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Abstract: The delivery of therapeutic nucleic acids is a prospective method for the treatment of
both inherited and acquired diseases including cancer. To achieve maximal delivery efficiency and
selectivity, nucleic acids should be targeted to the cells of interest. In the case of cancer, such targeting
may be provided through folate receptors overexpressed in many tumor cells. For this purpose, folic
acid and its lipoconjugates are used. Compared to other targeting ligands, folic acid provides low
immunogenicity, rapid tumor penetration, high affinity to a wide range of tumors, chemical stability,
and easy production. Different delivery systems can utilize targeting by folate ligand including
liposomal forms of anticancer drugs, viruses, and lipid and polymer nanoparticles. This review
focuses on the liposomal gene delivery systems that provide targeted nucleic acid transport into
tumor cells due to folate lipoconjugates. Moreover, important development step, such as rational
design of lipoconjugates, folic acid content, size, and ζ-potential of lipoplexes are discussed.
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1. Introduction

Gene malfunction causes either overexpression or downregulated expression of pro-
teins resulting in many inherited and acquired diseases including cancer. Nucleic acids
(NA) of different types are used as therapeutic agents. The delivery of plasmid DNA
(pDNA) or messenger RNA (mRNA) leads to the expression of the missing protein in target
cells. Overexpressed proteins can be silenced by means of double-stranded small interfer-
ing RNA (siRNA). The antisense strand of siRNA is a pharmacologically active component,
while the sense strand facilitates transport of siRNA to the intracellular RNA-endonuclease
Ago2 [1].

Upon intravenous administration, NA trafficking encounters such barriers as (1) inter-
action with blood components and destruction by endonucleases; (2) rapid renal clearance
(especially for short NA molecules); (3) lack of selective accumulation in target cells; (4) in-
efficient cellular penetration due to electrostatic repulsion between phosphate NA groups
and negatively charged cell membrane; (5) inefficient endosomal escape to the cytoplasm;
(6) nuclear penetration in case of pDNA delivery. Overcoming the aforementioned barriers
requires a delivery system capable of targeted NA transport into tumor cells [2].

Unlike normal tissues, rapidly growing or undifferentiated tumors overexpressed
folate receptors (FR) [3]. For example, upregulated FR expression found in squamous-cell
carcinomas (KB cells contain 4 million FR per cell) [4,5], lung and pancreatic adenocarcino-
mas [6], ovarian (IGROV-1, SKOV-3) [5,7], cervical (HeLa) [5,8], colorectal [9], ependymal
brain [10], kidney (including HEK293) cancer [11]. FR are overexpressed on cell membranes
of non-small lung cancer, stromal tumor-associated macrophages [12], and malignant
melanoma [13,14]. Tumor tissue from seventy-one percent of patients with triple negative
breast cancer showed FR overexpression [15]. FR overexpression is also observed for
choriocarcinoma [5], meningioma [16], osteosarcoma [17], and non-Hodgkin lymphoma [8].
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Four FR isoforms are known: FRα, FRβ, FRγ, FRδ. The alpha isoform is the most abundant
and the most studied FR, which not only mediates folate internalization, but also partici-
pates in cancer signaling regulation [18]. Moreover, FRα has a minimal physiological role
in normal tissues making it a potent anti-tumor target [19].

Targeted NA delivery can be achieved with delivery systems containing folic acid
(FA, Figure 1) or its derivatives due to its high affinity for overexpressed FR (primarily the
alpha isoform) on the surface of tumor cells. FA is a water-soluble vitamin B9 required
in nucleotide synthesis during proliferation of any cell. FA also participates in DNA
methylation as well as synthesis of S-adenosylmethionin, histones, G-proteins, and many
metabolic building blocks [20]. FA internalized by cells through the reduced folate carrier
(RFC), the proton-coupled folate transporter (PCFT) or FR. Only the last one is capable of
binding FA conjugates and transport them by receptor-mediated endocytosis [18,21].
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FA consists of three distinct structural units: 2-amino-6-methylpteridin-4-one (I),
p-aminobenzoic (II) and L-glutamic (III) acids (Figure 1).

The advantages of FA-mediated cancer cell targeting compared with other targeting
ligands such antibodies or (poly)peptides include: (1) low immunogenicity allowing re-
peated administration; (2) rapid tumor penetration due to low molecular weight of FA
conjugates; (3) high affinity to a wide range of tumors; (4) high stability allowing use
of organic solvents, heating and prolonged storage time; (5) simple chemical structure
providing cheap production and ease of quality control [22–24].

Different delivery systems can utilize targeting by FA ligand. For example, targeted
small molecule-drug conjugates [19,21] as well as liposomal formulations of drugs (doxoru-
bicin, daunorubicin, vintafolide, etc.) containing FA lipoconjugates [24–27] demonstrated
enhanced antitumor activity, while FA conjugated polymers have also been used for cancer
targeting [22,28–30]. Such drug delivery systems are generally of low-cost and are less toxic
antitumor therapies than traditional chemotherapeutic drugs. Another delivery approach
entails the conjugation of folic acid to engineered viruses, which results in significant and
selective binding to target cells. But transduction efficiency of folate-containing viruses
is low, probably due to incompatible viral tropism to target cells [31]. Oncolytic viruses
are capable of proliferating in tumor cells and of their destruction [32]. Nevertheless,
disadvantages associated with this approach include: immunogenicity, mutagenicity and
toxicity [33]. FA-conjugated inorganic nanoparticles (silica, metal, graphene, etc.) have also
been used to deliver nucleic acid cargos [28,34,35].This review focuses on the delivery of
FA conjugated NA as well as folate-containing gene delivery systems that provide targeted
NA transport into tumor cells.

