased by 65% after pretreatment with
acetaminophen (Table 1), suggesting that the pharmacokinetic profiles of amifampridine
and its metabolite were strongly affected by acetaminophen in vivo. Furthermore, a highly
significant increase was observed in the cumulative urinary recovery of amifampridine in
acetaminophen-treated rats compared to control rats. The renal clearance of amifampridine
did not differ between the groups, which may be due to the proportional increase in cumu-
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lative urinary recovery to the increase in AUCinf in the plasma of acetaminophen-treated
rats. In addition, the accumulated amount excreted in the urine or renal clearance of
3-N-acetylamifamrpdine was not altered by treatment with acetaminophen. Taken together,
the increased systemic exposure to amifampridine and the decreased AUCm/AUCp are
unlikely to be attributable to the interaction with acetaminophen via the urinary excretion
pathway of amifampridine or its metabolite.

A tissue distribution analysis showed that the amount of amifampridine distributed
in the tissue was higher in acetaminophen-treated rats than in control rats (Figure 7). How-
ever, the Kp values, which were calculated by dividing the concentration of amifampridine
in the tissue by that in the plasma, were not significantly altered by treatment with ac-
etaminophen, except in the kidneys (Table 2). The Kp value of 3-N-acetylamifampridile
was not significantly altered by acetaminophen in any tissue studied. These results sug-
gested that the mechanisms governing the tissue distribution of amifampridine and 3-N-
acetylamifampridile were not significantly associated with acetaminophen, except in the
kidneys. The Kp value of amifampridine in the kidneys decreased by 51% in acetaminophen-
treated rats. This was likely a result of the increased urinary excretion of amifampridine
in acetaminophen-treated rats. The mechanism underlying this finding remains unclear,
and further studies are necessary to elucidate it. However, the altered distribution of
amifampridine only to the kidneys after treatment with acetaminophen is less likely to
affect the plasma concentrations of amifampridine, considering the volume of the kidney
and total plasma volume. Collectively, the inhibitory effects of acetaminophen on the
N-acetylation of amifampridine seem to be the most plausible mechanism to explain the
in vivo pharmacokinetic interactions between acetaminophen and amifampridine, based
on the in vitro and in vivo results (urinary excretion and tissue distribution studies).

It is generally known that acetaminophen is safe and less likely to induce clinically
important drug interactions; thus, this drug is available over the counter as well as by
prescription in most countries. However, several recent studies have provided evidence
that acetaminophen may induce drug interactions by altering the pharmacokinetics of
victim drugs. For example, systemic exposure to sorafenib, a tyrosine kinase inhibitor used
for the treatment of advanced renal cell carcinoma, and its metabolite N-oxide sorafenib
increased in the presence of acetaminophen in rats [26], which may be due to P-glycoprotein
(P-gp) inhibition by acetaminophen [27]. In addition, acetaminophen increases the clear-
ance of lamotrigine glucuronide conjugates, resulting in decreased systemic exposure to
lamotrigine in humans [28]. Our study also highlights the importance of acetaminophen-
mediated drug interactions; thus, drug interactions with acetaminophen should receive
more attention regarding their clinical implications. However, in our study, acetaminophen
inhibited the amifampridine metabolism much more strongly in the rat liver S9 fraction
than in the human liver S9 fraction, and species differences should be carefully considered
when interpreting the in vivo interaction results in rats and humans. The observed Cmax
values after oral or intravenous administration of acetaminophen are ~200 µM at most in
humans [29,30]. Considering the IC50 of acetaminophen on NAT2 inhibition in human liver
S9 fractions and the pharmacokinetic profiles of acetaminophen reported in humans, the
potency of drug interactions might be lower than those observed in rats. Further transla-
tional research between different species and clinical studies are warranted to obtain more
confirmative evidence on the drug interactions between amifampridine and acetaminophen
in humans. Since the NAT2 gene is expressed in the tissues other than the liver, such as the
intestine [31], the tissue distribution of the NAT2 gene in different species should be also
considered.

This study was originally designed to investigate the systemic drug interactions be-
tween acetaminophen and amifampridine via hepatic NATs, and thus acetaminophen was
administered by the intraperitoneal route. However, acetaminophen administered via the
intraperitoneal route was absorbed rapidly and possibly affected the intestinal and hepatic
first-pass metabolism of amifampridine, which was administered orally. Additionally,
acetaminophen distributed into the tissues is likely to affect metabolism of amifampridine
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during systemic circulation not only in the liver but also in the intestine. Thus, diverse
processes may be involved in the observed in vivo interactions between amifampridine
and acetaminophen in rats, even though the level of contribution in each process cannot
be separated quantitatively from this study. We confirmed that the inhibitory effects of
acetaminophen on amifampridine acetylation are comparable between rat liver and in-
testinal S9 fractions; however, more comprehensive and systematic information on the
interaction between amifampridine and acetaminophen, including a comparison of the
inhibitory effects of acetaminophen in human and rat intestinal S9 fractions, is required to
facilitate translation of the interaction effect into humans.

To the best of our knowledge, this is the first study to investigate the NAT2-mediated
drug interaction potential of amifampridine with acetaminophen in vitro and in vivo. This
study reported that acetaminophen inhibited the metabolism of amifampridine, leading to
altered pharmacokinetics in rats. Therefore, care should be taken when amifampridine is
co-administered with acetaminophen.

5. Conclusions

This study investigated the interactions between amifampridine and acetaminophen
using in vitro and in vivo systems. An inhibitory effect of acetaminophen on the acety-
lation of amifampridine was observed in vitro and the in vivo pharmacokinetic profile
of amifampridine was affected by acetaminophen treatment in rats. In addition, the ra-
tio of systemic exposure of 3-N-acetylamifampridine to amifampridine decreased after
treatment with acetaminophen. Acetaminophen increased the urinary excretion and the
amount of amifampridine distributed to the tissues. Acetaminophen co-administration
may lead to relevant drug interactions with amifampridine; thus, care should be taken
when co-administering amifampridine and acetaminophen.

Supplementary Materials: The following supporting information can be downloaded at: https:
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in vitro in rat liver and intestinal S9 fractions. Data are expressed as the mean ± SD (n = 3).
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