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Abstract: Cancer is a leading cause of death worldwide, and the main treatment methods for this
condition are surgery, chemotherapy, and radiotherapy. These treatment methods are invasive and can
cause severe adverse reactions among organisms, so nanomaterials are increasingly used as structures
for anticancer therapies. Dendrimers are a type of nanomaterial with unique properties, and their
production can be controlled to obtain compounds with the desired characteristics. These polymeric
molecules are used in cancer diagnosis and treatment through the targeted distribution of some
pharmacological substances. Dendrimers have the ability to fulfill several objectives in anticancer
therapy simultaneously, such as targeting tumor cells so that healthy tissue is not affected, controlling
the release of anticancer agents in the tumor microenvironment, and combining anticancer strategies
based on the administration of anticancer molecules to potentiate their effect through photothermal
therapy or photodynamic therapy. The purpose of this review is to summarize and highlight the
possible uses of dendrimers regarding the diagnosis and treatment of oncological conditions.

Keywords: cancer; dendrimers; diagnosis; treatment; targeting; photothermal therapy; photodynamic
therapy; gene transfection

1. Introduction
1.1. Generalities

Dendrimers are nanomaterials with unique properties used in cancer diagnosis and
treatment, targeting tumor cells, controlling the release of anticancer agents, and combining
anticancer strategies [1]. Cancer is a malignant condition characterized by the uncontrolled
proliferation of atypical cells. Cancer progression is supported by the imbalance or damage
of proto-oncogenes that encode proteins involved in the development and differentia-
tion of tumor cells, but also tumor suppressor genes that encode proteins that produce
inhibitory signals for cells in need and produce apoptosis [2]. According to the World
Health Organization, cancer is the leading cause of death globally, and lung cancer is the
most common cause of cancer-related death [3,4]. As the mortality rate associated with
cancer is increasing, research on cancer therapies is growing, and identifying the most
effective treatment method is the goal of most scientists [5,6]. The main treatment methods
for this group of pathologies include surgical excision, chemotherapy, radiotherapy, and
immunotherapy. The effectiveness of these therapies depends on the severity of the disease
and the particular reaction of each organism. However, a major problem encountered in
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patients undergoing the above-mentioned therapies is that these therapies cannot distin-
guish between tumor cells and healthy cells in the body, resulting in the occurrence of
serious adverse reactions [5,7–9]. These adverse reactions are most often represented by
alopecia, decreased immunity through the suppression of bone marrow function, fever,
nausea, vomiting, hepatotoxicity, cardiotoxicity, neurotoxicity, electrolyte imbalances, and
decreased muscle tone [10,11]. One way to avoid these adverse reactions is to use targeted
therapies, where drugs or mechanisms for destroying tumor cells are specifically directed to
the tumor [8,12,13]. Targeted therapy is a new-generation chemotherapy that seeks to target
certain proteins or genes specifically linked to a particular cancer or tumor vasculature that
promotes its growth [2]. Nanotechnology is an option for such therapies and is based on the
synthesis of “tools” that act as transporters of drugs to a specific tumor target [14–17]. This
review aims to give an overview of the potential diagnostic and therapeutic applications of
dendrimers for oncological conditions.

1.2. Methods

The process of research for this review involved a thorough and precise search for
relevant bibliographic sources across several databases, such as PubMed, Google Scholar,
Cochrane, and Embase. The objective was to identify potential sources that contain in-
formation on the utilization of nanoparticles and dendrimers in cancer diagnosis and
treatment. To conduct the search, the authors used a combination of appropriate keywords,
including nanoparticles, dendrimers, cancer diagnosis, cancer treatment, and targeting.
The search process was comprehensive, and the authors considered all relevant sources that
appeared during the search. Initially, the authors identified over 227 bibliographic sources,
which they evaluated carefully to determine their relevance to the study’s focus. Only
sources whose information was pertinent to the research question and whose results were
consistent with similar studies were included. As a result, the authors narrowed down
the pool to 217 sources, which were considered relevant and included in the final review.
The methodology used by the authors was designed to ensure a rigorous and comprehen-
sive analysis of the available literature on the use of dendrimers in cancer diagnosis and
treatment. The inclusion criteria were strict to ensure that only high-quality and relevant
sources were included in the review. By doing so, the authors increased the reliability and
validity of the study’s findings.

1.3. Nanoparticles: Classification and Characterization

Nanotechnology is extremely important in medicine in developing systems whose
shape and size can be controlled to improve and individualize their physicochemical and
pharmacological properties, and the systems obtained can be used for various purposes for
numerous diseases, including cancer [18–20].

