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Abstract: Peritonitis is a limiting complication of peritoneal dialysis, which is treated by intraperi-
toneal administration of antibiotics. Various dosing strategies are recommended for intraperitoneally
administered vancomycin, which leads to large differences in intraperitoneal vancomycin exposure.
Based on data from therapeutic drug monitoring, we developed the first-ever population pharmacoki-
netic model for intraperitoneally administered vancomycin to evaluate intraperitoneal and plasma
exposure after dosing schedules recommended by the International Society for Peritoneal Dialysis.
According to our model, currently recommended dosing schedules lead to possible underdosing
of a large proportion of patients. To prevent this, we suggest avoiding intermittent intraperitoneal
vancomycin administration, and for the continuous dosing regimen, we suggest a loading dose of
20 mg/kg followed by maintenance doses of 50 mg/L in each dwell to improve the intraperitoneal
exposure. Vancomycin plasma level measurement on the fifth day of treatment with subsequent
dose adjustment would prevent it from reaching toxic levels in the few patients who are susceptible
to overdose.

Keywords: glycopeptides; therapeutic drug monitoring; methicillin resistant Staphylococcus aureus
(MRSA); area under the curve (AUC); drug-exposure; renal replacement therapy; continuous ambula-
tory peritoneal dialysis; infection

1. Introduction

Peritoneal dialysis (PD) is a modality of renal replacement therapy (RRT). Worldwide,
approximately 11% of all patients undergoing dialysis are treated by PD. PD is performed
by the instillation of hyperosmotic peritoneal dialysate fluid (either glucose, icodextrine, or
amino-acid based) into the peritoneal cavity via a peritoneal catheter. PD fluid dwells there
for a period of time to allow water, as well as soluble waste compounds and potassium,
to diffuse from the blood to the peritoneal cavity. At the end of the dwell, the fluid is
drained and discharged. The dwells are repeated several times a day in various and
individualized schedules.
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The most common and limiting complication of PD is bacterial peritonitis [1,2]. Inter-
national Society for Peritoneal Dialysis (ISPD) guidelines recommend vancomycin as one of
the first-line antibiotics for the treatment of G+, mixed, or cultivation-negative peritonitis.
As peritonitis associated with PD is increasingly caused by beta-lactam-resistant staphy-
lococci and enterococci, the use of vancomycin is becoming an increasingly important
treatment modality [2]. Vankomycin, as well as gentamicin, cephalosporins, and other
antibiotics, should be preferably administered intraperitoneally (i. p.) diluted directly in the
instilled peritoneal dialysate if the patient is not septic. During the treatment of peritonitis,
the individual regimen is usually switched to the scheduled one with 4–5 manual exchanges
per day (continuous ambulatory peritoneal dialysis, CAPD). The ISPD recommends van-
comycin dosing for patients treated by CAPD of either 15–30 mg/kg once every 5–7 days
(intermittent dosing) or 20–25 mg/kg loading dose followed by maintenance dosing of
25 mg per liter of infused peritoneal dialysate in each subsequent exchange (continuous
dosing) [3]. However, scientific support for these regimens is limited, and target plasma or
peritoneal levels remain unknown. Only a few clinical studies have studied plasma but not
peritoneal exposure of vancomycin.

Reported vancomycin absorption from the peritoneal cavity is 70–91% of the adminis-
tered dose in patients with peritonitis [4,5], and this decreases in healthy subjects without
inflammatory changes in the peritoneal cavity [4–7]. On the other hand, the diffusion of van-
comycin from the blood into the peritoneal dialysate occurs when the drug concentrations
in plasma are higher than in the peritoneal cavity [5,6]. The systemic pharmacokinetics of
vancomycin in patients with end-stage renal disease (ESRD) is markedly altered due to a
diminished clearance (CL) [8,9]. Nevertheless, systemic CL of vancomycin persists to some
extent in patients with residual kidney function compared to anuric patients [10]. This is
also likely to have clinical relevance as it has been shown that the probability of treatment
success is lower when treating G+ or culture-negative peritonitis in patients with residual
renal function compared to completely anuric patients [11].

Vancomycin efficacy relies on achieving a sufficiently high exposure that is optimally
expressed by the ratio of the drug’s 24 h area under the curve (AUC24) to the minimum
inhibitory concentration (MIC) [12]. It is therefore expected that the achievement of suf-
ficient intraperitoneal exposure to vancomycin is critical for local efficacy. In addition,
vancomycin (and other antibiotics) may be less efficacious when diluted in peritoneal
dialysis fluid. In the study by Tobudic et al., vancomycin completely lost efficacy against
methicillin-resistant Staphylococcus aureus (MRSA) while only the bacteriostatic effect of the
dialysate solution itself was observed [13]. The currently recommended AUC24:MIC ratio
for vancomycin is ≥400, which corresponds to AUC24 of 400–600 mg×h/L in patients with
infection caused by susceptible bacteria. Lower exposition may cause treatment failure,
whereas higher exposures substantially increase the risk of systemic toxicity [12]. Systemic
toxicity could be prevented by reaching high levels only locally in the peritoneum while
maintaining low systemic exposures. This equilibrium should be achieved by appropriate
i. p. dosing of vancomycin. Given that i. p. vancomycin administration would yield
minimally fluctuating plasma concentrations, plasma target levels of 20–25 mg/L, similar
to continuous i. v. administration [12,14], may be suitable. A robust vancomycin pharma-
cokinetic model and the measurement of vancomycin intraperitoneal levels at the end of
the dwell time (i.e., in the drained-out dialysate) may be helpful to calculate the overall
intraperitoneal exposure to vancomycin and tailor the treatment for an individual patient.

