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Abstract: The combination of one molecule of organic and metal-based fragments that exhibit
antitumor activity is a modern approach in the search for new promising drugs. In this work,
biologically active ligands based on lonidamine (a selective inhibitor of aerobic glycolysis used
in clinical practice) were introduced into the structure of an antitumor organometallic ruthenium
scaffold. Resistant to ligand exchange reactions, compounds were prepared by replacing labile
ligands with stable ones. Moreover, cationic complexes containing two lonidamine-based ligands
were obtained. Antiproliferative activity was studied in vitro by MTT assays. It was shown that the
increase in the stability in ligand exchange reactions does not influence cytotoxicity. At the same
time, the introduction of the second lonidamine fragment approximately doubles the cytotoxicity of
studied complexes. The ability to induce apoptosis and caspase activation in tumour cell MCF7 was
studied by employing flow cytometry.

Keywords: ruthenium compounds; lonidamine; antiproliferative activity; ligand exchange; mode
of action

1. Introduction

Platinum-based drugs have been successfully used in clinical practice as anticancer
drugs for a long time, but side effects and primary or acquired resistance limited their
use [1–4]. Ruthenium compounds are the most promising replacement due to their unique
mode of action; for example, they do not show cross-resistance to platinum drugs and
possess relatively low general toxicity in in vivo tests [5–14]. Two coordination Ru(III)
compounds (Figure 1) NAMI-A and NKP-1339 (BOLD-100) were the first to enter into
clinical trials [15–21]. In preclinical trials, it was shown that NAMI-A was less effective
against a primary tumour but exhibits activity against metastases [22]. Unfortunately,
the compound was found to be insufficiently effective and was withdrawn from clinical
trials [23]. BOLD-100 was recently approved by FDA as an orphan drug designated for the
treatment of gastric cancer [24]. Organometallic derivatives, such as RAPTA and RAED,
come from another promising class of ruthenium antitumor compounds being included in
advanced preclinical studies [25–32].

It is known that the introduction of bioactive organic moieties into the structure of
metal-based agents can increase anticancer activity and selectivity due to the interaction
with several molecular targets [33–35]. One of the most important metabolic features of
malignant cells is their increased glycolytic activity known as the Warburg Effect [36,37].
Lonidamine (Figure 2) stimulates lactate production in noncancer cells and reduced gly-
colysis in their malignant counterparts by inhibiting mitochondrial-associated hexokinase
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or reprogramming cellular metabolism and mitochondrial function [38–41]. Lonidamine
is widely studied for the treatment of different types of cancer [42–44] and is of special
interest in the development of dual-acting anticancer compounds.
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Previously, lonidamine was introduced into the structures of Pt(IV) complexes [35,45,46]
and Ru(II/III) compounds [47–49]. The obtained platinum prodrugs and ruthenium twin
drugs showed a significantly improved cytotoxicity, superiority to cisplatin and lonidamine,
and also some degree of selectivity [35]. The Ru(III) complexes were also shown to be non-
competitive thioredoxin reductase inhibitors that effectively induce apoptosis via caspase
activation incubation for 24 h. The cytotoxicity of the Ru(III) complexes as well as cellular
uptake, apoptosis induction, and thioredoxin reductase inhibition positively correlate with
the length of the linker between the ruthenium center and lonidamine moiety [49]. Two
organometallic Ru(II) lonidamine conjugates showed promising cytotoxicity on human
glioblastoma cell lines and also exhibited a degree of selectivity towards these cells [47].

This work aims to introduce lonidamine-containing ligands into the structure of
organometallic Ru(II) compounds to study the antitumor activity and its dependence
on the distance between the lonidamine moiety and ruthenium centre, ligand exchange
reactions, and the number of lonidamine moieties in the molecule as well as a possible
mode of action of cell death via apoptosis induction and caspase activation.

2. Materials and Methods

All solvents were purified and degassed before use [50]. Ligands 1–6 were prepared
following the published procedure [47,49]. NMR spectra were recorded on a Bruker
Avance II 400 spectrometer at room temperature at 400.13 (1H) and 100.61 (13C{1H}) MHz.
2D NMR measurements were carried out using standard pulse programs. Chemical
shifts were referenced relative to the solvent signal for 1H and 13C spectra. Elemental
analysis was performed with MicroCube Elementar analyzer. Electrospray ionization
(ESI) mass spectra were recorded using a TSQ Endura (Thermo Fisher Scientific, Waltham,
MA, USA) instrument. Each analysed compound was dissolved in methanol (HPLC
grade) and injected directly into the ionization source through a syringe pump. The
spectra were recorded during 30 s in the m/z range 150–1400 in both positive and negative
ionization modes with spray voltage 3.4 and 2.5 kV, correspondingly. The human HCT116
colorectal carcinoma, A549 non-small cell lung carcinoma, MCF7 breast adenocarcinoma
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and SW480 colon adenocarcinoma cell lines were obtained from the European collection of
authenticated cell cultures (ECACC; Salisbury, UK).

2.1. Synthesis

(η6-p-cymene){N-(2-(1H-imidazol-1-yl)ethyl)-1-(2,4-dichlorobenzyl)-1H-indazole-3-
carboxamide}ruthenium(II)-N dichloride (7)
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N-(4-(1H-imidazol-1-yl)butyl)-1-(2,4-dichlorobenzyl)-1H-indazole-3-carboxamide 3
(100 mg, 0.22 mmol) in 5 mL CH2Cl2 was added to the dimer (η6-p-cymene-RuCl2)2 solution
(69 mg, 0.11 mmol) in 5 mL of CH2Cl2. The reaction mixture was stirred for 10 h. The
solution was evaporated to 1 mL, and 10 mL of ether and 15 mL of hexane were added. The
resulting orange precipitate was filtered off, washed with hexane, and dried in a vacuum.
Yield 70 mg (41%), Tdec. = 62–64 ◦C.

1H NMR (400.13 MHz, CDCl3) δ: 8.41 (d, 1H, J = 8.1 Hz, H21), 7.93 (s, 1H, H11),
7.49–7.29 (m, 5H, H22–24, H31, H12), 7.18–7.08 (m, 2H, H30, NH), 6.92 (s, 1H, H13), 6.71
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(d, 1H, J = 8.3 Hz, H28), 5.69 (s, 2H, H26), 5.44 (d, 2H, J = 5.7 Hz, H5, H6), 5.26 (d, 2H,
J = 5.7 Hz, H3, H4), 3.99 (t, 2H, J = 7.1 Hz, H14), 3.56–3.46 (m, 2H, H17), 3.02–2.92 (m, 1H,
H8), 1.96–1.82 (m, 2H, H16), 1.72–1.56 (m, 5H, H15, H1), 1.27 (d, 6H, J = 6.9 Hz, H9, H10).

13C{1H} NMR (100.61 MHz, CDCl3) δ: 162.7 (C18), 141.2 (C19), 139.7 (C11), 138.2 (C25),
134.6 (C27), 133.2 (C29/C32), 132.3 (C29/C32), 132.2 (C31), 129.6 (C28), 129.5 (C12), 127.7
(C30), 127.5 (C23), 123.1 (C21), 123.0 (C20/C22), 123.0 (C20/C22), 119.5 (C13), 109.3 (C24),
102.6 (C7), 97.3 (C2), 82.5 (C5, C6), 81.4 (C3, C4), 50.0 (C26), 47.8 (C14), 38.0 (C17), 30.7 (C8),
28.0 (C16), 27.0 (C15), 22.2 (C9, C10), 18.5 (C1).

Elem. anal. Calc. (%) for C32H35Cl4N5ORu: C 51.35, H 4.71 and N 9.36. Found: C
51.16, H 4.86, and N 8.99.

ESI-MS: m/z 714 [M − Cl]+.
(η6-p-cymene){N-(6-(1H-imidazol-1-yl)hexyl)-1-(2,4-dichlorobenzyl)-1H-indazole-3-

carboxamide}ruthenium(II)-N dichloride (10)
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(C8), 28.0 (C16), 27.0 (C15), 22.2 (C9, C10), 18.5 (C1). 

Elem. anal. Calc. (%) for C32H35Cl4N5ORu: C 51.35, H 4.71 and N 9.36. Found: C 51.16, 

H 4.86, and N 8.99. 

ESI-MS: m/z 714 [M − Cl]+. 

(η6-p-cymene){N-(6-(1H-imidazol-1-yl)hexyl)-1-(2,4-dichlorobenzyl)-1H-indazole-

3-carboxamide}ruthenium(II)-N dichloride (10) 

 

N-(6-(1H-imidazol-1-yl)hexyl)-1-(2,4-dichlorobenzyl)-1H-indazole-3-carboxamide 4 

(80 mg, 0.17 mmol) in 5 mL CH2Cl2 was added to the dimer (η6-p-cymene-RuCl2)2 solution 

(52 mg, 0.085 mmol) in 5 mL CH2Cl2. The reaction mixture was stirred for 10 h. The solu-

tion was evaporated to 1 mL, and 10 mL of ether and 15 mL of hexane were added. The 

resulting orange precipitate was filtered off, washed with hexane, and dried in a vacuum. 

Yield 90 mg (68%), Tdec. = 82–83 °C. 
1H NMR (400.13 MHz, CDCl3) δ: 8.40 (d, 1H, J = 8.1 Hz, H23), 7.88 (s, 1H, H11), 7.47–

7.23 (m, 5H, H24–26, H33, H12), 7.14–6.97 (m, 2H, H32, NH), 6.86 (s, 1H, H13), 6.63 (d, 1H, 

J = 8.3 Hz, H30), 5.65 (s, 2H, H28), 5.42 (d, 2H, J = 5.6 Hz, H5, H6), 5.23 (d, 2H, J = 5.6 Hz, 

H3, H4), 3.85 (t, 2H, J = 7.1 Hz, H14), 3.52–3.40 (m, 2H, H19), 3.02–2.87 (m, 1H, H8), 2.16 

(s, 3H, H1), 1.82–1.70 (m, 2H, H18), 1.69–1.55 (m, 2H, H15), 1.47–1.17 (m, 10H, H9, H10, 

H16, H17). 
13C{1H} NMR (100.61 MHz, CDCl3) δ: 162.5 (C20), 141.2 (C21), 139.7 (C11), 138.5 (C27), 

134.5 (C29), 133.2 (C31/C34), 132.4 (C31/C34), 132.1 (C33), 129.5 (C30), 129.4 (C12), 127.6 

(C32), 127.4 (C25), 123.1 (C23), 123.0 (C22, C24), 119.4 (C13), 109.2 (C26), 102.5 (C7), 97.3 

(C2), 82.6 (C5, C6), 81.4 (C3, C4), 50.1 (C28), 48.2 (C14), 38.7 (C19), 30.7 (C8), 30.4 (C18), 

29.6(C15), 26.3 (C16/C17), 26.1 (C16/C17), 22.2 (C9, C10), 18.5 (C1). 

Elem. anal. Calc. (%) for C34H39Cl4N5ORu: C 52.58, H 5.06, and N 9.01. Found: C 52.29, 

H 5.16, and N 8.57. 

ESI-MS: m/z 742 [M − Cl]+. 