2. Conjugation of Folic Acid to Nucleic Acids

FA covalently binding to NA presents a self-aggregating system targeted for tumor
cells. Click reactions are often used for conjugation, for example alkyne-azide reactions via
[3+2]-cycloaddition. Early works demonstrated FA attached via triethylene glycol spacer
to the 3′-end of the sense strand of siRNA (Figure 2A) provided 40–60% gene silencing in
hard-to-transfect RBL-2H3 cells [36]. FA binding to the 5′-end of the sense strand of siRNA
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via a peptide spacer (Figure 2B) resulted in targeted delivery of FA-siRNA conjugates to KB
tumor xenografts in mice in vivo, but gene silencing activity was low [37]. Poor transfection
activity of FA-siRNA conjugates was overcome using a polymer delivery system which
provided more than 50% gene knockdown in vitro [38]. The conjugation of FA to the center
of the sense strand of anti-luciferase siRNA (Figure 2C) increased silencing of the exogenous
gene in HeLa cells up to 80%. Moreover, treatment of HeLa cells expressing Bcl-2 protein
with FA-siRNA conjugates provided 72% knockdown of the endogenous anti-apoptotic
gene Bcl-2 [39].

Pharmaceutics 2023, 15, x 3 of 18 
 

 

spacer to the 3′-end of the sense strand of siRNA (Figure 2А) provided 40–60% gene 
silencing in hard-to-transfect RBL-2H3 cells [36]. FA binding to the 5′-end of the sense 
strand of siRNA via a peptide spacer (Figure 2В) resulted in targeted delivery of FA-
siRNA conjugates to KB tumor xenografts in mice in vivo, but gene silencing activity was 
low [37]. Poor transfection activity of FA-siRNA conjugates was overcome using a 
polymer delivery system which provided more than 50% gene knockdown in vitro [38]. 
The conjugation of FA to the center of the sense strand of anti-luciferase siRNA (Figure 
2С) increased silencing of the exogenous gene in HeLa cells up to 80%. Moreover, 
treatment of HeLa cells expressing Bcl-2 protein with FA-siRNA conjugates provided 72% 
knockdown of the endogenous anti-apoptotic gene Bcl-2 [39]. 

 
Figure 2. Conjugation of FA to the 3′-end of siRNA (А), to the 5′-end of siRNA (В) and to the center 
of siRNA (С). 

Despite promising in vitro results, in vivo efficiency of FA-siRNA conjugates has not 
been demonstrated due to lack of endosomal escape functionality [37]. Secondly, any 
chemical modification may decrease the biological activity of the therapeutic NA. Thirdly, 
upon in vivo administration, NA is inactivated by serum nucleases. Hence, an efficient 
delivery system is required to target NA transport into tumor cells and to exhibit 
therapeutic activity in vivo. 

3. Noncovalent Interaction between Folic Acid and Nonviral Delivery Systems 
To increase transfection efficiency FA may be incorporated into NA delivery systems 

through noncovalent interactions in a few ways: (1) by adding free FA into culture media 
[40]; (2) by mixing of FA and NA with subsequent addition of nonviral delivery system 
[40]; (3) by adding free FA to preformed complexes of NA and nonviral delivery systems 
[41–44] (Table 1). Noncovalent incorporation of FA into nonviral delivery systems was 
studied in cell lines with upregulated FR expression (KB, human epithelial carcinoma; 
HeLa; NCI-H460, human large-cell lung carcinoma) as well as in cells with normal FR 
expression (F98, human glioma cell line; CHO, chinese hamster ovary; A549, lung 
carcinoma epithelial cells). 

Table 1. Nonviral NA delivery systems with noncovalent binding FA. 

Delivered NA Delivery System FA Incorporation Optimized FA Amount Cell Line Ref. 

pCMV-luc pDNA PEI 1 

adding to culture media 1 mM 
KB, F98, 

CHO 
[40] mixing of FA and NA with 

subsequent complexation 0.5 mM 

adding to preformed complexes Charge ratio 
FA/PEI/pDNA 60:8:1 B16-F10 [41] 

survivin siRNA PEI-SS1 adding to preformed complexes Charge ratio FA/PEI-
SS/siRNA 20:8:1 

HeLa, A549 [42] 

Figure 2. Conjugation of FA to the 3′-end of siRNA (A), to the 5′-end of siRNA (B) and to the center
of siRNA (C).

Despite promising in vitro results, in vivo efficiency of FA-siRNA conjugates has not
been demonstrated due to lack of endosomal escape functionality [37]. Secondly, any
chemical modification may decrease the biological activity of the therapeutic NA. Thirdly,
upon in vivo administration, NA is inactivated by serum nucleases. Hence, an efficient
delivery system is required to target NA transport into tumor cells and to exhibit therapeutic
activity in vivo.