As resistance to beta-lactams is not rare and resistance to vancomycin is steadily
increasing [2], undoubtedly also due to frequent under-dosing, our aim was to propose a
reliable dosing schedule. For this purpose, we build a population pharmacokinetic model
for vancomycin in ESRD patients treated with PD and suffering from peritonitis, based on
plasma and intraperitoneal levels of vancomycin measured in two dialysis centers. We also
measured the ex vivo efficacy of vancomycin and vancomycin + gentamicin diluted in the
peritoneal dialysis fluid. Finally, we performed simulations to illustrate the implications
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our findings may have on the dosing of vancomycin in ESRD patients with peritonitis
treated with PD.

2. Materials and Methods
2.1. Patients and Dosing

An open-label retrospective observational study was performed in all adult ESRD
patients treated by PD with suspected peritonitis, admitted to one of the two nephrol-
ogy departments of the General University Hospital in Prague between June 2016 and
August 2022, who were treated with vancomycin and who had at least one vancomycin
level in plasma or peritoneal dialysate measured. At admission, all patients switched to
4–5 exchanges per day (CAPD) for the treatment of peritonitis. The standard initial peri-
tonitis treatment in our facility is cefazoline + gentamicin with a possible switch to more
targeted therapy after cultures become available. Vancomycin is therefore reserved only for
not-responding culture-negative or beta-lactam-resistant G+/mixed infections. In most of
the patients, we followed the ISPD recommendations of a loading dose of 15–30 mg/kg
followed by maintenance doses of 25 mg per liter of peritoneal dialysate in all subsequent
exchanges [3]. The plasma levels have been monitored and maintenance doses adjusted to
reach the target AUC24 for vancomycin plasma levels of 400–600 mg×h/L, recommended
by Rybak et al. [12]. When systemic infection was present, i. v. dosing was combined with
i. p. dosing, as needed. Data from 3 patients who were treated only by i. v. vancomycin
with measured i. p. levels were also added to the database. The i. p. levels were available
in cases of suspected underexposure during the treatment. Since the study involved only
the analysis of routine clinical data from TDM protocols and patient documentation, and
at admission to the hospital, the patients signed an approved general informed consent
wherein they state, inter alia, that anonymous data can be used for research, study specific
ethics approval was waived. The study was carried out in compliance with the ethical
principles of the Helsinki Declaration.

2.2. Vancomycin Analysis

Vancomycin levels in plasma and dialysate samples were determined using a nephelo-
metric method (Beckman Coulter, Indianapolis, IN, USA). The analytical range for plasma
samples was 3.5–40 mg/L. When higher levels were detected, the samples were diluted to
obtain measurable values that were subsequently multiplied according to the dilution factor.
The method was validated for peritoneal dialysate samples by measuring a series of van-
comycin concentrations from 10–250 mg/L in high and low glucose concentration solutions
and in icodextrin solutions. It was shown that icodextrin solution did not interfere with the
measurement, but that glucose solutions decreased the measured value by approximately
20% regardless of the glucose or vancomycin concentration (Figure S1). Therefore, the
vancomycin intraperitoneal levels obtained from the laboratory were multiplied by a factor
of 1.2885 obtained from the linear regression analysis of levels measured in validation tests.

2.3. Population PK Analysis

A population PK analysis was carried out using NONMEM version 7.4.0 (ICON
Development Solutions, Ellicott City, MD, USA) [15] and PsN v3.4.2 [16] both running under
Pirana 2.9.0 [17]. Modeling was performed using the first-order conditional estimation
method with interaction (FOCE-I). R v4.2.2 was used for the visualization of the data and
model diagnostics. Model development was performed in three steps:

1. Development of structural and statistical model.

For the structural model, the peritoneal cavity was considered one compartment, in
which the actual volume of peritoneal solution for each patient was used as the volume of
distribution. One- and two-compartment models were tested to describe the distribution of
vancomycin throughout the rest of the body. The exchange of vancomycin was assumed to
occur only between the intraperitoneal compartment and the central (plasma) compartment.
First-order CL of vancomycin from the central compartment was assumed.
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Log-normally distributed inter-individual variability (IIV) terms with estimated vari-
ance were tested on each PK parameter, with the exception of the volume of the peritoneal
compartment (V1). As differences in the permeability of the peritoneal membrane were
expected in patients with recurrent and relapsing episodes of peritonitis, inter-occasion
variability (IOV) on intercompartmental clearance (Q) between the intraperitoneal com-
partment and the central compartment was also tested. An occasion refers to a particular
vancomycin treatment course that ended up with vancomycin withdrawal due to the cure
of the infection, switch to a different antibiotic when ineffective, or the removal of the PD
catheter. Proportional, additive, and combination error models were tested for the residual
error models for both peritoneal and plasma concentrations.

2. Covariate analysis.

The following variables were tested as covariates:

• Body weight (BW), lean body mass (LBM), serum level of urea, creatinine, albumin,
potassium, C-reactive protein at the beginning of the peritonitis treatment (CRP),
estimated glomerular filtration rate (eGFR, calculated by the CKD-EPI 2009 formula),
age, and volume of residual diuresis were tested as continuous covariates.