(η6-p-cymene){N-(8-(1H-imidazol-1-yl)octyl)-1-(2,4-dichlorobenzyl)-1H-indazole-

3-carboxamide}ruthenium(II)-N dichloride (11) 

N-(6-(1H-imidazol-1-yl)hexyl)-1-(2,4-dichlorobenzyl)-1H-indazole-3-carboxamide 4
(80 mg, 0.17 mmol) in 5 mL CH2Cl2 was added to the dimer (η6-p-cymene-RuCl2)2 solution
(52 mg, 0.085 mmol) in 5 mL CH2Cl2. The reaction mixture was stirred for 10 h. The
solution was evaporated to 1 mL, and 10 mL of ether and 15 mL of hexane were added. The
resulting orange precipitate was filtered off, washed with hexane, and dried in a vacuum.
Yield 90 mg (68%), Tdec. = 82–83 ◦C.

1H NMR (400.13 MHz, CDCl3) δ: 8.40 (d, 1H, J = 8.1 Hz, H23), 7.88 (s, 1H, H11),
7.47–7.23 (m, 5H, H24–26, H33, H12), 7.14–6.97 (m, 2H, H32, NH), 6.86 (s, 1H, H13), 6.63
(d, 1H, J = 8.3 Hz, H30), 5.65 (s, 2H, H28), 5.42 (d, 2H, J = 5.6 Hz, H5, H6), 5.23 (d, 2H,
J = 5.6 Hz, H3, H4), 3.85 (t, 2H, J = 7.1 Hz, H14), 3.52–3.40 (m, 2H, H19), 3.02–2.87 (m, 1H,
H8), 2.16 (s, 3H, H1), 1.82–1.70 (m, 2H, H18), 1.69–1.55 (m, 2H, H15), 1.47–1.17 (m, 10H, H9,
H10, H16, H17).

13C{1H} NMR (100.61 MHz, CDCl3) δ: 162.5 (C20), 141.2 (C21), 139.7 (C11), 138.5 (C27),
134.5 (C29), 133.2 (C31/C34), 132.4 (C31/C34), 132.1 (C33), 129.5 (C30), 129.4 (C12), 127.6
(C32), 127.4 (C25), 123.1 (C23), 123.0 (C22, C24), 119.4 (C13), 109.2 (C26), 102.5 (C7), 97.3
(C2), 82.6 (C5, C6), 81.4 (C3, C4), 50.1 (C28), 48.2 (C14), 38.7 (C19), 30.7 (C8), 30.4 (C18),
29.6(C15), 26.3 (C16/C17), 26.1 (C16/C17), 22.2 (C9, C10), 18.5 (C1).

Elem. anal. Calc. (%) for C34H39Cl4N5ORu: C 52.58, H 5.06, and N 9.01. Found: C
52.29, H 5.16, and N 8.57.

ESI-MS: m/z 742 [M − Cl]+.
(η6-p-cymene){N-(8-(1H-imidazol-1-yl)octyl)-1-(2,4-dichlorobenzyl)-1H-indazole-3-

carboxamide}ruthenium(II)-N dichloride (11)
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N-(8-(1H-imidazol-1-yl)octyl)-1-(2,4-dichlorobenzyl)-1H-indazole-3-carboxamide 5 

(100 mg, 0.2 mmol) in 5 mL CH2Cl2 was added to the dimer (η6-p-cymene-RuCl2)2 solution 

(61 mg, 0.1 mmol) in 5 mL of CH2Cl2. The reaction mixture was stirred for 10 h. The solu-

tion was evaporated to 1 mL, and 10 mL of ether and 15 mL of hexane were added. The 

resulting orange precipitate was filtered off, washed with hexane, and dried in a vacuum. 

Yield 133 mg (82%), Tdec. = 63–65 °C. 
1H NMR (400.13 MHz, CDCl3) δ: 8.44 (d, 1H, J = 8.1 Hz, H25), 7.91 (s, 1H, H11), 7.49–

7.29 (m, 5H, H26–28, H35, H12), 7.13 (dd, 1H, J = 8.3, 2.0 Hz, H34), 7.02 (t, 1H, J = 6.4 Hz, 

NH), 6.88 (s, 1H, H13), 6.64 (d, 1H, J = 8.3 Hz, H32), 5.69 (s, 2H, H30), 5.45 (d, 2H, J = 5.9 

Hz, H5, H6), 5.25 (d, 2H, J = 5.9 Hz, H3, H4), 3.88 (t, 2H, J = 7.4 Hz, H14), 3.50 (q, 2H, J = 

6.8 Hz, H21), 3.03–2.93 (m, 1H, H8), 2.19 (s, 3H, H1), 1.82–1.71 (m, 2H, H20), 1.70–1.61 (m, 

2H, H15), 1.46–1.24 (m, 14H, H9, H10, H16, H17, H18, H19). 
13C{1H} NMR (100.61 MHz, CDCl3) δ: 162.5 (C22), 141.3 (C23), 139.8 (C11), 138.7 (C29), 

134.6 (C31), 133.3 (C33/C36), 132.6 (C33/C36), 132.3 (C35), 129.6 (C32), 129.4 (C12), 127.6 

(C34), 127.6 (C27), 123.3 (C25), 123.2 (C24/C26), 123.1 (C24/C26), 119.5 (C13), 109.3 (C28), 

102.6 (C7), 97.5 (C2), 82.8 (C5, C6), 81.5 (C3, C4), 50.2 (C30), 48.4 (C14), 39.1 (C21), 30.8 

(C8), 30.6 (C20), 29.9(C15), 29.2 (C16–20), 29.0 (C16–20), 26.9 (C16–20), 26.5 (C16–20), 22.4 

(C9, C10), 18.7 (C1). 

Elem. anal. Calc. (%) for C36H43Cl4N5ORu*0.1CH2Cl2: C 53.32, H 5.35, and N 8.61. 

Found: C 53.04, H 5.45, and N 8.32. 

ESI-MS: m/z 770 [M − Cl]+. 

(η6-p-cymene){N-(3-(1H-imidazol-1-yl)propyl)-1-(2,4-dichlorobenzyl)-1H-inda-

zole-3-carboxamide}ruthenium(II)-N oxalate (12) 

 

Silver oxalate Ag2C2O4 (67 mg, 0.22 mmol) was added to the dimer (η6-p-cymene-

RuCl2)2 solution (69 mg; 0.11 mmol) in 40.0 mL of H2O. The reaction mixture was stirred 

for 12 h. Precipitated AgCl was filtered off, and the solvent was evaporated under a vac-

uum. The resulting ruthenium complex was dissolved in 18.0 mL of MeOH, and a solution 

of compound 2 (100 mg, 0.22 mmol) in 2.0 mL of MeOH was added. The reaction mixture 

was stirred for 8 h, the solvent was evaporated under a vacuum, and the product was 

precipitated with hexane and filtered. The resulting orange precipitate was dried in a vac-

uum. Yield 82 mg (76%), Tdec. = 67–70 °C. 
1H NMR (400.13 MHz, CDCl3) δ: 8.39 (d, 1H, J = 8.1 Hz, H22), 7.45–7.30 (m, 5H, H23–

25, H31, H14), 7.17 (m, 1H, NH), 7.01 (s, 1H, H13), 6.95 (m, 1H, H32), 6.82 (d, 1H, J = 8.4 

Hz, H30), 6.68 (s, 1H, H15), 5.70 (s, 2H, H27), 5.52 (d, 2H, J = 6.0 Hz, H5, H6), 5.35 (d, 2H, 

J = 6.0 Hz, H3, H4), 4.03 (t, 2H, J = 6.7 Hz, H16), 3.45 (m, 2H, H18), 2.82 (m, 1H, H8), 2.17 

(s, 3H, H1), 1.28 (m, 8H, H9, H10, H17). 
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N-(8-(1H-imidazol-1-yl)octyl)-1-(2,4-dichlorobenzyl)-1H-indazole-3-carboxamide 5
(100 mg, 0.2 mmol) in 5 mL CH2Cl2 was added to the dimer (η6-p-cymene-RuCl2)2 solution
(61 mg, 0.1 mmol) in 5 mL of CH2Cl2. The reaction mixture was stirred for 10 h. The
solution was evaporated to 1 mL, and 10 mL of ether and 15 mL of hexane were added. The
resulting orange precipitate was filtered off, washed with hexane, and dried in a vacuum.
Yield 133 mg (82%), Tdec. = 63–65 ◦C.

1H NMR (400.13 MHz, CDCl3) δ: 8.44 (d, 1H, J = 8.1 Hz, H25), 7.91 (s, 1H, H11),
7.49–7.29 (m, 5H, H26–28, H35, H12), 7.13 (dd, 1H, J = 8.3, 2.0 Hz, H34), 7.02 (t, 1H,
J = 6.4 Hz, NH), 6.88 (s, 1H, H13), 6.64 (d, 1H, J = 8.3 Hz, H32), 5.69 (s, 2H, H30), 5.45 (d, 2H,
J = 5.9 Hz, H5, H6), 5.25 (d, 2H, J = 5.9 Hz, H3, H4), 3.88 (t, 2H, J = 7.4 Hz, H14), 3.50 (q, 2H,
J = 6.8 Hz, H21), 3.03–2.93 (m, 1H, H8), 2.19 (s, 3H, H1), 1.82–1.71 (m, 2H, H20), 1.70–1.61
(m, 2H, H15), 1.46–1.24 (m, 14H, H9, H10, H16, H17, H18, H19).

13C{1H} NMR (100.61 MHz, CDCl3) δ: 162.5 (C22), 141.3 (C23), 139.8 (C11), 138.7 (C29),
134.6 (C31), 133.3 (C33/C36), 132.6 (C33/C36), 132.3 (C35), 129.6 (C32), 129.4 (C12), 127.6
(C34), 127.6 (C27), 123.3 (C25), 123.2 (C24/C26), 123.1 (C24/C26), 119.5 (C13), 109.3 (C28),
102.6 (C7), 97.5 (C2), 82.8 (C5, C6), 81.5 (C3, C4), 50.2 (C30), 48.4 (C14), 39.1 (C21), 30.8 (C8),
30.6 (C20), 29.9(C15), 29.2 (C16–20), 29.0 (C16–20), 26.9 (C16–20), 26.5 (C16–20), 22.4 (C9,
C10), 18.7 (C1).

Elem. anal. Calc. (%) for C36H43Cl4N5ORu*0.1CH2Cl2: C 53.32, H 5.35, and N 8.61.
Found: C 53.04, H 5.45, and N 8.32.

ESI-MS: m/z 770 [M − Cl]+.
(η6-p-cymene){N-(3-(1H-imidazol-1-yl)propyl)-1-(2,4-dichlorobenzyl)-1H-indazole-

3-carboxamide}ruthenium(II)-N oxalate (12)
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N-(8-(1H-imidazol-1-yl)octyl)-1-(2,4-dichlorobenzyl)-1H-indazole-3-carboxamide 5 

(100 mg, 0.2 mmol) in 5 mL CH2Cl2 was added to the dimer (η6-p-cymene-RuCl2)2 solution 

(61 mg, 0.1 mmol) in 5 mL of CH2Cl2. The reaction mixture was stirred for 10 h. The solu-

tion was evaporated to 1 mL, and 10 mL of ether and 15 mL of hexane were added. The 

resulting orange precipitate was filtered off, washed with hexane, and dried in a vacuum. 