Nanoparticles are tiny materials having size ranges from 1 to 100 nm that can be
obtained naturally or synthesized artificially, and research has shown that they are more
effective than chemotherapy or radiotherapy used independently, producing minor adverse
reactions [14,21–23]. Nanomaterials are used as biological markers, contrast agents for
imaging, medical care products, pharmaceutical products, and drug delivery systems, as
well as in the detection, diagnosis, and treatment of various types of diseases, including
cancer [18,24–26].

The use of nano systems in medicine has numerous advantages, which are presented in
Figure 1. In the case of oncological pathologies, the main advantage of using nanoparticles
is that they can be directed to the sites of tumors by conjugating them with different
monoclonal antibodies or peptide ligands that exhibit specificity for the receptors of the
cells that these systems are intended to reach [27,28].
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Figure 1. Advantages of nano systems in medicine [18,29–31].

Nanoparticles can be classified based on several characteristics: size, charge, chemical
properties, morphology, state(s) [32]. The main nano systems used in biomedicine are
presented in Table 1.

Table 1. Nanoparticles in drug delivery: a comparative analysis of polymeric nanoparticles, carbon
nanotubes, liposomes, gold nanoparticles, micelles, solid lipid nanoparticles, and dendrimers.

Type of Particle Characteristics and Properties Strengths Weaknesses

Polymeric
nanoparticles

- efficient for targeted drug
distribution

- possibility to modify shape,
composition, size, and surface
characteristics

- stability
- high therapeutic

efficiency
- large encapsulation

capacity

- toxic degradation
- difficult encapsulation

for hydrophilic drugs
[33–37]

Carbon nanotubes

- cylindrical shape with a closed
end, suitable for antimicrobial
agents and gene delivery

- electrical conductivity

- resistance
- high specific surface area

- insoluble in aqueous
and organic solvents
[14,33,36,38]

Liposomes

- externally formed from a double
hydrophobic phospholipid
bilayer that can be modified to
reduce side effects, while the
interior is represented by an
aqueous core in which drugs,
proteins, genes, or peptides can
be encapsulated

- specific drug transport without
degradation

- high biocompatibility
- high permeability of

drug distribution

- sensitivity to extrinsic
and intrinsic stimuli
[14,33,36,39–42]



Pharmaceutics 2023, 15, 1406 4 of 22

Table 1. Cont.

Type of Particle Characteristics and Properties Strengths Weaknesses

Gold nanoparticles

- exhibit unique optical properties
and have the ability to conjugate
with antibodies

- water solubility
- high biocompatibility

- extremely stable
- low toxicity

- biological stability may
decrease in vivo
[33,36,43–45]

Micelles

- colloidal particles with a spherical
shape, with a polar exterior
surface and a non-polar interior

- prolonged drug release

- high biostability
- high drug loading

capacity

- only used for lipophilic
substances

- low stability in blood
[14,36,46,47]

Solid lipid
nanoparticles

- formed from a monolayer of
phospholipids on the outside,
which line a hydrophobic core

- can surpass the
blood–brain barrier

- no problems with
respect to large-scale
production and
Sterilization

- unpredictable gelation
tendency

- unexpected dynamics of
polymeric transitions

- sometimes burst release
[33,48,49]

Dendrimers

- highly branched polymeric
molecules that have
self-organizing capacity and are
used in imaging, cancer therapies,
and gene therapies

- controlled synthesis

- high biocompatibility - cytotoxicity [14,33,36]

Among the nanoparticles mentioned in Table 1, in the following, we will present den-
drimers in more detail as nanoparticles with multiple applications in the oncological field.

2. Dendrimers: Polymer-Based Nanoparticles

Our planet is full of various structures that have a dendritic, branched architecture,
from neuronal dendritic branches to the rich branching of tree roots. Some researchers
believe that these dendritic structures have evolved over time due to the need for highly
complex and efficient surfaces that allow for the processes of absorption, extraction, or
distribution of different substances in the living world [50]. Inspired by his pastime as
a horticulturist, Donald Tomalia, along with his colleagues, discovered hyper-branched
molecules called dendrimers in the early 1980s [50,51]. The first dendrimers obtained were
polyamidoamines (PAMAM) and are called starburst dendrimers. They are composed
of a core of ethylenediamine or ammonia, which is surrounded by amino groups on the
outside [51–53]. Unlike linear polymers, dendrimers are highly branched molecules that
can be synthesized at the desired size and molecular weight, and whose monomeric units
have the ability to self-organize [14,51,54,55]. Some of the existing types of dendrimers are
presented throughout the following Table 2.
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Table 2. Types of dendrimers [2,56].