• Preserved diuresis (yes = over 500 mL urine daily or no = less than 500 mL urine
daily), type of peritoneal solution (low, medium, or high glucose content, or icodextrin
based), and sex were tested as categorical covariates.

A stepwise covariate modeling procedure was performed. Continuous covariates
were tested in linear and power functions. Categorical covariates were tested by estimating
the parameter value for one category as a fraction of the parameter value for the other.

BW, LBM, sex, age, and albumin were tested as covariates for the central (plasma)
volume of distribution (V2); BW, LBM, serum levels of urea, creatinine, and albumin, eGFR,
sex, preservation, and volume of residual diuresis and age were assessed as covariates for
CL; sex, BW, CRP, potassium, and type of peritoneal solution were tested as covariates for
intercompartmental clearance (Q).

For model selection, a decrease in the objective function value (OFV) of more than
3.84 points between nested models (p < 0.05) was considered statistically significant, as-
suming a chi-distribution. Additional criteria for model selection were the physiologi-
cal plausibility of the obtained parameter values, the absence of bias in goodness-of-fit
(GOF) plots, and acceptable relative standard error of the estimates (RSE) of structural
model parameters.

3. Validation of the final model.

A bootstrap analysis was performed to assess the stability of the model. In this
procedure, 500 replicates of the original data were generated by sampling patients from the
original dataset with replacement. The final model was fit to each of the 500 resampled
datasets, after which the median and 95% confidence intervals (CI) obtained for each
parameter were compared with the final parameter estimates in the final model.

The predictive properties of the structural and statistical model were validated using
normalized prediction distribution errors (NPDEs). For this, the dataset was simulated
1000 times, after which the observed concentrations were compared to the range of simu-
lated values using the NPDE package developed for R [18].

2.4. Model-Derived Dosing Implications

To illustrate the implications of our findings, simulations were performed with the
final population PK model, which included IIV and RUV in model parameters. One
thousand simulations for a typical individual with BW = 75 kg and eGFR = 6.76 mL/min
with preserved diuresis and oliguria were performed for dosing regimens recommended by
the ISPD (25 mg/kg once every 5 and 7 days (intermittent dosing), and a 25 mg/kg loading
dose followed by MD of 25 mg/L in each subsequent exchange (continuous dosing)) over
21 days (the recommended length for Staphylococcus aureus peritonitis treatment according
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to ISPD guidelines [3]). For patients with eGFR = 6.76 mL/min, 50 kg and 100 kg with
oliguria and preserved diuresis simulations were performed only for continuous dosing, as
this dosing regimen was mostly followed in our medical facility. Further on, we performed
simulations with the new proposed dosing regimen, which may improve intraperitoneal
vancomycin exposure without increasing plasmatic levels over the safe border.

2.5. Microbiological Testing

The microbiological evaluation of the bactericidal activity of the peritoneal dialysate
with vancomycin was adapted from the study by Wise et al. [19]. The dialysate samples
from two patients (one treated with vancomycin only and one treated with vancomycin
and gentamicin) with measured vancomycin and gentamicin concentrations, were used.
The samples were diluted with tryptic soy broth in dilution sequences 1:2 from 1- to
1024-fold. Strains of Staphylococcus epidermidis CNCTC 5212 (ATCC 12228), Staphylococcus
aureus CNCTC 5480 (ATCC 29213), and Enterococcus faecalis CNCTC 5483 (ATCC 29212)
were cultivated for 24 h in 37 ◦C on Columbia blood agar. Bacterial suspensions of 0.5 McF
(108 CFU/mL) were subsequently prepared. These suspensions were further diluted in
TSA broth in a ratio of 1:100. Furthermore, 100 µL of diluted samples were then transferred
to every well in a 96-well plate and incubated for 24 h at 37 ◦C. Ten micrograms of broth in
wells that were not cloudy were then transferred to the Columbia blood agar and incubated
for 48 h at 37 ◦C. The first dilution was regarded as bactericidal if 99.9% of bacteria growth
was suppressed.

3. Results

Data from 41 patients during 57 hospitalizations were included and 132 or 241 peri-
toneal or plasma vancomycin concentrations were obtained, respectively. On these oc-
casions, patients were treated for suspected or culture-validated peritonitis, including
recurrent and relapsing episodes. The characteristics of the patients included in this analy-
sis are listed in Table 1.

Table 1. Characteristics of the included patient population.

Parameter (Unit) Value *

Age (years) 68 (53–74)
Gender (F/M) 17/24

Body weight (kg) 75 (70–84)
Body mass index (BMI, kg/m2) 26.67 (21.6–28.34)

Lean body weight (LBW, kg) 54.31 (46.18–59.89)
Ideal Body Weight (IBW according to Devine equation, kg) 63.28 (59.28–72.18)

Fat Free Mass (FFM, kg) 54.3 (46.2–59.9)
Preserved diuresis (mL/day) 1000 (350–1450)

Oliguria (<500 mL/day), N (%) 10 (24.4%)
Preserved diuresis (>500 mL/day), N (%) 31 (75.6%)

Creatinine (µmol/L) ** 694 (564–849)
Estimated glomerular filtration rate (mL/min/1.73 m2) *** 6.76 (5.07–7.92)

Urea (mmol/L) ** 18 (14.9–22.3)
Uric acid (µmol/L) ** 313 (269–349)

C-reactive protein (mg/L) ** 31.7 (10.9–96.5)
Serum potassium (mmol/L) ** 4.1 (3.8–4.6)

Serum albumin (g/L) ** 28 (26–31)
Patients with 1500 mL exchanges, N (%) 16 (39%)
Patients with 2000 mL exchanges, N (%) 23 (56%)
Patients with 1000 mL exchanges, N (%) 1 (2%)
Patients with 1200 mL exchanges, N (%) 1 (2%)
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Table 1. Cont.