Yield 133 mg (82%), Tdec. = 63–65 °C. 
1H NMR (400.13 MHz, CDCl3) δ: 8.44 (d, 1H, J = 8.1 Hz, H25), 7.91 (s, 1H, H11), 7.49–

7.29 (m, 5H, H26–28, H35, H12), 7.13 (dd, 1H, J = 8.3, 2.0 Hz, H34), 7.02 (t, 1H, J = 6.4 Hz, 

NH), 6.88 (s, 1H, H13), 6.64 (d, 1H, J = 8.3 Hz, H32), 5.69 (s, 2H, H30), 5.45 (d, 2H, J = 5.9 

Hz, H5, H6), 5.25 (d, 2H, J = 5.9 Hz, H3, H4), 3.88 (t, 2H, J = 7.4 Hz, H14), 3.50 (q, 2H, J = 

6.8 Hz, H21), 3.03–2.93 (m, 1H, H8), 2.19 (s, 3H, H1), 1.82–1.71 (m, 2H, H20), 1.70–1.61 (m, 

2H, H15), 1.46–1.24 (m, 14H, H9, H10, H16, H17, H18, H19). 
13C{1H} NMR (100.61 MHz, CDCl3) δ: 162.5 (C22), 141.3 (C23), 139.8 (C11), 138.7 (C29), 

134.6 (C31), 133.3 (C33/C36), 132.6 (C33/C36), 132.3 (C35), 129.6 (C32), 129.4 (C12), 127.6 

(C34), 127.6 (C27), 123.3 (C25), 123.2 (C24/C26), 123.1 (C24/C26), 119.5 (C13), 109.3 (C28), 

102.6 (C7), 97.5 (C2), 82.8 (C5, C6), 81.5 (C3, C4), 50.2 (C30), 48.4 (C14), 39.1 (C21), 30.8 

(C8), 30.6 (C20), 29.9(C15), 29.2 (C16–20), 29.0 (C16–20), 26.9 (C16–20), 26.5 (C16–20), 22.4 

(C9, C10), 18.7 (C1). 

Elem. anal. Calc. (%) for C36H43Cl4N5ORu*0.1CH2Cl2: C 53.32, H 5.35, and N 8.61. 

Found: C 53.04, H 5.45, and N 8.32. 

ESI-MS: m/z 770 [M − Cl]+. 

(η6-p-cymene){N-(3-(1H-imidazol-1-yl)propyl)-1-(2,4-dichlorobenzyl)-1H-inda-

zole-3-carboxamide}ruthenium(II)-N oxalate (12) 

 

Silver oxalate Ag2C2O4 (67 mg, 0.22 mmol) was added to the dimer (η6-p-cymene-

RuCl2)2 solution (69 mg; 0.11 mmol) in 40.0 mL of H2O. The reaction mixture was stirred 

for 12 h. Precipitated AgCl was filtered off, and the solvent was evaporated under a vac-

uum. The resulting ruthenium complex was dissolved in 18.0 mL of MeOH, and a solution 

of compound 2 (100 mg, 0.22 mmol) in 2.0 mL of MeOH was added. The reaction mixture 

was stirred for 8 h, the solvent was evaporated under a vacuum, and the product was 

precipitated with hexane and filtered. The resulting orange precipitate was dried in a vac-

uum. Yield 82 mg (76%), Tdec. = 67–70 °C. 
1H NMR (400.13 MHz, CDCl3) δ: 8.39 (d, 1H, J = 8.1 Hz, H22), 7.45–7.30 (m, 5H, H23–

25, H31, H14), 7.17 (m, 1H, NH), 7.01 (s, 1H, H13), 6.95 (m, 1H, H32), 6.82 (d, 1H, J = 8.4 

Hz, H30), 6.68 (s, 1H, H15), 5.70 (s, 2H, H27), 5.52 (d, 2H, J = 6.0 Hz, H5, H6), 5.35 (d, 2H, 

J = 6.0 Hz, H3, H4), 4.03 (t, 2H, J = 6.7 Hz, H16), 3.45 (m, 2H, H18), 2.82 (m, 1H, H8), 2.17 

(s, 3H, H1), 1.28 (m, 8H, H9, H10, H17). 

Silver oxalate Ag2C2O4 (67 mg, 0.22 mmol) was added to the dimer (η6-p-cymene-
RuCl2)2 solution (69 mg; 0.11 mmol) in 40.0 mL of H2O. The reaction mixture was stirred for
12 h. Precipitated AgCl was filtered off, and the solvent was evaporated under a vacuum.
The resulting ruthenium complex was dissolved in 18.0 mL of MeOH, and a solution of
compound 2 (100 mg, 0.22 mmol) in 2.0 mL of MeOH was added. The reaction mixture
was stirred for 8 h, the solvent was evaporated under a vacuum, and the product was
precipitated with hexane and filtered. The resulting orange precipitate was dried in a
vacuum. Yield 82 mg (76%), Tdec. = 67–70 ◦C.

1H NMR (400.13 MHz, CDCl3) δ: 8.39 (d, 1H, J = 8.1 Hz, H22), 7.45–7.30 (m, 5H,
H23–25, H31, H14), 7.17 (m, 1H, NH), 7.01 (s, 1H, H13), 6.95 (m, 1H, H32), 6.82 (d, 1H,
J = 8.4 Hz, H30), 6.68 (s, 1H, H15), 5.70 (s, 2H, H27), 5.52 (d, 2H, J = 6.0 Hz, H5, H6), 5.35 (d,
2H, J = 6.0 Hz, H3, H4), 4.03 (t, 2H, J = 6.7 Hz, H16), 3.45 (m, 2H, H18), 2.82 (m, 1H, H8),
2.17 (s, 3H, H1), 1.28 (m, 8H, H9, H10, H17).

13C{1H} NMR (100.61 MHz, CDCl3) δ: 165.9 (C11, C12), 163.0 (C19), 141.1 (C20), 139.3
(C13), 138.0 (C26), 134.5 (C28), 133.2 (C29/C33), 132.3 (C29/C33), 130.0 (C31), 129.7 (C30),
129.4 (C14), 127.8 (C32), 127.4 (C24), 123.0 (C22), 123.0 (C21, C23), 120.5 (C15), 109.5 (C25),
100.9 (C7), 96.9 (C2), 82.3 (C5, C6), 80.0 (C3, C4), 50.0 (C27), 45.4 (C16), 35.4 (C18), 30.9 (C8),
27.7 (C17), 22.5 (C9, C10), 17.9 (C1).

Elem. anal. Calc. (%) for C33H33Cl2N5O5Ru: C 52.73, H 4.43, and N 9.32. Found: C
52.70, H 4.70, and N 8.83.

ESI-MS: m/z 774 [M + Na]+.



Pharmaceutics 2023, 15, 1366 6 of 18

(η6-p-cymene){N-(6-(1H-imidazol-1-yl)hexyl)-1-(2,4-dichlorobenzyl)-1H-indazole-3-
carboxamide}ruthenium(II)-N oxalate (13)
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13C{1H} NMR (100.61 MHz, CDCl3) δ: 165.9 (C11, C12), 163.0 (C19), 141.1 (C20), 139.3 

(C13), 138.0 (C26), 134.5 (C28), 133.2 (C29/C33), 132.3 (C29/C33), 130.0 (C31), 129.7 (C30), 

129.4 (C14), 127.8 (C32), 127.4 (C24), 123.0 (C22), 123.0 (C21, C23), 120.5 (C15), 109.5 (C25), 

100.9 (C7), 96.9 (C2), 82.3 (C5, C6), 80.0 (C3, C4), 50.0 (C27), 45.4 (C16), 35.4 (C18), 30.9 

(C8), 27.7 (C17), 22.5 (C9, C10), 17.9 (C1). 

Elem. anal. Calc. (%) for C33H33Cl2N5O5Ru: C 52.73, H 4.43, and N 9.32. Found: C 52.70, 

H 4.70, and N 8.83. 

ESI-MS: m/z 774 [M + Na]+. 

(η6-p-cymene){N-(6-(1H-imidazol-1-yl)hexyl)-1-(2,4-dichlorobenzyl)-1H-indazole-

3-carboxamide}ruthenium(II)-N oxalate (13) 

 

Silver oxalate Ag2C2O4 (67 mg, 0.22 mmol) was added to the dimer (η6-p-cymene-

RuCl2)2 solution (69 mg; 0.11 mmol) in 40.0 mL H2O. The reaction mixture was stirred for 

12 h. Precipitated AgCl was filtered off, and the solvent was evaporated under a vacuum. 

The resulting ruthenium complex was dissolved in 18.0 mL of MeOH, and a solution of 

compound 4 (100 mg, 0.22 mmol) in 2.0 mL of MeOH was added. The reaction mixture 

was stirred for 8 h, the solvent was evaporated under a vacuum, and the product was 

precipitated with hexane and filtered. The resulting orange precipitate was dried in a vac-

uum. Yield 78 mg (72%). 
1H NMR (400.13 MHz, CDCl3) δ: 8.29 (d, 1H, J = 8.5 Hz, H25), 7.48–7.29 (m, 5H, H26–

28, H34, H14), 7.12 (m, 2H, H35, NH), 7.05 (s, 1H, H13), 6.90 (d, 1H, J = 8.4 Hz, H33), 6.68 

(s, 1H, H15), 5.67 (s, 2H, H30), 5.48 (d, 2H, J = 5.8 Hz, H5, H6), 5.26 (d, 2H, J = 5.6 Hz, H3, 

H4), 3.89 (t, 2H, J = 7.7 Hz, H16), 3.52–3.45 (m, 2H, H21), 2.80–2.79 (m, 1H, H8), 2.17 (s, 3H, 

H1), 1.66–1.61 (m, 2H, H17), 1.42–1.40 (m, 2H, H20), 1.29–1.28 (m, 10H, H9, H10, H18, 

H19). 
13C{1H} NMR (100.61 MHz, CDCl3) δ: 165.7 (C11, C12), 162.5 (C22), 141.1 (C23), 138.4 

(C13), 138.1 (C29), 134.5 (C31), 133.2 (C32/C36), 132.4 (C32/C36), 130.6 (C34), 129.6 (C33), 

129.4 (C14), 127.6 (C35), 127.4 (C27), 123.0 (C25), 122.6 (C24, C26), 120.5 (C15), 109.3 (C28), 

100.9 (C7), 97.0 (C2), 82.3 (C5, C6), 79.8 (C3, C4), 50.0 (C30), 48.3 (C16), 38.7 (C21), 30.9 

(C8), 30.4 (C20), 29.5 (C17), 26.2 (C18/C19), 25.9 (C18/C19), 22.5 (C9, C10), 18.0 (C1). 

Elem. anal. Calc. (%) for C36H39Cl2N5O5Ru: C 54.48, H 4.95, and N 8.82. Found: C 54.02, 

H 4.89, and N 8.56. 

ESI-MS: m/z 816 [M + Na]+. 

(η6-p-cymene){N-(12-(1H-imidazol-1-yl)dodecyl)-1-(2,4-dichlorobenzyl)-1H-inda-

zole-3-carboxamide}ruthenium(II)-N oxalate (14) 

 

Silver oxalate Ag2C2O4 (67 mg, 0.22 mmol) was added to the dimer (η6-p-cymene-
RuCl2)2 solution (69 mg; 0.11 mmol) in 40.0 mL H2O. The reaction mixture was stirred for
12 h. Precipitated AgCl was filtered off, and the solvent was evaporated under a vacuum.
The resulting ruthenium complex was dissolved in 18.0 mL of MeOH, and a solution of
compound 4 (100 mg, 0.22 mmol) in 2.0 mL of MeOH was added. The reaction mixture
was stirred for 8 h, the solvent was evaporated under a vacuum, and the product was
precipitated with hexane and filtered. The resulting orange precipitate was dried in a
vacuum. Yield 78 mg (72%).