Type of Dendrimer Characteristics

Chiral dendrimers

- built on different conditional branches and having a
chiral core in the center

- these dendrimers are optically active

PAMAM dendrimers

- dendrimers are most frequently used in the
distribution of medicines

- the surface is modified to become non-immunogenic
and it has a high capacity to encapsulate different
compounds, due to the amide bonds and the
compositionrich intertiary amines

PPI dendrimers
- formed from poly-propylene imine
- used in the delivery of medicines

Tacto dendrimers

- consists of a central dendrimer that is conjugated with
several dendrimers of different types at the periphery

- perform functions of complex nanodevices

Hybrid dendrimers
- consisting of several dendritic combinations and linear

polymers, in different forms

Peptide dendrimers

- they are dendrimers that present peptides on the
surface or dendrimers that include amino acids

- they have an important role in various medical
therapies, including in the delivery of medicines

Glicodendrimers

- dendrimers that incorporate carbohydrates either in
their core or on the surface, or are built entirely from
carbohydrates

- they are used for cell recognition studies, the targeting
of contrast agents for MRI, and the delivery of drugs
and genes

As previously noted, the structure of dendrimers is represented by a central core,
surrounded by branches, and the outermost layer of their structure is represented by a
multivalent surface. The synthesis of these molecules can be done divergently or con-
vergently [14,57–59]. The two synthesis methods differ in the growth direction of the
dendrimer. In the case of divergent synthesis, the synthesis begins with the formation of
the central molecule, the core of the dendrimer, and then this base molecule interacts with
monomers, causing the structure to grow outward [60,61]. The addition of monomers to
the outside of the molecule occurs for several generations in a row, adding one layer of the
first-generation dendrimer. Each layer of monomers represents a generation [51,57,61,62].
Dendrimers with few layers, from generations 0, 1, or 2, have open, asymmetric structures,
and as the branches become larger (dendrimers of generation 4 or higher), the dendrimers
become compactly packed, taking on a globular shape. However, the synthesis of these
polymer molecules cannot be infinite due to the lack of space [51,63–66]. A problem that
may arise in the synthesis of dendrimers by the divergent method is the appearance of
incomplete terminal groups, and this problem can be avoided by synthesis through the
convergent method, in which the dendrimer is synthesized starting from the final branches.
When a structure of the desired size, formed from branched monomers, is reached, it
attaches to a core molecule. This method does not carry the risk of defects appearing in
the final structure of the dendrimer, and purification is easy to achieve, but it cannot be
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used for the synthesis of high-generation dendrimers [51,67,68]. After the synthesis of
dendrimers, both in their core and between the branches formed by the monomers, cavities
and channels will form. The interiors of dendrimers, as well as the groups on the surfaces
of these structures, can be loaded with various medicinal substances [14,51,62,69–72]. In
addition, the free branches of dendrimers can be linked to other molecules in the class of
nanomaterials, radioligands, or other functional molecules that reduce cytotoxicity and
increase the biocompatibility of the polymer in the body. In this way, by attaching different
ligand molecules, dendrimers can be targeted to different tissues [50,73]. Due to the numer-
ous advantages of dendrimers, these polymeric molecules are increasingly being used in
medicine, providing utility in the diagnosis and treatment of various conditions, directing
drug substances in the body, or increasing the efficacy of other therapies [74–80].

Some of the strengths of the use of dendrimers have already been noted, and Table 3
summarizes the advantages of these polymer-based nanoparticles and the advantages of
using dendrimers in cancer treatment.

Table 3. Advantages of dendrimers.

Advantages of Dendrimers Advantages of Using Dendrimers in Cancer
Treatment

Ability to synthesize molecules with desired characteristics based on the intended purpose

High endocytosis capacity

High capacity for drug encapsulation

Can be administered orally, intravenously, or in combination

Biocompatible and biodegradable

Ability to improve the solubility of hydrophobic drugs

Delivery and controlled release of drugs

Possibility of conjugation with different
molecules that reduce toxicity

Possibility of attaching specific ligands to
target tumor tissue and reducing cytotoxicity

towards healthy cells

Globular structure→ small hydrodynamic
volume

Monodisperse architecture

Multivalent surface Possibility of covalent conjugation with several
different anticancer molecules

Possibility of monitoring the effectiveness of
the treatment

Treatment administration avoiding the
possibility of developing drug resistance

[14,34,51,55,57,58,70,74,75] [76–81]