Parameter (Unit) Value *

Cultivations in peritoneal dialysate
culture negative 13 (23%)

G+ 36 (63%)
G− 4 (7%)

mixed 3 (5%)
G+, candida 1 (2%)

Concomitant exit-site infections 27 (47%)
Months on PD 22.5 (9–46.75)

* Values are presented as median (interquartile range) unless stated otherwise. ** Level from sample drawn at the
beginning of the treatment with vancomycin. *** Calculated according to CKD-EPI 2009 formula, only in patients
with preserved diuresis.

3.1. Final Population PK Model

Observed vancomycin peritoneal and plasma concentrations were best described by a
two-compartment model with log-normally distributed IIV on clearance CL, V2, and Q
(Figure 1). V1 refers to the peritoneal cavity and V2 to the rest of the body. Proportional
and combination residual error models provided the best description of residual variability
for concentrations measured in the peritoneal compartment and plasma, respectively.
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Figure 1. Schematic representation of the pharmacokinetic model for vancomycin in ESDR patients
with peritonitis treated with peritoneal dialysis. V1 = volume of peritoneal compartment (peritoneal
cavity), V2 = volume of central (systemic) compartment, CL = clearance, Q = intercompartmental
clearance, VOL IN—volume of infused peritoneal dialysate, VOL OUT—volume of dialysate that
was drained out at the end of the dwell.

The addition of IOV on Q improved the model fit significantly (p < 0.001). However,
IOV was found to be small relative to IIV, meaning that variability between patients was
larger than variability within patients on different occasions. Figure 2 illustrates how IIV
and IOV on Q compare to each other. The inclusion of preservation of normal diuresis as a
binary covariate (i.e., yes/no) on CL also resulted in a statistically significant improvement
of the model fit (p < 0.001). Further improvement of the model fit (p < 0.001) was seen
when eGFR was included as a covariate on CL in a linear relationship for patients with
preserved diuresis (i.e., diuresis > 500 mL/day). Finally, adding BW in a linear relationship
as a covariate on V2 resulted in an improvement of the model fit (p < 0.05), although
the RSE for V2p increased from 9% to 78% with the inclusion of this covariate. Despite
this increased uncertainty in the estimated value V2, we decided to retain the covariate
relationship in the model as it is of high clinical value given that current dosing guidelines
are based on BW. After the inclusion of this covariate relationship, none of the other
covariates were statistically significant. The final parameter estimates obtained with this
model are presented in Table 2. In the final model, V1, CL, V2, and Q for a typical patient
with a median BW of 75 kg and a median eGFR of 6.76 mL/min with oliguria (urine
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output < 500 mL) are 2 L (volume of exchange), 0.192 L/h (RSE = 17%), 23.6 L (78%), and
0.544 L/h (16%), respectively.
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Table 2. Parameter estimates of the final population PK model of vancomycin in patients treated
with CAPD.

Parameter [Units] Final Model (RSE %) Bootstrap Median (Range)

Fixed effects
V1 [L] FIXED *

CLi [L/h] = CLp × ((1 + θRESDIU) × (CRCL/6.76))RESDIU>500

CLp [L/h] 0.192 (17%) 0.186 (0.144–0.267)
θRESDIU 1.26 (31%) 1.36 (0.50–2.25)

V2i [L] = V2p + θBWV × (BW/75)
V2p [L] 23.6 (78%) 27.2 (1.68–65.3)
θBWV 50.9 (38%) 45.9 (9.6–76.0)

Q [L/h] 0.544 (16%) 0.53 (0.40–0.76)

Inter-individual variability
CL (%) 34.2% (22%) 32.2% (16.0–45.8%)
V2 (%) 30.3% (21%) 29.2% (13.8–40.4%)
Q (%) 50.7 (23%) 45.3% (20.1–79.6%)

IOC on Q (%) 31% (37%) 30.1% (17.3–51.7%)

Residual variability
Proportional error, peritoneal concentration 0.091 (15%) 0.089 (0.064–0.146)

Additive error, plasma concentration 4.72 (31%) 4.74 (1.38–7.11)
Proportional error, plasma concentration 0.00604 (54%) 0.00649 (0.000450–0.01489)

* Fixed to the actual volume of peritoneal solution used (range 1–2 L); Abbreviations: RSE = relative standard
error of the estimate; CLi = individual clearance value; CLp = population clearance value; eGFR = estimated
glomerular filtration rate according to CKD-EPI (2009) equation; θRESDIU = increase in CL when residual diuresis
(RESDIU) is preserved; RESDIU>500 = binary parameter indicating whether residual diuresis is preserved (1) or
not (0); V1 = volume of peritoneal compartment; V2i = individual volume of central (systemic) compartment value;
V2p = population volume of central (systemic) compartment value; θBWV = increase in V2 per kg bodyweight.