3. Noncovalent Interaction between Folic Acid and Nonviral Delivery Systems

To increase transfection efficiency FA may be incorporated into NA delivery sys-
tems through noncovalent interactions in a few ways: (1) by adding free FA into culture
media [40]; (2) by mixing of FA and NA with subsequent addition of nonviral delivery
system [40]; (3) by adding free FA to preformed complexes of NA and nonviral delivery
systems [41–44] (Table 1). Noncovalent incorporation of FA into nonviral delivery systems
was studied in cell lines with upregulated FR expression (KB, human epithelial carcinoma;
HeLa; NCI-H460, human large-cell lung carcinoma) as well as in cells with normal FR ex-
pression (F98, human glioma cell line; CHO, chinese hamster ovary; A549, lung carcinoma
epithelial cells).

The introduction of free FA (1 mM) into culture media resulted in a 124-fold increase in
the efficiency of transfection mediated by PEI-pDNA complexes (Figure 3) in KB cells [40]
(Table 1). The same results were obtained on cells with normal FR expression (F98 and
CHO cells) due to FA inhibition of serum, rather than receptor-mediated endocytosis, in
the case of PEI delivery system.

In the case of preliminary mixing of FA and pDNA with subsequent addition of PEI
optimal FA concentration was lower (0.5 mM) [40] (Table 1). Unlike other anionic molecules
such as cholic acid, glutamic acid, citric acid, and EDTA, only FA increased transfection
efficiency of PEI-pDNA complexes.
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Table 1. Nonviral NA delivery systems with noncovalent binding FA.

Delivered NA Delivery System FA Incorporation Optimized FA
Amount Cell Line Ref.

pCMV-luc pDNA PEI 1

adding to culture media 1 mM
KB, F98, CHO [40]mixing of FA and NA with

subsequent complexation 0.5 mM

adding to preformed complexes
Charge ratio

FA/PEI/pDNA
60:8:1

B16-F10 [41]

survivin siRNA PEI-SS 1 adding to preformed complexes
Charge ratio

FA/PEI-SS/siRNA
20:8:1

HeLa, A549 [42]

pGFP-N2 and
pGL3 pDNA

DDCTMA
1–CholOH 1 (3:1) adding to preformed complexes 100 µg/mL NCI-H460 [43]

pEGFP-C2 pDNA 2X3 1–DOPE 1 (1:2) adding to preformed complexes 1 mM KB-3-1 [44]
1 compound structures presented in Figure 3.

A similar system was prepared by adding of free FA to preformed complexes [41]
(Table 1). Complexes with low amount of FA (charge ratio 15:8:1 and 30:8:1) showed signifi-
cantly lower transfection efficiency than others probably due to rapid particle aggregation
(ζ-potential was near 0 mV). Higher amounts of FA lead to more stable particles with charge
ratio 60:8:1 having the most optimal size (~260 nm), cytotoxicity and transfection efficiency
together. Complexes with charge ratio 60:8:1 were used for in vivo delivery of pCMV-luc
into ddY mice and showed significantly higher gene expression in the liver, kidney, spleen,
and lung compared to PEI/pDNA complexes without FA. Preincubation of mices with free
FA led to a decreased transfection efficiency indicating receptor-mediated uptake.

Stimuli-responsive complexes of PEI-SS (Figure 3) and noncovalently bound FA de-
livered siRNA effectively, but no differences between HeLa cells with upregulated FR
expression and A549 with normal FR expression were observed [42].

In the case of pDNA delivery, lipoplexes based on liposomes DDCTMA–CholOH [43]
or 2X3–DOPE [44] (Table 1, Figure 3) with noncovalently bound FA rather than without
FA were more effective. The experiments were performed on cell lines with upregulated
FR expression (NCI-H460, KB-3-1). Preincubation of these cells with free FA decreased
transfection efficiency at a low N/P ratio (2:1, number of cationic amino groups of lipids
per phosphate groups of NA) but did not affect the NA delivery at the N/P ratio of 4:1.
Therefore, excessive positive charge at high N/P ratios allows lipoplexes to be delivered by
nonspecific endocytosis, while FRs are blocked by free FA [44].

Enhanced transfection efficiency was also observed with noncovalent FA–cyclodextrin
T2 (Figure 3) complexes compared with their non-targeted counterparts. Notably, the
same results were achieved in vivo: noncovalent FA–cyclodextrin T2 complexes provided
enhanced gene expression in the liver and lungs of mice [45].

It should be noted that nonviral delivery systems with noncovalent binding FA are
simpler and cheaper compositions for NA delivery compared with targeted systems con-
taining FA lipoconjugates. However, the most commonly described FR-targeted delivery
systems are liposomes decorated with covalent lipoconjugates of FA.
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4. Folate Lipoconjugates as Components for Liposomal Delivery System

Cationic liposomes as nonviral delivery systems protect NA from interaction with
biological media components, preventing NA degradation and increasing its accumulation
in target organs and cells [46,47]. To achieve targeted NA delivery, liposomes should bind
with receptors on the surface of target cells.