1H NMR (400.13 MHz, CDCl3) δ: 8.29 (d, 1H, J = 8.5 Hz, H25), 7.48–7.29 (m, 5H,
H26–28, H34, H14), 7.12 (m, 2H, H35, NH), 7.05 (s, 1H, H13), 6.90 (d, 1H, J = 8.4 Hz, H33),
6.68 (s, 1H, H15), 5.67 (s, 2H, H30), 5.48 (d, 2H, J = 5.8 Hz, H5, H6), 5.26 (d, 2H, J = 5.6 Hz,
H3, H4), 3.89 (t, 2H, J = 7.7 Hz, H16), 3.52–3.45 (m, 2H, H21), 2.80–2.79 (m, 1H, H8), 2.17 (s,
3H, H1), 1.66–1.61 (m, 2H, H17), 1.42–1.40 (m, 2H, H20), 1.29–1.28 (m, 10H, H9, H10, H18,
H19).

13C{1H} NMR (100.61 MHz, CDCl3) δ: 165.7 (C11, C12), 162.5 (C22), 141.1 (C23), 138.4
(C13), 138.1 (C29), 134.5 (C31), 133.2 (C32/C36), 132.4 (C32/C36), 130.6 (C34), 129.6 (C33),
129.4 (C14), 127.6 (C35), 127.4 (C27), 123.0 (C25), 122.6 (C24, C26), 120.5 (C15), 109.3 (C28),
100.9 (C7), 97.0 (C2), 82.3 (C5, C6), 79.8 (C3, C4), 50.0 (C30), 48.3 (C16), 38.7 (C21), 30.9 (C8),
30.4 (C20), 29.5 (C17), 26.2 (C18/C19), 25.9 (C18/C19), 22.5 (C9, C10), 18.0 (C1).

Elem. anal. Calc. (%) for C36H39Cl2N5O5Ru: C 54.48, H 4.95, and N 8.82. Found: C
54.02, H 4.89, and N 8.56.

ESI-MS: m/z 816 [M + Na]+.
(η6-p-cymene){N-(12-(1H-imidazol-1-yl)dodecyl)-1-(2,4-dichlorobenzyl)-1H-indazole-

3-carboxamide}ruthenium(II)-N oxalate (14)
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13C{1H} NMR (100.61 MHz, CDCl3) δ: 165.9 (C11, C12), 163.0 (C19), 141.1 (C20), 139.3 

(C13), 138.0 (C26), 134.5 (C28), 133.2 (C29/C33), 132.3 (C29/C33), 130.0 (C31), 129.7 (C30), 

129.4 (C14), 127.8 (C32), 127.4 (C24), 123.0 (C22), 123.0 (C21, C23), 120.5 (C15), 109.5 (C25), 

100.9 (C7), 96.9 (C2), 82.3 (C5, C6), 80.0 (C3, C4), 50.0 (C27), 45.4 (C16), 35.4 (C18), 30.9 

(C8), 27.7 (C17), 22.5 (C9, C10), 17.9 (C1). 

Elem. anal. Calc. (%) for C33H33Cl2N5O5Ru: C 52.73, H 4.43, and N 9.32. Found: C 52.70, 

H 4.70, and N 8.83. 

ESI-MS: m/z 774 [M + Na]+. 

(η6-p-cymene){N-(6-(1H-imidazol-1-yl)hexyl)-1-(2,4-dichlorobenzyl)-1H-indazole-

3-carboxamide}ruthenium(II)-N oxalate (13) 

 

Silver oxalate Ag2C2O4 (67 mg, 0.22 mmol) was added to the dimer (η6-p-cymene-

RuCl2)2 solution (69 mg; 0.11 mmol) in 40.0 mL H2O. The reaction mixture was stirred for 

12 h. Precipitated AgCl was filtered off, and the solvent was evaporated under a vacuum. 

The resulting ruthenium complex was dissolved in 18.0 mL of MeOH, and a solution of 

compound 4 (100 mg, 0.22 mmol) in 2.0 mL of MeOH was added. The reaction mixture 

was stirred for 8 h, the solvent was evaporated under a vacuum, and the product was 

precipitated with hexane and filtered. The resulting orange precipitate was dried in a vac-

uum. Yield 78 mg (72%). 
1H NMR (400.13 MHz, CDCl3) δ: 8.29 (d, 1H, J = 8.5 Hz, H25), 7.48–7.29 (m, 5H, H26–

28, H34, H14), 7.12 (m, 2H, H35, NH), 7.05 (s, 1H, H13), 6.90 (d, 1H, J = 8.4 Hz, H33), 6.68 

(s, 1H, H15), 5.67 (s, 2H, H30), 5.48 (d, 2H, J = 5.8 Hz, H5, H6), 5.26 (d, 2H, J = 5.6 Hz, H3, 

H4), 3.89 (t, 2H, J = 7.7 Hz, H16), 3.52–3.45 (m, 2H, H21), 2.80–2.79 (m, 1H, H8), 2.17 (s, 3H, 

H1), 1.66–1.61 (m, 2H, H17), 1.42–1.40 (m, 2H, H20), 1.29–1.28 (m, 10H, H9, H10, H18, 

H19). 
13C{1H} NMR (100.61 MHz, CDCl3) δ: 165.7 (C11, C12), 162.5 (C22), 141.1 (C23), 138.4 

(C13), 138.1 (C29), 134.5 (C31), 133.2 (C32/C36), 132.4 (C32/C36), 130.6 (C34), 129.6 (C33), 

129.4 (C14), 127.6 (C35), 127.4 (C27), 123.0 (C25), 122.6 (C24, C26), 120.5 (C15), 109.3 (C28), 

100.9 (C7), 97.0 (C2), 82.3 (C5, C6), 79.8 (C3, C4), 50.0 (C30), 48.3 (C16), 38.7 (C21), 30.9 

(C8), 30.4 (C20), 29.5 (C17), 26.2 (C18/C19), 25.9 (C18/C19), 22.5 (C9, C10), 18.0 (C1). 

Elem. anal. Calc. (%) for C36H39Cl2N5O5Ru: C 54.48, H 4.95, and N 8.82. Found: C 54.02, 

H 4.89, and N 8.56. 

ESI-MS: m/z 816 [M + Na]+. 

(η6-p-cymene){N-(12-(1H-imidazol-1-yl)dodecyl)-1-(2,4-dichlorobenzyl)-1H-inda-

zole-3-carboxamide}ruthenium(II)-N oxalate (14) 

 

Silver oxalate Ag2C2O4 (67 mg, 0.22 mmol) was added to the dimer (η6-p-cymene-
RuCl2)2 solution (69 mg; 0.11 mmol) in 40.0 mL of H2O. The reaction mixture was stirred for
12 h. Precipitated AgCl was filtered off, and the solvent was evaporated under a vacuum.
The resulting ruthenium complex was dissolved in 18.0 mL of MeOH, and a solution of
compound 6 (122 mg, 0.22 mmol) in 2.0 mL of MeOH was added. The reaction mixture
was stirred for 8 h, the solvent was evaporated under a vacuum, and the product was
precipitated with hexane and filtered. The resulting orange precipitate was dried in a
vacuum. Yield 98 mg (65%), Tmelt. = 84–86 ◦C.
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1H NMR (400.13 MHz, CDCl3) δ: 8.42 (d, 1H, J = 8.1 Hz, H32), 7.44–7.27 (m, 5H, H14,
H33–35, H41), 7.13–7.10 (m, 2H, H42, NH), 7.05 (s, 1H, H15), 6.91 (d, 1H, J = 8.3 Hz, H40),
6.43 (s, 1H, H16), 5.66 (s, 2H, H37), 5.47 (d, 2H, J = 5.7 Hz, H5, H6), 5.26 (d, 2H, J = 5.9 Hz,
H3, H4), 3.86 (t, 2H, J = 7.3 Hz, H17), 3.48 (q, 2H, J = 6.9 Hz, H28), 2.83–2.77 (m, 1H, H8),
2.16 (s, 3H, H1), 1.78–1.63 (m, 4H, H18, H27), 1.45–1.23 (m, 22H, H19–26, H9, H10).

13C{1H} NMR (100.61 MHz, CDCl3) δ: 165.4 (C11, C12), 162.3 (C28), 141.1 (C13), 138.5
(C29), 137.9 (C35), 134.4 (C37), 133.1 (C42), 132.4 (C38), 130.5 (C14), 129.4 (C39), 129.3 (C33),
127.5 (C41), 127.4 (C40), 123.1 (C31), 123.1 (C30), 123.0 (C32), 120.4 (C15), 109.3 (C34), 100.7
(C7), 96.9 (C2), 82.3 (C5, C6), 79.8 (C3, C4), 50.0 (C36), 48.4 (C16), 39.1 (C27), 30.9 (C8), 30.6
(C17), 29.8 (C26), 28.8 (C18–25), 28.7 (C18–25), 28.6 (C18–25), 28.6 (C18–25), 28.2 (C18–25),
27.2 (C18–25), 26.6 (C18–25), 22.5 (C9, C10), 18.0 (C1).

Elem. anal. Calc. (%) for C38H43Cl2N5O5Ru*0.7CH3OH: C 56.97, H 6.02, and N 7.78.
Found: C 56.53, H 5.65, and N 7.94.

ESI-MS: m/z 900 [M + Na]+.
(η6-p-cymene){N-(3-(1H-imidazol-1-yl)propyl)-1-(2,4-dichlorobenzyl)-1H-indazole-

3-carboxamide}ruthenium(II)-N malonate (15)
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Silver oxalate Ag2C2O4 (67 mg, 0.22 mmol) was added to the dimer (η6-p-cymene-

RuCl2)2 solution (69 mg; 0.11 mmol) in 40.0 mL of H2O. The reaction mixture was stirred 

for 12 h. Precipitated AgCl was filtered off, and the solvent was evaporated under a vac-

uum. The resulting ruthenium complex was dissolved in 18.0 mL of MeOH, and a solution 

of compound 6 (122 mg, 0.22 mmol) in 2.0 mL of MeOH was added. The reaction mixture 

was stirred for 8 h, the solvent was evaporated under a vacuum, and the product was 

precipitated with hexane and filtered. The resulting orange precipitate was dried in a vac-

uum. Yield 98 mg (65%), Tmelt. = 84–86 °C. 
1H NMR (400.13 MHz, CDCl3) δ: 8.42 (d, 1H, J = 8.1 Hz, H32), 7.44–7.27 (m, 5H, H14, 

H33–35, H41), 7.13–7.10 (m, 2H, H42, NH), 7.05 (s, 1H, H15), 6.91 (d, 1H, J = 8.3 Hz, H40), 

6.43 (s, 1H, H16), 5.66 (s, 2H, H37), 5.47 (d, 2H, J = 5.7 Hz, H5, H6), 5.26 (d, 2H, J = 5.9 Hz, 

H3, H4), 3.86 (t, 2H, J = 7.3 Hz, H17), 3.48 (q, 2H, J = 6.9 Hz, H28), 2.83–2.77 (m, 1H, H8), 

2.16 (s, 3H, H1), 1.78–1.63 (m, 4H, H18, H27), 1.45–1.23 (m, 22H, H19–26, H9, H10). 
13C{1H} NMR (100.61 MHz, CDCl3) δ: 165.4 (C11, C12), 162.3 (C28), 141.1 (C13), 138.5 

(C29), 137.9 (C35), 134.4 (C37), 133.1 (C42), 132.4 (C38), 130.5 (C14), 129.4 (C39), 129.3 

(C33), 127.5 (C41), 127.4 (C40), 123.1 (C31), 123.1 (C30), 123.0 (C32), 120.4 (C15), 109.3 

(C34), 100.7 (C7), 96.9 (C2), 82.3 (C5, C6), 79.8 (C3, C4), 50.0 (C36), 48.4 (C16), 39.1 (C27), 

30.9 (C8), 30.6 (C17), 29.8 (C26), 28.8 (C18–25), 28.7 (C18–25), 28.6 (C18–25), 28.6 (C18–25), 

28.2 (C18–25), 27.2 (C18–25), 26.6 (C18–25), 22.5 (C9, C10), 18.0 (C1). 