The precision of the estimated structural parameter values was acceptable, with
RSE values generally being well below the limit of 50% with the exception of V2p. The
results of the evaluation and validation procedures of the final model are provided in the
Supplementary Material. The basic GOF plots in plasma (Figure S2) indicate that the model
describes the observed data accurately, with only a small trend in conditional weighted
residuals (CWRES) versus population-predicted concentrations. There was no bias in basic
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GOF plots for peritoneal concentrations (Figure S3), indicating an accurate description of
these concentrations by the model.

With the exception of V2p, median parameter values obtained with the bootstrap
procedure were within 10% of the values obtained in the final model fit, indicating that
the model results are robust. For V2p, the bootstrap median still only deviates 15% from
the final parameter estimate, with the final parameter value being well within the 95%
bootstrap interval, which increases the certainty of the obtained estimate.

The distribution of the NPDEs obtained with the model for plasma concentrations has
a mean of 0.1027 and variance of 0.848, and neither of these values is significantly different
from the expected values of 0 (p = 0.254) and 1 (p = 0.253), respectively. For peritoneal
concentrations, the distribution of NPDEs has a mean of 0.1228 and variance of 0.8438, and
these values did not deviate significantly from the expected values of 0 (p = 0.381) and 1
(p = 0.8438) either. These results indicate that for both endpoints, the model has a slight
but not statistically significant over-prediction of the variability. This means simulations
with the model lean to the conservative side, as the variability that is predicted is slightly
higher than can be expected in real life. Plots of NPDE distributions in Supplemental
Figures S4 and S5 further confirm that the model accurately predicts concentrations in both
compartments, without any trends over time or over the observed concentration ranges.

The model findings regarding the changes of Q in recurrent peritonitis episodes are
graphically illustrated in Figure 2. It is clearly visible that the permeability fluctuates most
likely due to the different severity of peritoneal inflammation during different peritoni-
tis occasions.

3.2. Model-Derived Dosing Implications

Figure 3 shows plasma and peritoneal levels and AUCs for vancomycin peritoneal
concentrations for a typical individual with BW = 75 kg and eGFR = 6.76 mL/min with pre-
served diuresis and oliguria for all dosing regimens recommended by ISPD. Figure S6 depicts
simulations for continuous dosing for BW = 50 kg and 100 kg with eGFR = 6.76 mL/min
with preserved diuresis and oliguria. AUC24 is depicted for the 21-day-long treatment
(the recommended length for Staphylococcus aureus peritonitis treatment according to ISPD
guidelines [3]).

The target exposure of >400 mg×h/L is not reached in the peritoneum for most of the
days during intermittent dosing. Furthermore, the treatment may only be borderline effica-
cious when recommended continuous dosing is applied in patients with preserved diuresis.
Based on the simulations, it is clearly seen that during continuous administration, most
of the patients would not reach even the target therapeutic plasmatic level of 20–25 mg/L.
This allows for an increase in the intraperitoneal maintenance dosing during the continuous
dosing approach. On the other hand, a large proportion of patients is already overdosed
after the second dose when intermittent dosing every 5 days was used in oliguric patients
even though insufficient exposure was reached in the peritoneum. Based on the presented
model, we proposed optimal dosing (LD = 20 mg/kg followed by MD = 50 mg/kg in
each subsequent dwell) that would allow us to increase the intraperitoneal vancomycin
exposure without overdosing patients with excessive plasma levels. Simulated exposure
with this regimen is depicted in Figure 4.

As our proposed dosing may lead to a slight overdose in some (especially oliguric,
Figure 4B,D,F) patients, we recommend checking the vancomycin plasma concentration no
later than on the fifth day of therapy and adjusting the vancomycin dosing as needed to
ensure safe therapy. For a 50 kg patient, we used an exchange volume of 1.5 L due to the
smaller peritoneal cavity. With a dosing schedule with 2 L exchanges in a 50 kg patient, the
differences in plasma and peritoneal vancomycin levels were negligible (Figure S7).
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Figure 3. Simulations of vancomycin exposure in the peritoneal fluid and plasma upon recommended
ISPD dosing schedules. AUC24 is calculated for a CAPD schedule with 5 daily exchanges (i.e., 4 × 4 h
and 1 × 8 h) in a patient with BW = 75 kg. When preserved diuresis is stated, residual eGFR was set to
6.76 mL/min (median value of the model). Red lines in the left graphs—target plasma concentrations
range for continuous vancomycin infusion, red line in the right graphs—target vancomycin AUC (i.e.,
400 mg×h/L) that should be reached for effective therapy. AUC—area under the curve of peritoneal
concentrations. LD—loading dose, MD—maintenance dose. Oliguria = less than 500 mL/day;
Preserved diuresis = more than 500 mL/day. Solid lines represent median of simulated concentrations,
shaded areas represent 95% confidence interval of simulated concentrations; box plots with whiskers
from minimum to maximum are presented for AUC24 for 21-day-long treatment.

Pharmaceutics 2023, 15,    11  of  18 
 

 

The target exposure of >400 mg×h/L is not reached in the peritoneum for most of the 

days during intermittent dosing. Furthermore, the treatment may only be borderline effi-

cacious when recommended continuous dosing is applied in patients with preserved di-

uresis. Based on the simulations, it is clearly seen that during continuous administration, 

most of the patients would not reach even the target therapeutic plasmatic level of 20–25 

mg/L. This allows for an increase in the intraperitoneal maintenance dosing during the 

continuous dosing approach. On the other hand, a large proportion of patients is already 

overdosed after the second dose when intermittent dosing every 5 days was used in oli-

guric patients even though insufficient exposure was reached in the peritoneum. Based on 

the presented model, we proposed optimal dosing (LD = 20 mg/kg followed by MD = 50 

mg/kg in each subsequent dwell) that would allow us to increase the intraperitoneal van-

comycin exposure without overdosing patients with excessive plasma levels. Simulated 

exposure with this regimen is depicted in Figure 4. 