FA lipoconjugates may be incorporated in two ways: (1) adding of FA lipoconjugate
to preformed NA-liposome complexes (lipoplexes) [48]; (2) inclusion of FA lipoconjugate
in the liposomal formulation with subsequent lipoplex formation [11,44,49].

4.1. FA Lipoconjugate Structure

FA lipoconjugates used in liposomal delivery systems usually feature FA residues co-
valently bound to a hydrophobic domain through different spacers and linkers (Figure 4). It
should be noted that FR correctly recognizes the FA residue only if the latter is connected to
the spacer by γ-carboxyl group [50]. 1,2-Distearoyl-sn-glycero-3-phosphatidylethanolamine
(DSPE) is the most popular compound used as a hydrophobic domain anchoring FA
lipoconjugate in the liposomal bilayer [48,51–53]. Besides DSPE, cholesterol (CholOH) [54,55],
ditetradecylglycerol (Dg) [11,44,49], and diethers [23] may be used as hydrophobic domains.
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A spacer (Figure 4) ensures the availability of the FA moiety for FR recognition and
binding. The most common spacer is a polyethylene glycol (PEG) chain which could
protect the lipoplexes from nonspecific interactions with the components of blood serum,
mask their positive charge, and prevent self-aggregation [56–58] and thus facilitate better
transfection efficiency [59]. However, PEG chains could prevent endosomal escape of the
therapeutic load [60], thereby drastically decrease in vitro transfection [61], and sometimes
cause accelerated blood clearance [62–65]. A molecular weight of PEG chains may var-
ied from 570 to 5000 Da [23,51,66–68]. Nonetheless, PEG spacer with a high molecular
weight of 5000 Da inhibited cellular uptake of siRNA lipoplexes compared to a short ana-
log (2000 Da) [67]. In this case, lower amounts of the FA lipoconjugate are required [69].
Besides PEG, other hydrophobic (hexamethyl or longer alkyl chains) or hydrophilic (bu-
toxybutoxybutyl) spacers may be used [44,49], providing effective NA delivery in vitro.

A linker (Figure 4) provides binding between all structure elements of FA lipoconju-
gates and affects the physicochemical properties of liposomes into which they have been
formulated. For example, FA may be connected with the spacer by a cysteine residue [51,70]
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or a diaminopropionyl-aspartyl-cysteine with maleimide group [68], providing better sol-
ubility of the FA lipoconjugate and better mobility of the FA residue. A biodegradable
peptide linker between FA and a spacer as well as a carbamoyl linker between a spacer and
a hydrophobic domain are the most common ones [11,44,49,53]. For a more convenient
synthesis, a linker based on maleimide may be used for the binding of FA and a spacer [48].

4.2. Optimal Content of FA Lipoconjugates with Different PEG Spacers in Cationic Liposomes

Despite the contradictory properties of PEG, it is the most common spacer used in FA
lipoconjugates. The PEG spacer between FA and the lipid part of the conjugate is assumed
to prevent coating of FA by serum proteins and therefore to allow proper binding with
FR [71].

The transfection efficiency depends on the content of FA lipoconjugate within the lipo-
somal formulation. Early work demonstrated that the optimal content of FA lipoconjugate
with PEG3400-spacer ranged from 0.03% to 0.1% mol. during experiments on FR-positive
M109 cells (Table 2), and was 0.01% in the case of in vivo experiments on L1210A intraperi-
toneal tumor model [68]. Also, FA lipoconjugate content higher than 1% might cause
multimerization preventing FA-FR binding [72]. FA lipoconjugate based on cholesterol
(Chol-suc-PEG2000-FA) provided the best transfection efficiency at 0.1% mol. from the range
0.01–1.0% in vitro [55].

The optimal content of FA lipoconjugate within liposomal formulation may be deter-
mined by the structure of cationic lipid as well as the length of PEG spacer. For example,
optimal content of DSPE-PEG2000-FA lipoconjugate was 1% mol. in the case of liposomes
OH-Chol–DOPE (3:1 mol.) containing a lipid with an amide linker (Table 2). After the
replacement of the amide linker with a carbamoyl one (lipids OH-C-Chol and HAPC-Chol)
optimal content of DSPE-PEG2000-FA changed to 2% mol., whereas suppression of luciferase
activity significantly increased. It should be noted that all three cationic liposomes with 3%
mol. content of DSPE-PEG2000-FA demonstrated the worst transfection of KB-Luc cells [67].
But no correlation between in vitro and in vivo experiments was found. Moreover, using
of 2 mol% DSPE-PEG5000-FA lipoconjugate with liposomes HAPC-Chol–DOPE (3:1 mol.)
resulted in decreased siRNA delivery efficiency, indicating that a longer PEG chain (5000 Da
instead of 2000 Da) could inhibit FR-mediated uptake by cells. A possible explanation
is the greater probability of PEG5000 chains to interact between each other which lead to
“masking” of the ligand [72]. On the other hand, cationic liposomes containing 0.5 mol%
DSPE-PEG5000-FA provided more effective siRNA delivery both in vitro and in vivo com-
pared with liposomes containing FA lipoconjugate with shorter PEG spacers [69]. Moreover,
liposomes containing 0.5 mol% Chol-suc-PEG4000-FA demonstrated a three-fold higher
cellular uptake by HepG2 cells compared with liposomes containing Chol-suc-PEG2000-FA
with shorter PEG spacer [73].