Elem. anal. Calc. (%) for C38H43Cl2N5O5Ru*0.7CH3OH: C 56.97, H 6.02, and N 7.78. 

Found: C 56.53, H 5.65, and N 7.94. 

ESI-MS: m/z 900 [M + Na]+. 

(η6-p-cymene){N-(3-(1H-imidazol-1-yl)propyl)-1-(2,4-dichlorobenzyl)-1H-inda-

zole-3-carboxamide}ruthenium(II)-N malonate (15) 

 

Silver malonate Ag2C3H2O4 (70 mg, 0.2195 mmol) was added to the dimer (η6-p-cy-

mene-RuCl2)2 solution (67 mg; 0.1097 mmol) in 40.0 mL of H2O. The reaction mixture was 

stirred for 12 h. Precipitated AgCl was filtered off, and the solvent was evaporated under 

a vacuum. The resulting ruthenium complex was dissolved in 18.0 mL of MeOH, and a 

solution of compound 2 (94 mg, 0.2195 mmol) in 2.0 mL of MeOH was added. The reaction 

mixture was stirred for 8 h, the solvent was evaporated under a vacuum, and the product 

was isolated by column chromatography on silica gel (eluent: EtOAc:MeOH:CH2Cl2 3:3:1, 

Rf = 0.5). The resulting orange precipitate was dried in a vacuum. Yield 97 mg (58%), Tmelt. 

= 115–117 °C. 
1H NMR (400.13 MHz, CDCl3) δ: 8.37 (d, 1H, J = 8.2 Hz, H23), 7.75 (s, 1H, H14), 7.45–

7.27 (m, 4H, H24–26, H32), 7.17–7.13 (m, 3H, H33, H15, NH), 7.02 (s, 1H, H16), 6.74 (d, 1H, 

J = 8.4 Hz, H31), 5.69 (s, 2H, H28), 5.52 (d, 2H, J = 6.0 Hz, H5, H6), 5.33 (d, 2H, J = 6.0 Hz, 

H3, H4), 4.02 (t, 2H, J = 6.8 Hz, H17), 3.46 (q, 2H, J = 6.4 Hz, H19), 3.38 (d, 1H, J = 15.9 Hz, 

H12), 2.85–2.77 (m, 2H, H12, H8), 2.16 (s, 3H, H1), 2.11–2.04 (m, 2H, H18), 1.27 (d, 6H, J = 

6.9 Hz, H9, H10). 
13C{1H} NMR (100.61 MHz, CDCl3) δ: 175.1 (C11, C13), 163.0 (C20), 141.2 (C14), 139.1 

(C21), 137.9 (C27), 134.6 (C29), 133.3 (C30/C34), 132.2 (C30/C34), 130.3 (C15), 129.7 (C31), 

129.5 (C25), 127.8 (C33), 127.6 (C32), 123.2 (C23), 123.0 (C22/C24), 122.8 (C22/C24), 120.0 

(C16), 109.5 (C26), 101.4 (C7), 97.1 (C2), 82.3 (C5, C6), 80.5 (C3, C4), 50.2 (C28), 46.7 (C12), 

45.5 (C17), 35.3 (C19), 31.1 (C18), 30.7 (C8), 22.4 (C9, C10), 18.0 (C1). 

Silver malonate Ag2C3H2O4 (70 mg, 0.2195 mmol) was added to the dimer (η6-p-
cymene-RuCl2)2 solution (67 mg; 0.1097 mmol) in 40.0 mL of H2O. The reaction mixture
was stirred for 12 h. Precipitated AgCl was filtered off, and the solvent was evaporated
under a vacuum. The resulting ruthenium complex was dissolved in 18.0 mL of MeOH, and
a solution of compound 2 (94 mg, 0.2195 mmol) in 2.0 mL of MeOH was added. The reaction
mixture was stirred for 8 h, the solvent was evaporated under a vacuum, and the product
was isolated by column chromatography on silica gel (eluent: EtOAc:MeOH:CH2Cl2 3:3:1,
Rf = 0.5). The resulting orange precipitate was dried in a vacuum. Yield 97 mg (58%),
Tmelt. = 115–117 ◦C.

1H NMR (400.13 MHz, CDCl3) δ: 8.37 (d, 1H, J = 8.2 Hz, H23), 7.75 (s, 1H, H14),
7.45–7.27 (m, 4H, H24–26, H32), 7.17–7.13 (m, 3H, H33, H15, NH), 7.02 (s, 1H, H16), 6.74
(d, 1H, J = 8.4 Hz, H31), 5.69 (s, 2H, H28), 5.52 (d, 2H, J = 6.0 Hz, H5, H6), 5.33 (d, 2H,
J = 6.0 Hz, H3, H4), 4.02 (t, 2H, J = 6.8 Hz, H17), 3.46 (q, 2H, J = 6.4 Hz, H19), 3.38 (d, 1H,
J = 15.9 Hz, H12), 2.85–2.77 (m, 2H, H12, H8), 2.16 (s, 3H, H1), 2.11–2.04 (m, 2H, H18), 1.27
(d, 6H, J = 6.9 Hz, H9, H10).

13C{1H} NMR (100.61 MHz, CDCl3) δ: 175.1 (C11, C13), 163.0 (C20), 141.2 (C14), 139.1
(C21), 137.9 (C27), 134.6 (C29), 133.3 (C30/C34), 132.2 (C30/C34), 130.3 (C15), 129.7 (C31),
129.5 (C25), 127.8 (C33), 127.6 (C32), 123.2 (C23), 123.0 (C22/C24), 122.8 (C22/C24), 120.0
(C16), 109.5 (C26), 101.4 (C7), 97.1 (C2), 82.3 (C5, C6), 80.5 (C3, C4), 50.2 (C28), 46.7 (C12),
45.5 (C17), 35.3 (C19), 31.1 (C18), 30.7 (C8), 22.4 (C9, C10), 18.0 (C1).

Elem. anal. Calc. (%) for C34H35Cl2N5O5Ru*0.1CH2Cl2: C 52.91, H 4.58, and N 9.05.
Found: C 52.68, H 4.50, and N 8.97.

ESI-MS: m/z 766 [M + H]+, m/z 788 [M + Na]+.
(η6-p-cymene){N-(6-(1H-imidazol-1-yl)hexyl)-1-(2,4-dichlorobenzyl)-1H-indazole-3-

carboxamide}ruthenium(II)-N malonate (16)
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Elem. anal. Calc. (%) for C34H35Cl2N5O5Ru*0.1CH2Cl2: C 52.91, H 4.58, and N 9.05. 

Found: C 52.68, H 4.50, and N 8.97. 

ESI-MS: m/z 766 [M + H]+, m/z 788 [M + Na]+. 

(η6-p-cymene){N-(6-(1H-imidazol-1-yl)hexyl)-1-(2,4-dichlorobenzyl)-1H-indazole-

3-carboxamide}ruthenium(II)-N malonate (16) 

 

Silver malonate Ag2C3H2O4 (86 mg, 0.2722 mmol) was added to the dimer (η6-p-cy-

mene-RuCl2)2 solution (83 mg; 0.1361 mmol) in 50.0 mL of H2O. The reaction mixture was 

stirred for 12 h. Precipitated AgCl was filtered off, and the solvent was evaporated under 

a vacuum. The resulting ruthenium complex was dissolved in 22.0 mL of MeOH, and a 

solution of compound 4 (128 mg, 0.2722 mmol) in 3.0 mL of MeOH was added. The reac-

tion mixture was stirred for 8 h, the solvent was evaporated under a vacuum, and the 

product was isolated by column chromatography on silica gel (eluent: 

EtOAc:MeOH:CH2Cl2 3:3:1, Rf = 0.5). The resulting orange precipitate was dried in a vac-

uum. Yield 138 mg (62%), Tmelt. = 110–113 °C. 
1H NMR (400.13 MHz, CDCl3) δ: 8.40 (d, 1H, J = 8.2 Hz, H26), 7.56 (s, 1H, H14), 7.45–

7.27 (m, 4H, H27–29, H35), 7.20 (s, 1H, H15), 7.12–7.07 (m, 2H, H36, NH), 6.93 (s, 1H, H16), 

6.65 (d, 1H, J = 8.4 Hz, H34), 5.66 (s, 2H, H31), 5.47 (d, 2H, J = 5.9 Hz, H5, H6), 5.26 (d, 2H, 

J = 5.9 Hz, H3, H4), 3.91 (t, 2H, J = 7.2 Hz, H17), 3.47 (q, 2H, J = 6.8 Hz, H22), 3.36 (d, 1H, J 

= 16.1 Hz, H12), 2.83–2.77 (m, 2H, H8), 2.75 (d, 1H, J = 16.1 Hz, H12), 2.14 (s, 3H, H1), 1.81–

1.74 (m, 2H, H18), 1.67–1.61 (m, 2H, H21), 1.45–1.39 (m, 2H, H19), 1.35–1.29 (m, 2H, H20), 

1.26 (d, 6H, J = 6.9 Hz, H9, H10). 
13C{1H} NMR (100.61 MHz, CDCl3) δ: 175.0 (C11, C13), 162.5 (C23), 141.2 (C14), 138.5 

(C24), 138.0 (C30), 134.5 (C32), 133.2 (C37), 132.4 (C33), 130.8 (C15), 129.5 (C34), 129.4 

(C28), 127.6 (C36), 127.4 (C35), 123.1 (C26), 123.1 (C25), 123.0 (C27), 120.2 (C16), 109.3 

(C29), 101.4 (C7), 97.2 (C2), 82.3 (C5, C6), 80.4 (C3, C4), 50.1 (C31), 48.4 (C17), 46.5 (C12), 

38.7 (C22), 30.7 (C8), 30.5 (C18), 29.6 (C21), 26.2 (C19), 26.0 (C20), 22.4 (C9, C10), 18.0 (C1). 

Elem. anal. Calc. (%) for C37H41Cl2N5O5Ru: C 55.02, H 5.12, and N 8.67. Found: C 54.97, 

H 4.98, and N 8.58. 

ESI-MS: m/z 810 [M + H]+, 830 [M + Na]+. 