Although dendrimers have multiple advantages for use in biomedicine, these struc-
tures also present some disadvantages. One of these is the toxicity that dendrimers have
in biological systems. Due to the terminal NH2 groups and the cationic charge on the
dendrimer surface, they can interact with the negatively charged cell membranes, pro-
ducing cell lysis and implicitly cytotoxicity [82,83]. It seems that PAMAM dendrimers
are among the most toxic, and their toxicity depends on the dendrimer generation, the
lower-generation ones being less toxic. PAMAM dendrimers whose surface is modified
with anionic molecules such as carboxyl groups or with PEG polymers are less or not at all
toxic. It was also proven that the modification of the surface of the dendrimer so that the
amino groups are replaced with aldehyde groups led to lower toxicity. Similar to PAMAM
dendrimers, PPI dendrimers also show toxicity [82,83].
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The toxicity of dendrimers is generally characterized, in addition to cytotoxicity, by
hemolytic toxicity and hematological toxicity. The hemolytic toxicity is caused by the
interaction of the free cationic terminal groups of the dendrimers with the red blood cells
(RBC), an interaction that determines hemolysis [82]. For instance, Bhadra et al. developed
fourth-generation PAMAM dendrimers for the release of an anticancer drug and found that
the hemolytic toxicity of these dendrimers was around 15.3–17.3% [82,84]. Subsequently,
Asthana et al. had similar results when they evaluated the same dendrimers for hemolytic
toxicity and observed up to 18% toxicity [82,85]. Analyzing different generations of PPI
dendrimers, a value of 35.7% hemolysis was observed for the fourth-generation dendrimers
and 49.2% hemolysis for the fifth-generation dendrimers [82].

Hemolysis caused by cationic dendrimers directly influences the hematological
parameters—in this case, it is a hematological toxicity. Analyzing the effect of the den-
drimer PPI on blood parameters such as the number of white blood cells, the number of
red blood cells, the concentration of hemoglobin, the hematocrit, and the mean corpuscular
hemoglobin, a significant decrease in the number of red cells and a significant increase in
the number of white blood cells were observed. Moreover, the concentration of hemoglobin,
the average corpuscular hemoglobin, and the hematocrit decreased dramatically according
to Agashe et al. [82,86].

Dendrimer toxicity in vivo is rarely studied, but Roberts et al. studied the in vivo
toxicity of third-, fifth-, and seventh-generation PAMAM dendrimers in Swiss Webster
mice and observed that only seventh-generation PAMAM dendrimers produced biological
complications. The authors concluded that dendrimers do not present properties that
prevent their use in biological applications. However, in order to avoid any of the possible
adverse effects, it is necessary to modify the surfaces of the dendrimers so that they are
more biocompatible [82,87].

Besides the disadvantage of the toxicity of dendrimers, the possibility of these struc-
tures being immunogenic was also investigated, but it seems that immunogenicity was
not identified—it was very weak. Agashe et al. investigated the immunogenicity of 5.0 G
PPI dendrimers in Balb/C mice using ELISA to monitor the antibody titer and concluded
that the dendrimers did not elicit any detectable humoral immune response under the
experimental conditions. Thus, dendrimers are treated by the host’s immune system as
“native” and this is an advantage for their use in drug delivery [82,86].

Due to their properties of encapsulating and transporting different molecules, but also
the possibility of modifying their surface so as to present a high degree of biocompatibility,
dendrimers can be used in cancer diagnosis.

3. The Use of Dendrimers in Cancer Diagnosis

Cancer encompasses a group of invasive diseases, which is why the early diagnosis
of these diseases is extremely important in order to initiate effective treatment as early
as possible. Cancer diagnosis can be established through many methods, two of which
are magnetic resonance imaging (MRI) and computed tomography (CT) [88–91]. MRI
is a technique used to obtain anatomical images of the internal organs and the vascular
tree [51,92,93]. The use of contrast agents to obtain these images significantly improves their
quality, and the administration of contrast agents can be done using dendrimers [1,56,88,94].
Contrast agents commonly used in MRI are paramagnetic metal cations of gadolinium,
such as Gd(III)-N,N′,N′′,N′′′-tetracarboxymethyl-1,4,7,10-tetraazacyclododecane (Gd(III)-
DOTA) and Gd(III)-diethylenetriamine pentaacetic acid (Gd(III)-DTPA), or other deriva-
tives thereof. However, due to their low molecular weight, these agents can diffuse from
blood vessels and have a short circulation time in the body, and differentiated targeting
towards diseased and normal tissues is inefficient. This disadvantage can be minimized by
attaching gadolinium cations to the surfaces of dendrimers [51,56,63,70,88,95,96].

The efficiency of using dendrimers conjugated with contrast agents has been demon-
strated by Bourne et al., who tested the efficiency of gadolinium-conjugated dendrimers
in imaging the pelvic blood vessels of rabbits. They obtained much clearer images and
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much better contrast between blood vessels and the soft tissues around them when using
gadolinium dendrimers [51,97]. Furthermore, PAMAM dendrimers labelled with Gd have
been used to evaluate the development of lymphatic vessels in tumors [88,98,99].