In the literature, cationic liposomes containing 0.01% mol. [66], 1% mol. [74],
1.5% mol. [75] of DSPE-PEG2000-FA are described, but no comparison has been carried
out between different contents of the FA lipoconjugate.

FITC-ODN delivery by targeted cationic liposomes 2X3–DOPE (2:1 mol.) showed
the optimal content of Dg-PEG800-FA lipoconjugate of 2% mol. (Table 2) [49]. At low
N/P ratio, FA-targeted liposomes were more effective than both conventional liposomes
and Lipofectamine 2000 in terms of their capacity to deliver FITC-ODN and pDNA into
KB-3-1 and HEK 293 cells [44,49]. The decrease in transfection efficiency of FA-containing
liposome in the presence of free FA suggests a receptor-mediated delivery of pDNA by
this formulation [11]. Also, the same liposomal composition effectively delivered antisense
oligonucleotides, siRNA, including in in vivo experiments [11,76–78].
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Table 2. Examples of folate-containing cationic liposomes used.

Liposomal Composition FA Lipoconjugate Optimal Content of FA
Lipoconjugate NA Target Results Ref.

DOPC 1–CholOH (65:35 mol.)

DSPE-PEG3400-Cys-FA

0.03% from the range
0.01–2.0%

pDNA contained the
luciferase reporter gene

under the CMV promoter.

FR-positive M109 cells 54 fluorescence units/mg
cell lysate

[68]
RPR209120 1–DOPE (1:1 mol.)

0.1% from the range
0.01–3.0% FR-positive M109 cells 1500 ng luciferase/well

0.01% from the range
0.01–0.03%

L1210A intraperitoneal
tumor model 125 ng/mg protein

DOTAP
1–CholOH–mPEG2000-Chol

(50:45:5)
Chol-suc-PEG2000-FA 0.1% from the range

0.01–1.0%
pEGFP SKOV-3 14% cells

[55]

KB 30% cells

OH-Chol 1–DOPE (3:1 mol.)

DSPE-PEG2000-FA

1.0% from the range
1.0–3.0%

Luc siRNA/
EGFP siRNA

KB-Luc
KB-EGFP

36% of untreated cells/
75% EGFP expression level 4

[67]OH-C-Chol 1–DOPE (3:1 mol.)
2.0% from the range

1.0–3.0%
18% of untreated cells/

65% EGFP expression level 4

HAPC-Chol 1–DOPE
(3:1 mol.)

2.0% from the range
1.0–3.0%

20% of untreated cells/
60% EGFP expression level 4

2X3–DOPE (1:2 mol.) Dg-PEG800-FA 2.0% from the range
0.5–2.0%

FITC-ODN
KB-3-1 86 RFU 2

[44,49]
HEK293 82 RFU

MM18 1 Diether-PEG570-FA 10.0% from the range
2.0–10.0%

pDNA
(pTG11033) HeLa 1 × 107 total RLU 3/mg of

proteins
[23]

1 compound structures presented in Figure 3. 2 RFU: related fluorescence units. 3 RLU: related luminescence units. 4 The EGFP expression level (%) was calculated as relative to the
fluorescence intensity of untransfected KB-EGFP cells.
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Cationic liposomes based on MM18 and diether-PEG570-FA lipoconjugate delivered
pDNA more effectively at 9:1 wt [23].

Analyzing the aforementioned data, we suggest that the shorter PEG spacer the higher
the FA lipoconjugate content required for effective targeting and NA delivery in vitro.
Short spacers seem to have limited mobility, which requires compensation in the form of
increased FA “density” to be recognized by FR.

4.3. Optimal Physicochemical Properties of Folate-Containing Liposomal NA Delivery Systems

Lipoplexes are complexes between nucleic acids and cationic lipids. The formation
of the lipoplexes occurs as a result of electrostatic interactions between the polar head
groups of cationic lipids and phosphate groups of NA. The stability of lipoplexes depends
on the ionic strength of the medium in which they are formed, and some lipoplexes may
prematurely release encapsulated NA under physiological conditions.

The structure of lipoplexes can be defined on two lengths. In the range of 10–50 nm,
the structure is set by thermodynamic equilibrium and are therefore highly regular, whereas
larger-scale characteristics are set by kinetics and are therefore highly polydisperse. Opti-
mizing the transfection efficiency of lipoplexes requires the ability to control their proper-
ties, since size and surface charge determine their stability in serum, their circulation time
in vivo, and their interactions with cells [79].

The fine structure of lipoplexes depends on both the type of lipids and the type of
NA. In the case of the double helix DNA most common complexes are multilamellar phase
and normal and inverted hexagonal phase structures [80]. Shorter siRNA could form
lamellar and bicontinuous cubic phases, while the inverted hexagonal complexes had high
cytotoxicity. Cationic gemini surfactants interact with siRNA and could form condensed
micellar phase with siRNA sandwiched between surfactant micelles.