(η6-p-cymene){N-(12-(1H-imidazol-1-yl)dodecyl)-1-(2,4-dichlorobenzyl)-1H-inda-

zole-3-carboxamide}ruthenium(II)-N malonate (17) 

 

Silver malonate Ag2C3H2O4 (96 mg, 0.3029 mmol) was added to the dimer (η6-p-cy-

mene-RuCl2)2 solution (93 mg; 0.1515 mmol) in 60.0 mL of H2O. The reaction mixture was 

stirred for 12 h. Precipitated AgCl was filtered off, and the solvent was evaporated under 

Silver malonate Ag2C3H2O4 (86 mg, 0.2722 mmol) was added to the dimer (η6-p-
cymene-RuCl2)2 solution (83 mg; 0.1361 mmol) in 50.0 mL of H2O. The reaction mixture was
stirred for 12 h. Precipitated AgCl was filtered off, and the solvent was evaporated under
a vacuum. The resulting ruthenium complex was dissolved in 22.0 mL of MeOH, and a
solution of compound 4 (128 mg, 0.2722 mmol) in 3.0 mL of MeOH was added. The reaction
mixture was stirred for 8 h, the solvent was evaporated under a vacuum, and the product
was isolated by column chromatography on silica gel (eluent: EtOAc:MeOH:CH2Cl2 3:3:1,
Rf = 0.5). The resulting orange precipitate was dried in a vacuum. Yield 138 mg (62%),
Tmelt. = 110–113 ◦C.

1H NMR (400.13 MHz, CDCl3) δ: 8.40 (d, 1H, J = 8.2 Hz, H26), 7.56 (s, 1H, H14),
7.45–7.27 (m, 4H, H27–29, H35), 7.20 (s, 1H, H15), 7.12–7.07 (m, 2H, H36, NH), 6.93 (s, 1H,
H16), 6.65 (d, 1H, J = 8.4 Hz, H34), 5.66 (s, 2H, H31), 5.47 (d, 2H, J = 5.9 Hz, H5, H6), 5.26 (d,
2H, J = 5.9 Hz, H3, H4), 3.91 (t, 2H, J = 7.2 Hz, H17), 3.47 (q, 2H, J = 6.8 Hz, H22), 3.36 (d,
1H, J = 16.1 Hz, H12), 2.83–2.77 (m, 2H, H8), 2.75 (d, 1H, J = 16.1 Hz, H12), 2.14 (s, 3H, H1),
1.81–1.74 (m, 2H, H18), 1.67–1.61 (m, 2H, H21), 1.45–1.39 (m, 2H, H19), 1.35–1.29 (m, 2H,
H20), 1.26 (d, 6H, J = 6.9 Hz, H9, H10).

13C{1H} NMR (100.61 MHz, CDCl3) δ: 175.0 (C11, C13), 162.5 (C23), 141.2 (C14), 138.5
(C24), 138.0 (C30), 134.5 (C32), 133.2 (C37), 132.4 (C33), 130.8 (C15), 129.5 (C34), 129.4 (C28),
127.6 (C36), 127.4 (C35), 123.1 (C26), 123.1 (C25), 123.0 (C27), 120.2 (C16), 109.3 (C29), 101.4
(C7), 97.2 (C2), 82.3 (C5, C6), 80.4 (C3, C4), 50.1 (C31), 48.4 (C17), 46.5 (C12), 38.7 (C22), 30.7
(C8), 30.5 (C18), 29.6 (C21), 26.2 (C19), 26.0 (C20), 22.4 (C9, C10), 18.0 (C1).

Elem. anal. Calc. (%) for C37H41Cl2N5O5Ru: C 55.02, H 5.12, and N 8.67. Found: C
54.97, H 4.98, and N 8.58.

ESI-MS: m/z 810 [M + H]+, 830 [M + Na]+.
(η6-p-cymene){N-(12-(1H-imidazol-1-yl)dodecyl)-1-(2,4-dichlorobenzyl)-1H-indazole-

3-carboxamide}ruthenium(II)-N malonate (17)
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Elem. anal. Calc. (%) for C34H35Cl2N5O5Ru*0.1CH2Cl2: C 52.91, H 4.58, and N 9.05. 

Found: C 52.68, H 4.50, and N 8.97. 

ESI-MS: m/z 766 [M + H]+, m/z 788 [M + Na]+. 

(η6-p-cymene){N-(6-(1H-imidazol-1-yl)hexyl)-1-(2,4-dichlorobenzyl)-1H-indazole-

3-carboxamide}ruthenium(II)-N malonate (16) 

 

Silver malonate Ag2C3H2O4 (86 mg, 0.2722 mmol) was added to the dimer (η6-p-cy-

mene-RuCl2)2 solution (83 mg; 0.1361 mmol) in 50.0 mL of H2O. The reaction mixture was 

stirred for 12 h. Precipitated AgCl was filtered off, and the solvent was evaporated under 

a vacuum. The resulting ruthenium complex was dissolved in 22.0 mL of MeOH, and a 

solution of compound 4 (128 mg, 0.2722 mmol) in 3.0 mL of MeOH was added. The reac-

tion mixture was stirred for 8 h, the solvent was evaporated under a vacuum, and the 

product was isolated by column chromatography on silica gel (eluent: 

EtOAc:MeOH:CH2Cl2 3:3:1, Rf = 0.5). The resulting orange precipitate was dried in a vac-

uum. Yield 138 mg (62%), Tmelt. = 110–113 °C. 
1H NMR (400.13 MHz, CDCl3) δ: 8.40 (d, 1H, J = 8.2 Hz, H26), 7.56 (s, 1H, H14), 7.45–

7.27 (m, 4H, H27–29, H35), 7.20 (s, 1H, H15), 7.12–7.07 (m, 2H, H36, NH), 6.93 (s, 1H, H16), 

6.65 (d, 1H, J = 8.4 Hz, H34), 5.66 (s, 2H, H31), 5.47 (d, 2H, J = 5.9 Hz, H5, H6), 5.26 (d, 2H, 

J = 5.9 Hz, H3, H4), 3.91 (t, 2H, J = 7.2 Hz, H17), 3.47 (q, 2H, J = 6.8 Hz, H22), 3.36 (d, 1H, J 

= 16.1 Hz, H12), 2.83–2.77 (m, 2H, H8), 2.75 (d, 1H, J = 16.1 Hz, H12), 2.14 (s, 3H, H1), 1.81–

1.74 (m, 2H, H18), 1.67–1.61 (m, 2H, H21), 1.45–1.39 (m, 2H, H19), 1.35–1.29 (m, 2H, H20), 

1.26 (d, 6H, J = 6.9 Hz, H9, H10). 
13C{1H} NMR (100.61 MHz, CDCl3) δ: 175.0 (C11, C13), 162.5 (C23), 141.2 (C14), 138.5 

(C24), 138.0 (C30), 134.5 (C32), 133.2 (C37), 132.4 (C33), 130.8 (C15), 129.5 (C34), 129.4 

(C28), 127.6 (C36), 127.4 (C35), 123.1 (C26), 123.1 (C25), 123.0 (C27), 120.2 (C16), 109.3 

(C29), 101.4 (C7), 97.2 (C2), 82.3 (C5, C6), 80.4 (C3, C4), 50.1 (C31), 48.4 (C17), 46.5 (C12), 

38.7 (C22), 30.7 (C8), 30.5 (C18), 29.6 (C21), 26.2 (C19), 26.0 (C20), 22.4 (C9, C10), 18.0 (C1). 

Elem. anal. Calc. (%) for C37H41Cl2N5O5Ru: C 55.02, H 5.12, and N 8.67. Found: C 54.97, 

H 4.98, and N 8.58. 

ESI-MS: m/z 810 [M + H]+, 830 [M + Na]+. 

(η6-p-cymene){N-(12-(1H-imidazol-1-yl)dodecyl)-1-(2,4-dichlorobenzyl)-1H-inda-

zole-3-carboxamide}ruthenium(II)-N malonate (17) 

 

Silver malonate Ag2C3H2O4 (96 mg, 0.3029 mmol) was added to the dimer (η6-p-cy-

mene-RuCl2)2 solution (93 mg; 0.1515 mmol) in 60.0 mL of H2O. The reaction mixture was 

stirred for 12 h. Precipitated AgCl was filtered off, and the solvent was evaporated under 

Silver malonate Ag2C3H2O4 (96 mg, 0.3029 mmol) was added to the dimer (η6-p-
cymene-RuCl2)2 solution (93 mg; 0.1515 mmol) in 60.0 mL of H2O. The reaction mixture was
stirred for 12 h. Precipitated AgCl was filtered off, and the solvent was evaporated under
a vacuum. The resulting ruthenium complex was dissolved in 27.0 mL of MeOH, and a
solution of compound 6 (168 mg, 0.3029 mmol) in 3.0 mL of MeOH was added. The reaction
mixture was stirred for 8 h, the solvent was evaporated under a vacuum, and the product
was isolated by column chromatography on silica gel (eluent: EtOAc:MeOH:CH2Cl2 3:3:1,
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Rf = 0.5). The resulting orange precipitate was dried in a vacuum. Yield 171 mg (63%),
Tmelt. = 90–94 ◦C.

1H NMR (400.13 MHz, CDCl3) δ: 8.42 (d, 1H, J = 8.1 Hz, H32), 7.53 (s, 1H, H14.),
7.45–7.27 (m, 4H, H33–35, H41), 7.21 (s, 1H, H15), 7.10 (dd, 1H, J = 8.4, 1.9 Hz, H42), 7.00 (t,
1H, J = 5.7 Hz, NH), 6.93 (s, 1H, H16), 6.62 (d, 1H, J = 8.3 Hz, H40), 5.66 (s, 2H, H37), 5.46 (d,
2H, J = 5.7 Hz, H5, H6), 5.25 (d, 2H, J = 5.9 Hz, H3, H4), 3.89 (t, 2H, J = 7.3 Hz, H17), 3.48
(q, 2H, J = 6.9 Hz, H28), 3.36 (d, 1H, J = 16.1 Hz, H12), 2.83–2.77 (m, 1H, H8), 2.75 (d, 1H,
J = 16.1 Hz, H12), 2.14 (s, 3H, H1), 1.78–1.71 (m, 2H, H18), 1.68–1.61 (m, 2H, H27), 1.43–1.22
(m, 22H, H19–26, H9, H10).

13C{1H} NMR (100.61 MHz, CDCl3) δ: 174.0 (C11, C13), 161.4 (C29), 140.2 (C14), 137.6
(C30), 136.9 (C36), 133.5 (C38), 132.2 (C43), 131.5 (C39), 129.8 (C15), 128.5 (C40), 128.3 (C34),
126.6 (C42), 126.4 (C41), 122.2 (C32), 122.1 (C31), 122.0 (C33), 119.2 (C16), 108.2 (C35), 100.3
(C7), 96.2 (C2), 81.3 (C5, C6), 79.3 (C3, C4), 49.0 (C37), 47.5 (C17), 45.5 (C12), 38.1 (C28), 29.7
(C8), 29.6 (C18), 28.8 (C27), 28.5 (C19–26), 28.4 (C19–26), 28.3 (C19–26), 28.3 (C19–26), 27.9
(C19–26), 26.0 (C19–26), 25.4 (C19–26), 21.4 (C9, C10), 17.0 (C1).

Elem. anal. Calc. (%) for C43H53Cl2N5O5Ru: C 57.91, H 5.99, and N 7.85. Found: C
57.63, H 5.90, and N 7.77.