Other authors have noted that these dendrimer systems could be used as molecular
probes to amplify the signals of contrast agents when they reach a tumor microenvironment.
This is achievable due to the ability to modify the surface properties and compositions of
dendrimers by attaching specific antibodies or ligands targeting tumor receptors [95,100–102].
Dendrimers can also be covered with a transducer film functionalized with receptors for
certain biological analytes. When the analytes bind to specific receptors, the transducer film
will be mechanically stimulated and will produce a signal. In this way, cancer biomarkers can
be detected [103–106]. PEG-covered PAMAM dendrimers have been used for subsequent
conjugation with antibodies, folic acid, or biotin molecules, serving for specific capture
of circulating tumor cells [103,107,108]. Additionally, the surface of the dendrimer can be
covered with DNA/RNA or biotinylated antibodies to detect cancer antigens [103,109,110].

Thus, dendrimers can be used in many ways for the diagnosis of cancer, with the possibility
of combining multiple utilities of these macromolecules for a single investigation, such as
dendrimers used both in targeting the tumor and improving the images obtained by MRI.

In addition to the uses mentioned so far in cancer diagnosis, dendrimers can also be
used for immunodiagnosis. Immunodiagnosis is based on the generation of signals that can
be easily visualized when there is an antigen–antibody interaction between certain target
molecules. The use of antibodies in immunodiagnostics allows the attachment of a single
group that emits a fluorescent signal when the antigen–antibody complex has been formed,
but, using dendrimers, a large number of signal molecules can be attached (for example,
fluorescein) and the fluorescence signals are greatly improved; thus, immunodiagnosis is
influenced by the density of molecules capable of emitting light signals [111].

A study analyzed the fluorescent signals emitted by antibody–fluorescein conjugates
compared to the fluorescent signals emitted by antibody–dendrimer–fluorescein complexes
and it was proven that the intensity and clarity of the fluorescence signals was significantly
stronger when dendrimers were used [112].

The aim of another study was to synthesize a complex immunodiagnostic device based
on dendrimers; PAMAM dendrimers with a ferrocene core were used, i.e., dendrimers
that were coated with cysteamine-modified gold electrorides. The molecules obtained had
the function of providing the analytical redox signal generated by the ferrocene fragments
and immobilizing the prostate-specific antibody (PSA) with the help of the primary amino
group on the surface of the dendrimer. The best results were obtained using first-generation
dendrimers, with these complexes detecting PSA from 10 pg/mL to 100 ng/mL [113].

As mentioned previously, one of the greatest advances in the field of cancer is the use
of molecules that can precisely target the tumor microenvironment, and dendrimers, in
addition to their use in diagnosis, can also be used in the targeting and treatment of tumors.

4. Targeting and Treatment

One advantage of dendrimers is their ability to be synthesized with specific character-
istics depending on the intended application. This is especially important for obtaining
dendrimers that can be distributed to the sites of tumors and can transport anticancer drugs
for treatment. Dendrimers can target anticancer drugs through encapsulation, covalent
bonding, or electrostatic interactions, and drugs can be stored either inside the dendrimers
or on their surface functional groups [114–116].

In the case of cancer, the targeted delivery of dendrimers is crucial to reduce side
effects on healthy tissues such as internal organs and bone marrow, which can occur when
chemotherapy drugs are administered freely [56,88]. Dendrimers can be conjugated with
both drugs and targeting molecules, such as monoclonal antibodies, folic acid, or various
peptides, to achieve more specific targeting [56,103,117–119]. Additionally, poli (ether
hydroxylamine) dendrimers have been used to improve the water solubility of poorly
soluble anticancer drugs [76,103,120].
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Dendrimers can be distributed to specific targets via passive or active pathways [14,56,
88,121–123]. The passive pathway is based on the accumulation of PEGylated dendrimers
in tumor tissues due to the permeability and retention effects of tumors [124]. Tumors have
irregular vascularization formed through tumor angiogenesis, and lymphatic drainage is
inefficient, which leads to the retention of dendrimer macromolecules in the tumor microen-
vironment [14,27,56,88,125–127]. Active targeting is achieved by conjugating dendrimers
loaded with drugs with different specific targeting molecules, which mediate interactions
with specific cell receptors [14,56,88,123,126].

Dendrimers are used to transport a variety of pharmaceutical substances through
encapsulation [128]. PAMAM dendrimers in which cisplatin, an anticancer drug, was
encapsulated showed slower release of the drug compared to its free administration.
Additionally, it was observed that they accumulated in solid tumors and produced lower
toxicity [70,129,130]. The slower release of encapsulated substances was also observed in
the case of PAMAM dendrimers with silver [70,131,132].

A study that examined the encapsulation behaviour of adriamycin and methotrexate in
third- and fourth-generation dendrimers conjugated with monomethyl ether poly(ethylene
glycol) chains showed that the most efficient encapsulation (6.5 molecules of adriamycin
and 26 molecules of methotrexate per dendrimer) occurred in G4-PAMAM dendrimers
with PEG2000 chains. It was also observed that the drug was released slowly when the
medium had low ionic strength but rapidly in an isotonic medium [70,133].