(A) LD = 20 mg/kg + MD = 50 mg/L in each dwell, 2 L exchange, p  reserved diuresis, BW = 75 kg 

 
(B) LD = 20 mg/kg + MD = 50 mg/L in each dwell, 2 L exchange, oliguria, BW = 75 kg 

 
 

   

Figure 4. Cont.



Pharmaceutics 2023, 15, 1394 11 of 16

Pharmaceutics 2023, 15,    11  of  18 
 

 

The target exposure of >400 mg×h/L is not reached in the peritoneum for most of the 

days during intermittent dosing. Furthermore, the treatment may only be borderline effi-

cacious when recommended continuous dosing is applied in patients with preserved di-

uresis. Based on the simulations, it is clearly seen that during continuous administration, 

most of the patients would not reach even the target therapeutic plasmatic level of 20–25 

mg/L. This allows for an increase in the intraperitoneal maintenance dosing during the 

continuous dosing approach. On the other hand, a large proportion of patients is already 

overdosed after the second dose when intermittent dosing every 5 days was used in oli-

guric patients even though insufficient exposure was reached in the peritoneum. Based on 

the presented model, we proposed optimal dosing (LD = 20 mg/kg followed by MD = 50 

mg/kg in each subsequent dwell) that would allow us to increase the intraperitoneal van-

comycin exposure without overdosing patients with excessive plasma levels. Simulated 

exposure with this regimen is depicted in Figure 4. 

(A) LD = 20 mg/kg + MD = 50 mg/L in each dwell, 2 L exchange, p  reserved diuresis, BW = 75 kg 

 
(B) LD = 20 mg/kg + MD = 50 mg/L in each dwell, 2 L exchange, oliguria, BW = 75 kg 

 
 

   

Pharmaceutics 2023, 15,    12  of  18 
 

 

(C) LD = 20 mg/kg + MD = 50 mg/L in each dwell, 1.5 L exchange, p reserved diuresis, BW = 50 kg 

 
(D) LD = 20 mg/kg + MD = 50 mg/L in each dwell, 1.5 L exchange, oliguria, BW = 50 kg 

 
(E) LD = 20 mg/kg + MD = 50 mg/L in each dwell, 2 L exchange, p reserved diuresis, BW = 100 kg 

 
   Figure 4. Cont.



Pharmaceutics 2023, 15, 1394 12 of 16Pharmaceutics 2023, 15,    13  of  18 
 

 

(F) LD = 20 mg/kg + MD = 50 mg/L in each dwell, 2 L exchange, oliguria, BW = 100 kg 

 
 

Figure 4. Expected vancomycin i. p. and plasmatic concentrations and exposure after proposed dos-

ing. AUC24 is calculated for a CAPD schedule with 5 daily exchanges (i.e., 4 × 4 h and 1 × 8 h) in 

patients with BW = 50 kg, 75 kg, and 100 kg. When preserved diuresis is stated, residual eGFR was 

set to 6.76 mL/min (median value of the model). Red lines in the left graphs—target plasma concen-

trations range for continuous vancomycin infusion, red line in the right graphs—target vancomycin 

AUC (i.e., 400 mg×h/L) that should be reached for effective therapy. AUC—area under the curve of 

peritoneal  concentrations.  LD—loading  dose, MD—maintenance  dose. Oliguria  =  less  than  500 

mL/day; Preserved diuresis = more  than 500 mL/day. Solid  lines  represent median of simulated 

concentrations, shaded areas represent 95% confidence  interval of simulated concentrations; box 

plots with whiskers from minimum to maximum are presented for AUC24 for 21-day-long treatment.   

 

As our proposed dosing may lead to a slight overdose in some (especially oliguric, 

Figure 4B,D,F) patients, we recommend checking the vancomycin plasma concentration 

no later than on the fifth day of therapy and adjusting the vancomycin dosing as needed 

to ensure safe therapy. For a 50 kg patient, we used an exchange volume of 1.5 L due to 

the smaller peritoneal cavity. With a dosing schedule with 2 L exchanges in a 50 kg patient, 

the differences in plasma and peritoneal vancomycin levels were negligible (Figure S7). 

   

Figure 4. Expected vancomycin i. p. and plasmatic concentrations and exposure after proposed
dosing. AUC24 is calculated for a CAPD schedule with 5 daily exchanges (i.e., 4 × 4 h and 1 × 8 h)
in patients with BW = 50 kg, 75 kg, and 100 kg. When preserved diuresis is stated, residual eGFR
was set to 6.76 mL/min (median value of the model). Red lines in the left graphs—target plasma
concentrations range for continuous vancomycin infusion, red line in the right graphs—target van-
comycin AUC (i.e., 400 mg×h/L) that should be reached for effective therapy. AUC—area under the
curve of peritoneal concentrations. LD—loading dose, MD—maintenance dose. Oliguria = less than
500 mL/day; Preserved diuresis = more than 500 mL/day. Solid lines represent median of simulated
concentrations, shaded areas represent 95% confidence interval of simulated concentrations; box
plots with whiskers from minimum to maximum are presented for AUC24 for 21-day-long treatment.