ESI-MS: m/z 892 [M + H]+, m/z 914 [M + Na]+.
(η6-p-cymene)bis-{N-(3-(1H-imidazol-1-yl)propyl)-1-(2,4-dichlorobenzyl)-1H-indazole-

3-carboxamide}ruthenium(II)-N chloride (18)
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a vacuum. The resulting ruthenium complex was dissolved in 27.0 mL of MeOH, and a 

solution of compound 6 (168 mg, 0.3029 mmol) in 3.0 mL of MeOH was added. The reac-

tion mixture was stirred for 8 h, the solvent was evaporated under a vacuum, and the 

product was isolated by column chromatography on silica gel (eluent: 

EtOAc:MeOH:CH2Cl2 3:3:1, Rf = 0.5). The resulting orange precipitate was dried in a vac-

uum. Yield 171 mg (63%), Tmelt. = 90–94 °C. 
1H NMR (400.13 MHz, CDCl3) δ: 8.42 (d, 1H, J = 8.1 Hz, H32), 7.53 (s, 1H, H14.), 7.45–

7.27 (m, 4H, H33–35, H41), 7.21 (s, 1H, H15), 7.10 (dd, 1H, J = 8.4, 1.9 Hz, H42), 7.00 (t, 1H, 

J = 5.7 Hz, NH), 6.93 (s, 1H, H16), 6.62 (d, 1H, J = 8.3 Hz, H40), 5.66 (s, 2H, H37), 5.46 (d, 

2H, J = 5.7 Hz, H5, H6), 5.25 (d, 2H, J = 5.9 Hz, H3, H4), 3.89 (t, 2H, J = 7.3 Hz, H17), 3.48 

(q, 2H, J = 6.9 Hz, H28), 3.36 (d, 1H, J = 16.1 Hz, H12), 2.83–2.77 (m, 1H, H8), 2.75 (d, 1H, J 

= 16.1 Hz, H12), 2.14 (s, 3H, H1), 1.78–1.71 (m, 2H, H18), 1.68–1.61 (m, 2H, H27), 1.43–1.22 

(m, 22H, H19–26, H9, H10). 
13C{1H} NMR (100.61 MHz, CDCl3) δ: 174.0 (C11, C13), 161.4 (C29), 140.2 (C14), 137.6 

(C30), 136.9 (C36), 133.5 (C38), 132.2 (C43), 131.5 (C39), 129.8 (C15), 128.5 (C40), 128.3 

(C34), 126.6 (C42), 126.4 (C41), 122.2 (C32), 122.1 (C31), 122.0 (C33), 119.2 (C16), 108.2 

(C35), 100.3 (C7), 96.2 (C2), 81.3 (C5, C6), 79.3 (C3, C4), 49.0 (C37), 47.5 (C17), 45.5 (C12), 

38.1 (C28), 29.7 (C8), 29.6 (C18), 28.8 (C27), 28.5 (C19–26), 28.4 (C19–26), 28.3 (C19–26), 28.3 

(C19–26), 27.9 (C19–26), 26.0 (C19–26), 25.4 (C19–26), 21.4 (C9, C10), 17.0 (C1). 

Elem. anal. Calc. (%) for C43H53Cl2N5O5Ru: C 57.91, H 5.99, and N 7.85. Found: C 57.63, 

H 5.90, and N 7.77. 

ESI-MS: m/z 892 [M + H]+, m/z 914 [M + Na]+. 

(η6-p-cymene)bis-{N-(3-(1H-imidazol-1-yl)propyl)-1-(2,4-dichlorobenzyl)-1H-inda-

zole-3-carboxamide}ruthenium(II)-N chloride (18) 

 

N-(3-(1H-imidazol-1-yl)propyl)-1-(2,4-dichlorobenzyl)-1H-indazole-3-carboxamide 2 

(123 mg, 0.2872 mmol) in 2.0 mL of CH2Cl2 was added to the dimer (η6-p-cymene-RuCl2)2 

solution (44 mg, 0.0718 mmol) in 23.0 mL of CH2Cl2. The reaction mixture was stirred for 

5 h, the solvent was evaporated under a vacuum, and the product was isolated by column 

chromatography on silica gel (eluent: CH2Cl2:MeOH 10:1, Rf = 0.5). The resulting orange 

precipitate was dried in a vacuum. Yield 132 mg (79%), Tmelt. = 100–103 °C. 
1H NMR (400.13 MHz, CDCl3) δ: 9.35 (s, 2H, H11), 8.28 (d, 2H, J = 8.2 Hz, H20), 7.73 

(t, 2H, J = 6.0 Hz, NH), 7.44 (s, 2H, H12), 7.34–7.17 (m, 8H, H21–23, H29), 7.04 (dd, 2H, J = 

8.3, 1.9 Hz, H30), 6.82 (s, 2H, H13), 6.73 (d, 2H, J = 8.4 Hz, H28), 5.77 (s, 2H, H5, H6), 5.57 

(s, 2H, H3, H4), 4.17–4.04 (m, 4H, H14), 3.44–3.31 (m, 4H, H16), 2.42–2.34 (m, 1H, H8), 

2.18–2.09 (m, 4H, H15), 1.74 (s, 3H, H1), 1.07 (d, 6H, J = 6.9 Hz, H9, H10). 
13C{1H} NMR (100.61 MHz, CDCl3) δ: 162.0 (C17), 140.9 (C11), 140.0 (C18), 137.2 (C24), 

133.4 (C26), 132.1 (C27/C31), 131.3 (C27/C31), 129.2 (C12), 128.9 (C28), 128.3 (C22), 126.7 

(C30), 126.3 (C29), 122.0 (C20), 122.0 (C19/C21), 121.8 (C19/C21), 118.5 (C13), 108.3 (C23), 

102.1 (C7), 99.6 (C2), 85.2 (C5, C6), 81.0 (C3, C4), 49.0 (C25), 44.8 (C14), 34.8 (C16), 29.9 

(C15), 29.9 (C8), 21.3 (C9, C10), 16.9 (C1). 

Elem. anal. Calc. (%) for C52H52Cl6N10O2Ru*0.7CH2Cl2: C 51.79, H 4.40, and N 11.46. 

Found: C 51.85, H 4.45, and N 11.65. 

ESI-MS: m/z 1127 [M − Cl]+. 

(η6-p-cymene)bis-{N-(12-(1H-imidazol-1-yl)dodecyl)-1-(2,4-dichlorobenzyl)-1H-in-

dazole-3-carboxamide}ruthenium(II)-N chloride (19) 

N-(3-(1H-imidazol-1-yl)propyl)-1-(2,4-dichlorobenzyl)-1H-indazole-3-carboxamide 2
(123 mg, 0.2872 mmol) in 2.0 mL of CH2Cl2 was added to the dimer (η6-p-cymene-RuCl2)2
solution (44 mg, 0.0718 mmol) in 23.0 mL of CH2Cl2. The reaction mixture was stirred for
5 h, the solvent was evaporated under a vacuum, and the product was isolated by column
chromatography on silica gel (eluent: CH2Cl2:MeOH 10:1, Rf = 0.5). The resulting orange
precipitate was dried in a vacuum. Yield 132 mg (79%), Tmelt. = 100–103 ◦C.

1H NMR (400.13 MHz, CDCl3) δ: 9.35 (s, 2H, H11), 8.28 (d, 2H, J = 8.2 Hz, H20), 7.73 (t,
2H, J = 6.0 Hz, NH), 7.44 (s, 2H, H12), 7.34–7.17 (m, 8H, H21–23, H29), 7.04 (dd, 2H, J = 8.3,
1.9 Hz, H30), 6.82 (s, 2H, H13), 6.73 (d, 2H, J = 8.4 Hz, H28), 5.77 (s, 2H, H5, H6), 5.57 (s, 2H,
H3, H4), 4.17–4.04 (m, 4H, H14), 3.44–3.31 (m, 4H, H16), 2.42–2.34 (m, 1H, H8), 2.18–2.09
(m, 4H, H15), 1.74 (s, 3H, H1), 1.07 (d, 6H, J = 6.9 Hz, H9, H10).

13C{1H} NMR (100.61 MHz, CDCl3) δ: 162.0 (C17), 140.9 (C11), 140.0 (C18), 137.2 (C24),
133.4 (C26), 132.1 (C27/C31), 131.3 (C27/C31), 129.2 (C12), 128.9 (C28), 128.3 (C22), 126.7
(C30), 126.3 (C29), 122.0 (C20), 122.0 (C19/C21), 121.8 (C19/C21), 118.5 (C13), 108.3 (C23),
102.1 (C7), 99.6 (C2), 85.2 (C5, C6), 81.0 (C3, C4), 49.0 (C25), 44.8 (C14), 34.8 (C16), 29.9 (C15),
29.9 (C8), 21.3 (C9, C10), 16.9 (C1).

Elem. anal. Calc. (%) for C52H52Cl6N10O2Ru*0.7CH2Cl2: C 51.79, H 4.40, and N 11.46.
Found: C 51.85, H 4.45, and N 11.65.

ESI-MS: m/z 1127 [M − Cl]+.
(η6-p-cymene)bis-{N-(12-(1H-imidazol-1-yl)dodecyl)-1-(2,4-dichlorobenzyl)-1H-

indazole-3-carboxamide}ruthenium(II)-N chloride (19)



Pharmaceutics 2023, 15, 1366 10 of 18Pharmaceutics 2023, 15, x 10 of 18 
 

 

 

N-(12-(1H-imidazol-1-yl)dodecyl)-1-(2,4-dichlorobenzyl)-1H-indazole-3-carbox-

amide 6 (155 mg, 0.2795 mmol) in 2.0 mL of CH2Cl2 was added to the dimer (η6-p-cymene-

RuCl2)2 solution (43 mg, 0.0699 mmol) in 23.0 mL CH2Cl2. The reaction mixture was stirred 

for 5 h, the solvent was evaporated under a vacuum, and the product was isolated by 

column chromatography on silica gel (eluent: CH2Cl2:MeOH 10:1, Rf = 0.5). The resulting 

orange precipitate was dried in a vacuum. Yield 137 mg (69%), Tmelt. = 70–73 °C. 
1H NMR (400.13 MHz, CDCl3) δ: 9.13 (s, 2H, H11), 8.42 (d, 2H, J = 8.1 Hz, H29), 7.63 

(s, 2H, H12), 7.46–7.27 (m, 8H, H30–32, H38), 7.09 (dd, 2H, J = 8.4, 1.9 Hz, H39), 7.01 (t, 2H, 

J = 5.5 Hz, NH), 6.79 (s, 2H, H13), 6.60 (d, 2H, J = 8.4 Hz, H37), 5.88 (d, 2H, J = 5.8 Hz, H5, 

H6), 5.84 (d, 2H, J = 5.8 Hz, H3, H4), 5.65 (s, 4H, H34), 4.03–3.94 (m, 4H, H14), 3.47 (q, 4H, 

J = 7.0 Hz, H25), 2.40–2.32 (m, 1H, H8), 1.78–1.60 (m, 11H, H15, H24, H1), 1.44–1.16 (m, 

32H, H16–23), 1.12 (d, 6H, J = 6.9 Hz, H9, H10). 
13C{1H} NMR (100.61 MHz, CDCl3) δ: 161.3 (C26), 140.4 (C11), 140.1 (C27), 137.6 (C33), 

133.4 (C35), 132.1 (C36/C40), 131.4 (C36/C40), 129.6 (C12), 128.4 (C37), 128.2 (C31), 126.6 

(C39), 126.4 (C38), 122.2 (C29), 122.0 (C28), 121.9 (C30), 118.2 (C13), 108.1 (C32), 102.3 (C7), 

99.3 (C2), 84.9 (C5, C6), 81.4 (C3, C4), 49.0 (C34), 47.2 (C14), 38.1 (C25), 29.8 (C8), 29.7 (C15), 

28.8 (C24), 28.5 (C16–23), 28.5 (C16–23), 28.5 (C16–23), 28.5 (C16–23), 28.3 (C16–23), 28.0 

(C16–23), 26.0 (C16–23), 25.3 (C16–23), 21.2 (C9, C10), 16.8 (C1). 