The conjugation of nanoparticles with polyethylene glycol (PEG) is important to
prolong their circulation time and prevent their destruction by the host’s immune sys-
tem [134–137]. When the anticancer drug 5-fluorouracil was encapsulated in PEGylated
dendrimers, namely G4-PAMAM conjugated to carboxymethyl PEG5000, it was released
more slowly and had lower hemolytic toxicity compared to encapsulation in dendrimers
without PEG on their surfaces [84].

The conjugation of dendrimers with folic acid is a good targeting method for tumors,
as numerous tumor cells overexpress folic acid receptors [138]. The rapid divisions that
occur in cancer cells require increased amounts of folic acid, which is a source of carbon
necessary for DNA synthesis. Therefore, as many types of cancer overexpress folic acid
receptors, the folic acid molecules on the surfaces of dendrimers can bind to these receptors
and be internalized into the cell [56,139,140]. G5-PAMAM dendrimers conjugated with folic
acid, whose free amine groups were covered with glycidol, which subsequently reacted
with methotrexate, resulted in the much slower release of the drug compared to the release
produced by the free administration of the drug. These dendrimers showed high specificity
for human epithelial carcinoma cells [88,141,142].

Dendrimers that encapsulate certain peptides can be used as cancer treatment vaccines.
The administration of dendrimers conjugated with Epitope Pan DR-binding (PADRE)
peptides and ovalbumin (OVA) plasmids as a vaccine inhibited tumor growth. Double
vaccination with this complex in C57BL mice resulted in the inhibition of tumor growth in
100% of cases, while animals that received plasmids encoding OVA by electroporation only
showed a slowdown in tumor growth in 60% of cases [103,143,144].

The use of monoclonal antibodies in dendrimer synthesis has the role of specifically
targeting tumor cells that express certain antigens [145,146]. For example, G5-PAMAM
dendrimers on the surfaces of which a specific antibody to PSMA antigens—which are
overexpressed in prostate cancer—was inserted specifically bound to PSMA-positive cells,
and the conjugate was internalized into these cells [88,147].

Another category of molecules that can be conjugated with dendrimers to target
tumor cells is aptamers. Aptamers are single-stranded oligonucleotides known for their
increased ability to bind to target cells. They are known for being resistant to a wide
range of temperatures and to different pH values, and they are extremely stable and non-
immunogenic and have a low production cost, which is why they are preferred instead of
antibodies. Although they are not considered by the body as a foreign structure, aptamers
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cannot undergo endonuclease degradation, which is why the conjugation of aptamers with
dendrimers is an effective therapeutic method [148,149].

We previously predicted that dendrimers are structures that cause toxicity, and coat-
ing them with aptamers reduces dendrimer toxicity. Practically speaking, the aptamer–
dendrimer complex is an advantage for each of these two separate structures [148].

Taghdisi et al. analyzed the therapeutic action of dendrimers based on aptamers with
a double targeting strategy. The dendrimers were conjugated with MUC1 and AS1411
aptamers, but also encapsulated epirubicin, an anticancer drug. The MUC1 aptamer selec-
tively binds to transmembrane glycosylated mucin-1 (glycoprotein), which is overexpressed
in many tumors, while the single-chain AS1411 aptamer specifically binds to the nuclear
membrane protein nucleolin, which is overexpressed on the plasma membranes of tumor
cells. The obtained dendrimer–aptamer conjugate delivered epirubicin to MCF-7 breast
cancer cells and C26 colon carcinoma cells. Using flow cytometry, it was shown that the
dendrimer–aptamer complex was specifically internalized into tumor cells (MCF-7 and
C26) by receptor-mediated endocytosis using the MUC1 aptamer and by using the non-
standard mechanism of the AS1411 aptamer, leading to the accumulation of the complex in
the nucleus. No internalization was observed in Chinese Hamster Ovary (CHO) cells, for
which the aptamers had no specificity. In addition, the internalization of the complex was
better using both aptamers than in the case of using each aptamer separately. Furthermore,
the antitumor action was better when the dendrimer–aptamer complex was administered
than when epirubicin was administered alone [150,151].

As previously mentioned, in the case of oncological pathologies, targeted adminis-
tration of anticancer molecules is extremely important [13,152]. In addition to precisely
targeting anticancer substances, their slow release, and their long-term retention in tumors,
dendrimers can be involved in cancer treatment through other mechanisms, such as the use
of polyphenol dendrimers with antioxidant action. These can be targeted towards tumors
to reduce oxidative stress, which is involved in the apoptotic pathway [103,153,154].