3.3. Bactericidal Efficacy of Vancomycin Diluted in the Peritoneal Dialysate

Peritoneal dialysate samples were obtained from two patients, which were used to
evaluate the bactericidal activity. Patient 1 was treated by i. v. vancomycin only. The
vancomycin plasma concentration on the first day of the sampling was 25.19 mg/L, which
is at the upper limit of the range recommended for continuous infusion [12], but the van-
comycin concentrations in the i. p. samples were well below this value, as can be seen
in Table 3, which shows the vancomycin levels and first dilution where bacterial growth
was detectable. In the samples of glucose-based peritoneal dialysate with vancomycin, the
bactericidal effect was unmeasurable for Enterococcus faecalis and it was only borderline
effective for Staphylococcus epidermidis and Staphylococcus aureus, even though all experi-
mental strains were vancomycin sensitive. Samples from patient 2, who was treated with
the standard ISPD-recommended dosing schedules of continuous i. p. vancomycin + inter-
mittent i. p. gentamicin for mixed peritonitis, showed similar vancomycin concentrations
at the time of drain out (except for one sample where 1000 mg of vancomycin was infused
intraperitoneally). Nevertheless, the bactericidal effect was much more pronounced, which
is likely due to the presence of gentamicin.

Table 3. The bactericidal efficacy of peritoneal dialysate samples from two patients.

Patient 1—Intravenous Vancomycin, Infection of Unknown Origin, Staphylococcus lugdunensis in Exit-Site of PD Catheter;
Plasma Level = 25.19 mg/L

Vancomycin
concentration at
the end of the
dwell (mg/L)

6.67 8.14 11.78 7.78 8.03 12.19

Dialysis
solution glucose (1.36%) glucose (2.27%) glucose (2.27%) glucose (2.27%) glucose (1.36%) glucose (1.36%)

Staphylococcus
epidermidis

unmeasurable
(<1:2) 1:2 1:2 1:2 1:2 unmeasurable

(<1:2)
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Table 3. Cont.

Patient 1—Intravenous Vancomycin, Infection of Unknown Origin, Staphylococcus lugdunensis in Exit-Site of PD Catheter;
Plasma Level = 25.19 mg/L

Staphylococcus
aureus

unmeasurable
(<1:2)

unmeasurable
(<1:2) 1:2 1:2 1:2 1:2

Enterococcus
faecalis

unmeasurable
(<1:2)

unmeasurable
(<1:2)

unmeasurable
(<1:2)

unmeasurable
(<1:2)

unmeasurable
(<1:2)

unmeasurable
(<1:2)

Patient 2—intraperitoneal vancomycin and gentamicin; peritonitis caused by Enterobacter cloacae complex + Acinetobacter
dijkshoorniae; PD exit-site positive for Staphylococcus aureus

Administered
amount of

vancomycin

50 mg/2 L
(=25 mg/L)

1000 mg/2 L
(=500 mg/L)

50 mg/2 L
(=25 mg/L)

50 mg/2 L
(=25 mg/L)

50 mg/2 L
(=25 mg/L)

Vancomycin
concentration at
the end of the
dwell (mg/L)

7.1 117.94 10.61 12.36 12.24

Dialysis
solution icodextrin glucose (3.86%) icodextrin glucose (2.27%) icodextrin

Staphylococcus
epidermidis 1:16 1:16 1:16 1:8 1:8

Staphylococcus
aureus 1:8 1:16 1:8 1:8 1:4

Enterococcus
faecalis 1:2 1:2 1:2 1:2 1:2

4. Discussion

This is the first study using a population pharmacokinetic approach to describe the
pharmacokinetics of intraperitoneally administered vancomycin in patients treated with PD.
Our analysis showed the preservation of diuresis and eGFR to be the main determinants
of CL, and BW to be a significant covariate for Vd. Moreover, model-based simulations
indicated that current dosing recommendations by ISPD do not reach the exposure targets
in the peritoneal cavity in the majority of patients with preserved diuresis. We have
therefore recommended a new dosing regimen for these patients.

Frequent peritonitis is one of the limiting factors of peritoneal dialysis treatment. It may
lead to damage to the peritoneal membrane and, consequently, to the need to discontinue
this method of RRT. Therefore, a peritonitis episode should be treated as soon as possible
and aggressively enough to limit the damage [3]. Both the choice of the right agent and
its adequate dosing is crucial to bringing the disease under control. Our model is highly
accurate in predicting intraperitoneal levels based on the dosing schedule, as demonstrated
by the evaluation methods. The simulations clearly show that the intermittent vancomycin
dosing recommended by the ISPD (i.e., 15–30 mg/kg every 5–7 days) may lead not only to
intraperitoneal underexposure but also to possible systemic overexposure of the patient
after the second and subsequent doses (Figure 3). The ISPD-recommended continuous
dosing schedule with a 20–25 mg/kg loading dose and 25 mg/L maintenance doses leads to
intraperitoneal underexposure in a remarkable number of patients with preserved diuresis
and residual renal functions and overexposure for 1–2 days after LD administration in
some patients when 25 mg/L LD is used (Figure 3). The only subgroup of patients with
relatively reliable intraperitoneal exposure during the currently recommended dosing is
the subgroup of oliguric patients with continuous vancomycin administration.