The presence of PEG-lipoconjugates in the lipoplexes forms sterical shield, making the
complexes more protected when interacting with serum components, but can block impor-
tant interactions of complexes with cellular membranes. Cationic liposomes incorporating
PEG2000-lipoconjugates form with DNA lipoplexes with lamellar structure [81].

To achieve targeted NA delivery by cationic liposomes, size, ζ-potential and N/P
ratio must be optimized. To date, no clear correlation has been found between the size of
lipoplexes and their transfection efficiency, however, the optimal size is known to lie in
the 10–200 nm size range, beyond which nanoparticles are rapidly eliminated from the
organism [82]. All other factors being equal, one should choose lipoplexes with smaller
particle diameters [67].

ζ-Potential is another important parameter in the NA delivery. A positive charge
allows cationic liposomes to bind NA into stable lipoplexes. Positively-charged lipoplexes
may be effectively internalized by cells due to electrostatic interactions with the negatively-
charged plasma membrane. However, such nonspecific uptake interferes with selective NA
delivery to target cells. Hence, targeted lipoplexes should have ζ-potential approximately
equal to zero to exclude both nonspecific endocytosis [11,66]. ζ-Potential of lipoplexes may
be tuned by changing the N/P ratio or by coating with FA and/or PEG [25,62].

Lipoplexes containing cholesterol-based cationic lipid SGO4, helper lipid DOPE, DSPE-
PEG2000, and its FA-conjugate were prepared and used for in vitro delivery of pDNA
encoding the luciferase gene (Table 3). The transfection efficiency was not affected by the
N/P ratio (from 2:1 to 4:1), although NA binding was incomplete at the N/P ratio of 2:1.
Folate-containing lipoplexes transfected FR-positive cells (HeLa and KB) more effectively
compared to control lipoplexes without FA lipoconjugate. Moreover, preincubation of cells
with free FA decreased transfection efficiency, indicating specific lipoplex uptake through
FR [66].
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Table 3. Parameters of folate-containing NA delivery systems used in vitro and in vivo.

Liposomal
Composition

Lipoplexes In Vitro In Vivo

NA N/P Size (nm) ζ-Potential (mV) Results Ref Target Ref.

SGO4–DOPE–DSPE-
PEG2000–DSPE-

PEG2000-FA
(1:0.96:0.04:0.01 mol.)

pCMV-luc 3/1 147 ± 0.6 −2.09

1 × 107 RLU 4/mg
proteins

(HeLa, KB)
1 × 106 RLU 4/mg
proteins (HEK293)

[66] n.d. 1

MM18–Diether-FA-
PEG570
(9:1 wt)

pTG11033 1/1 521 −49

1 × 107 RLU 4/mg
proteins (HeLa,

16HBE14o)
1 × 106 RLU 4/mg

proteins (A549)

[23]
Swiss mice (nasal

airway
epithelium)

[23]

DOTAP–CholOH–
mPEG2000-Chol–Chol-

suc-PEG2000-FA
(50:45:5:0.1 mol.)

pEGFP 5/1 2 199.37 ± 2.56 37.97 30% of KB,
14% of SKOV-3 [55] n.d. 1

pIL15 6/1 2 250–300 18 n.d. 1 CT26 colon cancer
mouse model [9]

pPEDF 6/1 2 200 20 62% of HeLa [83] HeLa tumor
xenografts [83]

gDNMT1 plasmid 12/1 2 150 35 28.6% of indels
(SKOV-3) [84]

5-fold decrease of
SKOV-3 tumor

xenografts weight
[84]

DOTAP–CholOH–
DSPE-mPEG2000–

Chol-suc-PEG2000-FA
(40:55:4.5:0.5 mol.)

Bmi1 siRNA 200/1 2 165.1 ± 13.8 18.6 71% inhibition of
KB cells [85]

~4-fold decrease
of KB tumor
xenografts

[85]

OH-Chol–DOPE–DSPE-
PEG2000-FA

(3:1 mol.:1 mol%)
PLK1 siRNA 7/1 180.1 ± 2.8 3 35.2

50% of
untreatment (PKL

mRNA level in
KB-Luc cells) [67]

n.d. 1



Pharmaceutics 2023, 15, 1400 11 of 18

Table 3. Cont.

Liposomal
Composition

Lipoplexes In Vitro In Vivo

NA N/P Size (nm) ζ-Potential (mV) Results Ref Target Ref.

OH-C-Chol–DOPE–
DSPE-PEG2000-FA
(3:1 mol.:2 mol%)

188.8 ± 1.2 3 29.1

55% of
untreatment (PKL

mRNA level in
KB-Luc cells)

n.d. 1

HAPC-Chol–DOPE–
DSPE-PEG2000-FA (3:1

mol.:2 mol%)
172.9 ± 1.2 3 28.3

54% of
untreatment (PKL

mRNA level in
KB-Luc cells)

KB tumor
xenografts [67]

DDAB–DOPE–PEG1600-
Chol–DSPE-PEG5000-

FA (1:1 mol.:2.5
mol%:0.5 mol%)

4/1 169.8 ± 1.6 39.3 10% of untreated
KB-luc cells [69] [69]