Another way in which dendrimers can be used in cancer treatment is based on neutron
capture [155]. Some dendrimers (G6-G8 PAMAM, G5 PPI) have been conjugated with DTPA
or DOTA chelating agents, as well as with neutron capture elements based on gadolinium,
and it has been observed that the administration of these complexes to laboratory animals
carrying tumors resulted in efficient anticancer activity [103,156,157]. Neutron capture
agents interact with thermal neutrons and cause nucleus destruction and DNA strand
breaks [158]. These agents have small sizes and can easily diffuse from tissues, but their
use through conjugation with dendrimers results in the accumulation of larger amounts of
Gd in tumors, which leads to increased anticancer effects [103,159,160].

The use of dendrimers in the treatment of cancer can also consider the direction to
tumors of some molecules that absorb light radiation and whose action is toxic for tumor
cells. Such use of dendrimers applies in the case of photothermal or photodynamic therapy.

5. Photothermal Therapy

It is known that a high body temperature is dangerous because it causes protein
denaturation and cellular damage [161]. This phenomenon also applies to cancer cells, as
many studies have shown that photothermal therapy based on hyperthermia can be used
in anticancer therapies [77,162–164]. The tumor microenvironment is characterized by low
oxygen pressure and a low pH due to inefficient circulation at this level. Maintaining high
temperatures between 41 and 48 ◦C in these areas is cytotoxic to cells and will cause cell
death [163,165,166]. Due to inefficient circulation, anticancer agents reach the tumor in small
amounts, and, in this case, hyperthermia can be used concomitantly with chemotherapy or
radiation therapy to achieve better treatment results [77,162,163,167,168].

Photothermal therapy involves the destruction of cancer cells by increasing the tem-
perature of the tumor tissue following exposure to infrared light. In these cancer treatment
methods, nano systems play an important role as they can be used to absorb infrared rays,
thus increasing the efficiency of heat production in tumors [14,169–172].
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Nano systems can be released into the tumor environment either by direct injection or
by targeted delivery, and the molecules that reach the tumor environment will be used as
photo-absorbents that will produce thermal energy when illuminated with near-infrared
light [33,77,173,174].

Photothermal therapies are based on the use of a laser, whose power, exposure time,
and wavelength may vary depending on the properties of the tumor tissue on which it will
act [33,175,176]. In the case of this anticancer therapy, dendrimers can be used as devices
to absorb light radiation [103,177]. Li et al. used PEG-PAMAM dendrimers, which they
hybridized for the absorption of infrared rays with a gold nanorod (GNR). Single irradiation
as well as administration of the dendrimers mentioned above without irradiation did not
cause damage to HeLA cells derived from human cervical cancer. However, when these
dendrimers with a GNR core were subjected to irradiation, the generated heat caused an
increase in temperature in the irradiated tumor tissue with an NIR laser and a decrease
in tumor volume [178]. Due to the frequent use of dendrimers to transport medicinal
substances, they can be used for combined therapy to deliver both chemotherapeutic and
photothermal therapy molecules to tumor cells [178].

Another complex study, conducted by Grześkowiak et al., showed the effects of G3-
PAMAM dendrimers conjugated with polydopamine (PDA) molecules. Polydopamine has
high efficiency in the process of transforming near-infrared light into thermal energy [179].
The study results showed that coating PDA spheres with PAMAM dendrimers reduced the
viability of cancer cells compared to the administration of pure PDA spheres. The WST-1
test and the staining of live/dead cells showed that cancer cells still had a high survival
rate following the administration of G3-PAMAM-PDA, but their viability was significantly
reduced after laser irradiation. After 48 h, complete cell death was observed in irradiated
cancer cells containing dendrimers in a concentration of at least 10 µg/mL [180]. The main
mechanism used in photothermal therapy is presented in Figure 2.
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6. Photodynamic Therapy

Photodynamic therapy (PDT) is a therapeutic strategy based on the production of
reactive oxygen species, which subsequently cause cell death [181]. For this mechanism, a
photosensitizer, oxygen molecules, and light are necessary. Essentially, a photosensitizer
must reach the level of the tumor tissue, and then the area is stimulated with an appropriate
wavelength, and the photosensitizer will form singlet oxygen species. Intracellularly,
reactive oxygen species will accumulate, and increased oxidative stress will determine
cell death through apoptosis or necrosis [33,56,181–186]. The principle of photodynamic
therapy is presented in Figure 3.
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PDT can be used to destroy tumor cells, for tumor neovascularization, or to increase
the inflammatory response and attract immune cells to the tumor environment [56,187–189].
Since it is difficult to obtain deep light penetration, this therapy is greatly improved by
using targeted delivery systems. Due to retention processes, the molecular weight, and
hydrophilicity, dendrimers used to deliver photosensitizers have yielded promising results
for photodynamic therapy [56,190,191].

One photosensitizer agent is phthalocyanine. PAMAM dendrimers that have encap-
sulated phthalocyanine in the central core have produced cell death to a high percentage
following irradiation with halogen light for 10 min. The administration of PAMAM den-
drimers with phthalocyanine without irradiation did not affect the viability of cancer
cells [103,192].