We have also proven that clinically important intra-occasional variability during dif-
ferent episodes of peritonitis occurs in peritoneal membrane permeability for vancomycin
(Figure 2), which makes the prediction of plasma levels more variable. This is likely due to
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the differences in the severity of peritoneal membrane inflammation during a particular
peritonitis episode. This may also be the reason why trough plasma vancomycin concentra-
tions were not proven to correlate with treatment effectivity in other studies [20,21], as they
also poorly correlate with intraperitoneal levels. Plasma concentrations of vancomycin
were best described by a one-compartment distribution model (the second compartment in
our final model refers to the peritoneal cavity). This is supported by some studies, although
there are studies that described two- and even three-compartment models to provide the
best description of vancomycin disposition [22]. Due to differences in parameterization
and covariate relationships, a direct comparison of findings between population PK studies
using a non-linear mixed-effects approach is difficult. To allow a comparison of PK parame-
ters, we calculated parameter values for the typical individual from our study with a BW of
75 kg and an eGFR of 6.76 mL/min (Figure 3). A drastic variation in estimated Vd values
has been reported in previous studies, ranging from 29.9 L to 154 L [22–24]. Moreover, these
studies have not identified BW as a significant covariate, whereas many others have. In
respect of CL, there are few data regarding ESRD patients; in patients undergoing high-flux
hemodialysis (HD), non-HD CL of vancomycin was 0.443 L/h [25].

Based on our model, we recommend using the lowest recommended intraperitoneal
loading dose for a continuous dosing schedule of 20 mg/L and then administering mainte-
nance doses of 50 mg/L for each dwell. This yields sufficient exposure in the peritoneum
from the beginning of the treatment. Due to the variations of peritoneal membrane perme-
ability in different peritonitis occasions, plasma levels are difficult to predict. Therefore,
plasma levels should be monitored no later than on the fifth day of treatment to adjust the
dosing in patients, who would be at risk of excessive systemic exposure and repeatedly
thereafter as the levels may steadily grow in some patients due to the slow vancomycin
accumulation during treatment in patients with a markedly prolonged elimination half-life.
Typically, oliguric patients would likely need to reduce the dosing when reaching plasma
levels over 25 mg/L.

Our recommended dosing will maximize peritoneal exposure where the AUC24 con-
sistently exceeds the target values recommended by Rybak for systemic levels [12]. One
may argue that the peritoneal levels could be unnecessarily high, but it is likely not the case
as the efficacy of vancomycin in glucose and icodextrine-containing peritoneal dialysates is
largely reduced as shown in our ex vivo samples (Table 3), as well as previously published
data [13]. Therefore, intermittent vancomycin administration should not be used anymore,
and the required AUC for intraperitoneal vancomycin during continuous dosing should
be higher than the recommended values for plasma levels. At the same time, local high
vancomycin exposure in the peritoneum without excessive plasma levels will not represent
a risk for systemic toxicity. Therefore, we believe that vancomycin should be dosed to
reach the highest possible i. p. exposition, which is only limited by systemic toxicity when
plasma levels exceed the recommended value.

Our study has several drawbacks. All but one patient included in the study were
Caucasians so we could not test the possible influence of ethnic origin on the pharmacoki-
netics of vancomycin. We also used commonly available markers of inflammation as CRP,
which did not correlate with intercompartmental clearance, but we cannot exclude that
more sensitive markers such as procalcitonin would show some correlation as they may
more precisely correlate with peritoneal inflammation. We also measured the residual
glomerular filtration rate from the creatinine level, which is less precise in comparison to
cystatin C or other more precise methods.

5. Conclusions

We have developed a reliable population pharmacokinetics model for intraperitoneal
vancomycin administration based on TDM data from 57 treatment occasions. Our PK
model shows that the recommended ISPD dosing schedules for vancomycin may lead to
under-exposure in a considerable number of patients when intraperitoneal rather than
plasma concentrations are regarded as the treatment target. Based on simulations, we



Pharmaceutics 2023, 15, 1394 15 of 16

propose a novel dosing schedule for intraperitoneal vancomycin with a 20 mg/kg loading
dose and 50 mg/L maintenance doses that should be followed by adjustment according
to repeated TDM of plasma levels, beginning on day 5 at the latest. This dosing approach
will allow the highest possible intraperitoneal exposure without reaching toxic plasma
concentrations and therefore shall provide more efficacious treatment of peritonitis caused
by beta-lactam-resistant G+ infections.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/pharmaceutics15051394/s1. Figure S1. Calibration curves for
vancomycin concentration in glucose and icodextrine solutions. Figure S2. Goodness-of-fit plots
for the final model for vancomycin concentrations in plasma in ESRD patients with peritonitis
receiving CAPD. Figure S3. Goodness-of-fit plots for the final model for peritoneal vancomycin
concentrations in ESRD patients with peritonitis receiving CAPD. Figure S4. Normalized prediction
distribution errors (NPDEs) for peritoneal vancomycin concentrations. Figure S5. Normalized predic-
tion distribution errors (NPDEs) for peritoneal vancomycin concentrations. Figure S6. Simulations
of vancomycin exposure in the peritoneal fluid and plasma upon recommended continuous ISPD
dosing schedule. Figure S7. Expected vancomycin i. p. and plasmatic concentrations and exposure
after proposed dosing.
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