2X3–DOPE–Dg-PEG800-
FA (1:2 mol.:2

mol%)
MDR1 siRNA 1/1 175.2 ± 22.6 −3 n.d. 1

L1210, LLC,
KB-3-1, KB-8-5

tumor xenografts
[78]

CD–DSPE-PEG5000-FA–
DSPE-PEG5000-Methyl

(2:1:1 mol.)
RelA siRNA 10/1 207.20 ± 5.39 4.78

44% reduction for
VCaP cells, 22%

reduction for
LNCaP cells

[53] n.d. 1

Soybean lecithin S100–
CholOH–oligochitosan
derivative of FA (425

mg:75 mg:50 mg)

HIF-1α siRNA - 95.3 2.41

550 mean
fluorescence
intensity on

human MM cells
(A375)

[86] n.d. 1

1 no data. 2 liposomes: pDNA mass ratio. 3 sizes determined for complexes with nonspecific siRNA. 4 RLU: related luminescence units.
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The highest transfection efficiency of lipoplexes MM18–Diether-FA-PEG570 containing
10% of FA lipoconjugate with a short PEG spacer was observed at N/P ratios of 1:1 and 2:1
in vitro [23]. Notably, these two compositions differed drastically in their physicochemical
parameters: lipoplexes at the N/P ratio of 1:1 were much larger (521 nm) and displayed
a strongly negative ζ-potential (−49 mV) compared with lipoplexes at the N/P ratio of
2:1 that were considerably smaller (164 nm) and exhibited a strongly positive ζ-potential
(+47 mV). The presence of high concentrations of free FA in cellular media (more than
10 nM) significantly decreased the transfection efficiency at the N/P ratio of 1:1, while
lipoplexes with a higher N/P ratio of 2:1 were less affected, probably due to nonspecific
endocytosis. Also, lipoplexes prepared at the N/P ratio of 1:1 were tested in vivo. After
local nasal administration, one mouse exhibited a positive bioluminescent signal. Luciferase
expression was observed in the trachea homogenates of the two mice (Table 3).

Lipoplexes with positive ζ-potential have also used for pDNA delivery [9,55,83]. Dur-
ing in vitro experiments, DOTAP based lipoplexes (Table 3) showed increased transfection
efficiency on FR-positive cells (SKOV-3, KB, and HeLa), while no enhancement was ob-
served on FR-negative HepG2 cells compared to control lipoplexes without FA-containing
component. It should be noted that the percentage of transfected cells was low in the case
of both SKOV-3 and KB cells (15 and 30%, respectively). In vivo delivery of both pPEDF
(pigment epithelium-derived factor gene) into HeLa xenografts [83] and pIL15 (interleukin-
15 gene) into CT26 xenografts [9] suppressed angiogenesis and tumor proliferation better
than their non-targeting counterparts. Unfortunately, selectivity of pDNA delivery by these
positively-charged lipoplexes was not studied.

The same liposomal formulations were used for targeted genome editing based on
CRISPR-Cas9 technology. Folate-containing liposomes formed stable lipoplexes with the
ovarian cancer-related DNA methyltransferase 1 (gDNMT1) plasmid at N/P ratios of 12:1
and 16:1. N/P ratios are much higher than that used previously for pEGFP delivery due
to the large size of the gDNMT1 plasmid (8500 bp). FA-containing lipoplexes successfully
inhibited DNMT1 expression in vitro and produce targeted genome editing based on
CRISPR-Cas9 technology. FA-containing lipoplexes induced necrosis of cancer cells in vivo
and exhibited favorable antitumor efficiency comparable with paclitaxel in a mouse model
of ovarian cancer [84].

A slightly different formulation (DSPE-based PEG lipid instead of mPEG2000-Chol)
was used for co-delivery of Bmi1 siRNA with ursolic acid. Lipoplexes demonstrated
synergistic antineoplastic effect on KB cells in vitro and in vivo (xenografts) [85]. After
the treatment 71% inhibition of KB cells was observed (Table 3). It should be noted, that
folate-containing lipoplexes showed stronger gene inhibition than lipoplexes without FA-
conjugate. Co-delivery of Bmi1 siRNA with ursolic acid by folate-containing liposomes
provided significant tumor growth inhibition compared to different control groups.

A series of lipoplexes containing cholesterol-based cationic lipid (HAPC-Chol, OH-
Chol or OH-C-Chol), DOPE, and the FA derivative of DSPE-PEG2000 was developed [67].
They had similar sizes around 180 nm, positive ζ-potentials and siRNA delivery efficiency
on KB-EGFP cells (Table 3). It should be noted that transfection efficiency was also similar
to non-targeting analogs, probably due to excessive positive charge provoking non-specific
endocytosis. HAPC-Chol–DOPE–DSPE-PEG2000-FA composition with the smallest size
was chosen for in vivo experiments on KB xenografts. But no differences were found in
the suppression of tumor growth between FA-containing lipoplexes and the non-targeting
PEGylated analog as was the case in in vitro studies and probably for the same reason:
positive ζ-potential prevented targeting on FR [67].