Photodynamic therapy is non-invasive, does not produce lesions or scars at the site of
application, and can be used multiple times, but it is not effective for deeply developed
cancers that have metastasized in multiple areas of the body [33,103,181,193].

Kojima et al. compared PEG-PAMAM dendrimers to PEG-PPI dendrimers, both
loaded with protoporphyrin IX (PpIX). Their results showed that PEG-PPI dendrimers
produced greater toxicity after irradiation compared to PEG-PAMAM dendrimers. The
PEG-PPI-PpIX complex was more stable and generated the release of singlet oxygen, and
PpIX molecules reached the mitochondria, generating increased phototoxicity [194].
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Another means of using dendrimers in anticancer therapies is represented by their
conjugation with molecules of genetic material, an upcoming aspect that will be presented.

7. Gene Transfection

Dendrimers can be used as delivery vectors for genetic material (Figure 4). They
can transfer DNA or RNA molecules for cancer treatment [195,196]. PAMAM dendrimers
with amino end groups can interact with the phosphate groups in nucleic acid molecules,
forming complexes that will be directed to tumors and allow the transfer of genetic material
through endocytosis into cancer cells and then into their nuclei [51,56,101,197–199].
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A transfection system based on dendrimers is commercially available under the name
SuperFectTM. These dendrimers are stable and can transport a larger amount of genetic
material than viral vectors, and the release into the nucleus has been shown to be more
efficient than when liposomes are used [51,200,201].

It seems that for gene transfection, dendrimers with an excess of amino groups com-
pared to the phosphate groups of the genetic material are more efficient [56,202].

A therapeutic strategy to stop the progression of malignant tumors can target angiogen-
esis [203–207]. For this therapeutic strategy, dendrimers associated with anionic oligomers
were used to release angiotensin and genes that determine the production of tissue inhibitor
of metalloproteinase—TIMP-2. Gene transfer to breast cancer tissue significantly reduced
the proliferation of endothelial cells [204,208,209].

PAMAM G1-G4 Tomalia-type dendrimers with a di-n-dodecylamine molecule as the
core were synthesized. They formed complexes with DNA, and dendrimers from G2-G4
were able to cross cell membranes and deliver DNA efficiently [56,210,211].

In addition to PAMAM dendrimers, PPI dendrimers have also been used in gene trans-
fection. G1-G5-PPI dendrimers conjugated with PEG molecules and containing cationic
ammonium interior groups were used to transfect ss-DNAzyme oligomers into ovarian car-
cinoma cells. The use of this complex resulted in efficient and stable gene delivery [103,212].

As noted earlier, dendrimers are suitable for combining different therapeutic strategies.
When dendrimers are synthesized to contain different genetic material fragments, their
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interiors can also include pharmaceutical substances such as doxorubicin. In this way,
dendrimers will target tumors and allow for both chemotherapy administration and the
delivery of genetic material to suppress tumor function [1,103,207,213].

The mechanism of gene therapy using dendrimers is presented in Figure 5.
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8. Conclusions

Dendrimers are nanoscale drug delivery systems for anticancer drugs that can target
the tumor site. These biocompatible nano systems have properties that can be used for
diagnostic purposes, transdermal drug delivery, and medication conveyance in cancer.

The majority of current anticancer drugs do not differentiate cancerous cells from nor-
mal cells, and they lead to systemic toxicity and side effects. Dendrimers can be successfully
used for gene therapy or for delivering the antineoplastic agent in cancerous cells, by active
targeting, without causing any toxicity. Dendrimers can be directed specifically toward
cancer cells (e.g., by antibodies specific for tumor-associated antigens) and the ingestion
into the cell can be receptor-mediated. Therefore, they will ensure selective intratumoral
accumulation and reduced systemic toxicity.

Including dyes or other materials (genetic materials, targeting agents) within the
dendrimer structure (by encapsulation, complexation, or conjugation) can make dendrimers
useful as diagnostic tools or for tumor localization and therapy monitoring.
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Dendrimers have the potential to be used as theragnostic particles, with both diagnos-
tic and therapeutic functions at the same time (drug delivery and therapy monitoring for
optimum drug dosage and tumor growth).

9. Future Perspectives

Dendrimers’ approach of DNA-based nanomaterial delivery in cancer therapy could
significantly improve cancer diagnosis and therapy.

Dendrimers can represent part of a multimodal nanoparticle that could ensure the precise
delivery of antitumor drugs and could double the efficiency of diagnosis and therapy.

Manipulating the architecture of the dendrimers, their properties (efficiency of delivery
and biocompatibility) can be increased to a more efficient level, ensuring the enhancement
of the bioavailability for problematic drugs.

Continuous research in nano-oncology can lead dendrimers to become the newest
class of curative anticancer therapeutic agents.
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