FA-containing cationic liposomes were prepared and optimized for in vivo siRNA
delivery [69]. Liposomes differed both in the length of PEG spacer (2000, 3400 or 5000 Da)
and in the molar percentage of FA lipoconjugate. Maximal in vitro siRNA delivery was
achieved by lipoplexes containing 0.5 mol% DSPE-PEG5000-FA, but this amount was not
enough to prevent agglutination in vivo. Inclusion of 1–2 mol% FA-PEG-DSPE into siRNA
lipoplexes might be needed for preventing agglutination during systemic injection. There-
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fore, 2.5 mol% PEG lipid was added to provide additional lipoplex stabilization in blood
circulation, which permitted an increased accumulation of Cy5-labeled siRNA in KB
xenografts [69].

Gladkikh et al. examined siRNA delivery efficiency of lipoplexes containing polyca-
tionic lipid 2X3, DOPE, and FA lipoconjugate on several tumor xenografts that exhibited
different levels of FR expression [78]. The highest accumulation was observed in L1210
cells with maximal FR expression among cell lines used. MDR1-siRNA (against multidrug-
resistant gene) delivery combined with polychemotherapy inhibited tumor growth, reduced
necrosis and inflammation, and stimulated apoptosis in tumor cells without liver toxicity.
Moreover, targeted delivery was achieved only by lipoplexes displaying ζ-potentials close
to neutrality as previously described [61].

Cyclodextrin-based folate-targeted lipoplexes were used for in vitro delivery of siRNA
targeted against RelA (a subunit of a central transcription factor NF-κB) overexpressed
in prostate cancer cells [53]. This led to levels of knockdown of 44% for VCaP and 22%
for LNCaP cells compared with non-targeted control. However, no differences between
targeted and non-targeted formulations were observed for PC-3 cells, which have lower FR
expression levels.

The use of an oligochitosan derivative of FA allowed the delivery of HIF-1α siRNA
(against hypoxia-inducible factor-1α) to A375 cells with transfection efficiency comparable
to Lipofectamine 2000. Also, transfection efficiency was two-fold higher compared with
non-targeted control [86].

Recently, commercial transfectants (Lipofectamine 3000 and Fuse-It-DNA) were conju-
gated with FA via N-hydroxysuccinimide (NHS) chemistry for targeted pDNA delivery [87].
For this purpose, different amounts (0.4, 4, 12 mM) of NHS-PEG5000-FA were used. The
lipoplexes showed a steady increase in particle size with increasing PEG5000-FA concentra-
tion, while ζ-potentials decreased in the opposite manner. The presence of 1 mM free FA in
cellular media significantly decreased the transfection efficiency only for cancer cells over-
expressing FR, verifying receptor-depended NA transfer. ca-Caspase3-pDNA delivery by
FA-containing Lipofectamine 3000 led to a 1.5-fold increase in ca-Caspase3 activity in U87
cells compared with a non-targeted formulation. However, experiments conducted with
FA-containing Fuse-It-DNA lipoplexes led to a ten-fold increase in ca-Caspase3 activity in
MCF-7 cells.

5. Conclusions and Perspectives

Folic acid (FA) is an optimal targeting ligand providing selective NA delivery into
tumor cells due to overexpressed FR. To develop an effective nonviral delivery system, the
following points should be considered: (1) rational design of FA lipoconjugate; (2) opti-
mization of lipoconjugate content; (3) optimization of transfection conditions including
size and ζ-potential of lipoplexes as well as optimal N/P ratio.

The FA lipoconjugate should have a hydrophobic domain based on DSPE, cholesterol,
or ditetradecylglycerol for anchoring in the liposomal bilayer. The most important part is
the spacer binding FA to the rest of the molecule. The PEG spacer is optimal here, favoring
a proper FA-FR interaction [71]. In general, the shorter the PEG spacer the higher the FA
lipoconjugate content required for effective targeting and NA delivery.

In addition to the structure of the FA lipoconjugate, cationic lipid providing NA com-
plexation is the other important component of cationic liposomes. The most common lipids
used are monocationic [67] or polycationic derivatives of cholesterol [11,44,49] (Figure 3).
Cationic lipids also determine association efficiency with target cells [67].

Nonviral delivery systems usually require a helper lipid. DOPE is often used for this
purpose, providing effective endosomal escape of NA due to the inverted hexagonal phase
formation in response to a change in endosomal pH value [88]. Thus, liposomes composed
of cationic derivatives of cholesterol, helper lipid DOPE and FA lipoconjugate are optimal
for targeted NA delivery into the tumor cells.
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Finally, physicochemical parameters must be optimized. In this regard, lipoplex size
should lie in the range 10–200 nm [82], while attention should be given to ζ-potential, as
strong positive values may interfere with targeting due to non-specific endocytosis. This
may be addressed by changing the N/P ratio of lipoplexes [11].

In summary, folate-containing nucleic acid delivery systems have great potential in
targeted antitumor therapy providing optimized lipid structure and composition as well as
physicochemical parameters. Moreover, further research may be concerning a combination
of both therapy and diagnostics—theragnostics. In this case, fluorescently or radio labeled
FA lipoconjugates should be developed [89–91]. As an alternative to chemically synthesized
lipid vesicles, natural or engineered exosomes may be used [89]. They are easily decorated
with FA to provide tumor-targeted NA delivery [92,93]. All delivery systems require further
optimization to achieve applicable in vivo efficiency.
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