Elem. anal. Calc. (%) for C70H88Cl6N10O2Ru*0.7CH2Cl2: C 57.58, H 6.11, and N 9.50. 

Found: C 57.90, H 5.60, and N 9.75. 

ESI-MS: m/z 1379 [M − Cl]+. 

(η6-p-cymene){N-(3-(1H-imidazol-1-yl)propyl)acetamide}ruthenium(II)-N oxalate 

(21) 

 

Silver oxalate Ag2C2O4 (70 mg, 0.2282 mmol) was added to the dimer (η6-p-cymene-

RuCl2)2 solution (70 mg; 0.1141 mmol) in 40.0 mL of H2O. The reaction mixture was stirred 

for 12 h. Precipitated AgCl was filtered off, and the solvent was evaporated under a vac-

uum. The resulting ruthenium complex was dissolved in 18.0 mL of MeOH, and a solution 

of compound 20 [51] (38 mg, 0.2282 mmol) in 2.0 mL of MeOH was added. The reaction 

mixture was stirred for 8 h, the solvent was evaporated under a vacuum, and the product 

was isolated by column chromatography on silica gel (eluent: MeOH:CH2Cl2 1:9, Rf = 0.5). 

The resulting orange precipitate was dried in a vacuum. Yield 85 mg (76%). 
1H NMR (400.13 MHz, CDCl3) δ: 7.76 (t, 1H, J = 5.4 Hz, NH), 7.66 (s, 1H, H13), 6.93 (s, 

1H, H14), 6.82 (s, 1H, H15), 5.56 (d, 2H, J = 6.1 Hz, H5, H6), 5.39 (d, 2H, J = 6.0 Hz, H3, H4), 

3.76 (t, 2H, J = 6.9 Hz, H16), 3.03 (q, 2H, J = 5.8 Hz, H18), 2.83–2.75 (m, 1H, H8), 2.16 (s, 3H, 

H1), 1.99 (s, 3H, H20), 1.78–1.70 (m, 2H, H17), 1.28 (d, 6H, J = 6.9 Hz, H9, H10). 

ESI-MS: m/z 526 [M + Cl]−, 492 [M + H]+, 514 [M + Na]+. 

N-(12-(1H-imidazol-1-yl)dodecyl)-1-(2,4-dichlorobenzyl)-1H-indazole-3-carboxamide
6 (155 mg, 0.2795 mmol) in 2.0 mL of CH2Cl2 was added to the dimer (η6-p-cymene-RuCl2)2
solution (43 mg, 0.0699 mmol) in 23.0 mL CH2Cl2. The reaction mixture was stirred for
5 h, the solvent was evaporated under a vacuum, and the product was isolated by column
chromatography on silica gel (eluent: CH2Cl2:MeOH 10:1, Rf = 0.5). The resulting orange
precipitate was dried in a vacuum. Yield 137 mg (69%), Tmelt. = 70–73 ◦C.

1H NMR (400.13 MHz, CDCl3) δ: 9.13 (s, 2H, H11), 8.42 (d, 2H, J = 8.1 Hz, H29), 7.63
(s, 2H, H12), 7.46–7.27 (m, 8H, H30–32, H38), 7.09 (dd, 2H, J = 8.4, 1.9 Hz, H39), 7.01 (t, 2H,
J = 5.5 Hz, NH), 6.79 (s, 2H, H13), 6.60 (d, 2H, J = 8.4 Hz, H37), 5.88 (d, 2H, J = 5.8 Hz, H5,
H6), 5.84 (d, 2H, J = 5.8 Hz, H3, H4), 5.65 (s, 4H, H34), 4.03–3.94 (m, 4H, H14), 3.47 (q, 4H,
J = 7.0 Hz, H25), 2.40–2.32 (m, 1H, H8), 1.78–1.60 (m, 11H, H15, H24, H1), 1.44–1.16 (m,
32H, H16–23), 1.12 (d, 6H, J = 6.9 Hz, H9, H10).

13C{1H} NMR (100.61 MHz, CDCl3) δ: 161.3 (C26), 140.4 (C11), 140.1 (C27), 137.6 (C33),
133.4 (C35), 132.1 (C36/C40), 131.4 (C36/C40), 129.6 (C12), 128.4 (C37), 128.2 (C31), 126.6
(C39), 126.4 (C38), 122.2 (C29), 122.0 (C28), 121.9 (C30), 118.2 (C13), 108.1 (C32), 102.3 (C7),
99.3 (C2), 84.9 (C5, C6), 81.4 (C3, C4), 49.0 (C34), 47.2 (C14), 38.1 (C25), 29.8 (C8), 29.7 (C15),
28.8 (C24), 28.5 (C16–23), 28.5 (C16–23), 28.5 (C16–23), 28.5 (C16–23), 28.3 (C16–23), 28.0
(C16–23), 26.0 (C16–23), 25.3 (C16–23), 21.2 (C9, C10), 16.8 (C1).

Elem. anal. Calc. (%) for C70H88Cl6N10O2Ru*0.7CH2Cl2: C 57.58, H 6.11, and N 9.50.
Found: C 57.90, H 5.60, and N 9.75.

ESI-MS: m/z 1379 [M − Cl]+.
(η6-p-cymene){N-(3-(1H-imidazol-1-yl)propyl)acetamide}ruthenium(II)-N oxalate (21)
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Silver oxalate Ag2C2O4 (70 mg, 0.2282 mmol) was added to the dimer (η6-p-cymene-
RuCl2)2 solution (70 mg; 0.1141 mmol) in 40.0 mL of H2O. The reaction mixture was stirred
for 12 h. Precipitated AgCl was filtered off, and the solvent was evaporated under a
vacuum. The resulting ruthenium complex was dissolved in 18.0 mL of MeOH, and a
solution of compound 20 [51] (38 mg, 0.2282 mmol) in 2.0 mL of MeOH was added. The
reaction mixture was stirred for 8 h, the solvent was evaporated under a vacuum, and the
product was isolated by column chromatography on silica gel (eluent: MeOH:CH2Cl2 1:9,
Rf = 0.5). The resulting orange precipitate was dried in a vacuum. Yield 85 mg (76%).

1H NMR (400.13 MHz, CDCl3) δ: 7.76 (t, 1H, J = 5.4 Hz, NH), 7.66 (s, 1H, H13), 6.93 (s,
1H, H14), 6.82 (s, 1H, H15), 5.56 (d, 2H, J = 6.1 Hz, H5, H6), 5.39 (d, 2H, J = 6.0 Hz, H3, H4),
3.76 (t, 2H, J = 6.9 Hz, H16), 3.03 (q, 2H, J = 5.8 Hz, H18), 2.83–2.75 (m, 1H, H8), 2.16 (s, 3H,
H1), 1.99 (s, 3H, H20), 1.78–1.70 (m, 2H, H17), 1.28 (d, 6H, J = 6.9 Hz, H9, H10).

ESI-MS: m/z 526 [M + Cl]−, 492 [M + H]+, 514 [M + Na]+.
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2.2. Log P Determination

Log P values of the new compounds were determined by the HPLC method [42,43]
using a Phenomenex Kinetex 5 µ XB-C18 100 Å column 150 × 4.6 mm using two mobile
phases: phase A was 20 mM MOPS, 0.15% decylamine, pH = 7.4; phase B was 0.25%
1-octanol in methanol. Briefly, samples dissolved in methanol with uracil as an internal
standard were injected into the column and eluted with mobile phase B between 70%, 80%,
and 90%. The log P values were calculated as previously described [43] using benzaldehyde,
methyl benzoate, ethoxybenzene, naphthalene, and 1-chloronaphthalene as standards.
These experiments were repeated three times for each of the compounds.

2.3. Cell Death Studies

The antiproliferative activity was studied by MTT assays as published previously [45].
For the flow cytometry studies, cells were plated into 6-well plates (Eppendorf, Germany;
HCT-116 cells, 4 × 105 cells in 2 mL of DMEM) and incubated for 24 h. Solutions of
complexes in DMSO were prepared immediately prior to the day of the experiments. A
Cisplatin solution was prepared in DMEM without the addition of DMSO. Cells were
treated with either 20 µM of cisplatin, 25 µM of 12, 25 µM of 14, 20 µM of 18, or 20 µM
of 19. Concentrations corresponded to twofold IC50 values based on MTT assays. Cells
were incubated for 24, 48 and 72 h, pooled, washed with PBS, and resuspended in DMEM.
Aliquots of cells were processed as recommended in the Muse Annexin V&Dead Cell Kit or
Muse Caspase-3/7 Kit (Luminex). Measurements were carried out on a Muse Cell Analyser,
Luminex corp., Austin, TX, USA according to the manufacturer protocol.

2.4. TrxR1 Assay

The activity of rat TrxR1 in the presence of target compounds was determined in vitro
using hepatocyte homogenate as we described previously [49].

3. Results and Discussion
Synthesis and Characterization

Previously, we have reported the synthetic route and antiproliferative activity data
for the lonidamine-modified imidazole ligands 1–6 [47,49] and utilized them for the prepa-
ration of various Ru(III) and Ru(II) compounds, including complex 8 [47]. In this work,
new complexes 7, 9–11 were obtained by coordination of imidazole ligands 1, 3–5 with the
ruthenium dimer ((η6-p-cymene)RuCl2)2 in CH2Cl2 in the ratio 2:1 (Scheme 1).
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Complexes 12–17 with the oxalate or malonate moiety were prepared in two steps
procedure: first the formation in situ ruthenium aqua complexes from the ruthenium dimer
with silver oxalate or malonate, correspondingly, were carried out and later, coordination
of aqua complex with ligands 2, 4, and 6. Complexes 18–19 were prepared by coordi-
nation ligands 2, 6, and ((η6-p-cymene)RuCl2)2 in the ratio 4:1 (Scheme 1). All obtained
complexes, 7–19, were fully characterized with 1H and 13C{1H} NMR spectroscopy, ESI
mass-spectrometry, and elemental analysis which have fully confirmed the structure of
expected products (see Supplementary Figures S1–S6).

It has been found that Ru(II) organometallic compounds with chloride ligands easily
entered into ligand exchange reactions with several solvent molecules, such as water or
DMSO [52]. DMSO is widely used in in vitro tests, while the transformation of organometal-
lic compounds in DMSO-containing solutions can hinder the study of biological activity. To
overcome the mentioned problem, we have proposed an approach to obtaining analogues
resistant to the ligand exchange reactions. This was achieved by replacing the chloride
ligands with the dicarboxylic acid moiety or introducing a second imidazole ligand into
the coordination sphere.

The stability of complexes 7–19 in DMSO-containing solutions has been studied by
NMR spectroscopy. 1H NMR spectra of compounds 7–11 bearing two chloride ligands
include additional signals corresponding to ligand exchange products when a DMSO-
containing solvent is used; whereas, compounds with an oxalate or malonate fragment
as well as complexes 18–19 with two imidazole ligands do not show any additional sig-
nals, hence demonstrating no transformation of the complex in the solution (Figure 3).
Complexes 12–19 were also found to be stable in pure DMSO.
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stability of complex 12 at least for 24 h.

The lipophilicity of complexes 12–14 with oxalate moiety was determined by HPLC
(Table 1). For complexes 7–11 and 18, 19 we observed irreversible absorption on the column.
Complexes showed high lipophilicity, as was expected, and an increase in Log P values
with an increase in linker length.

Table 1. The lipophilicity of complexes.

Compound 12 13 14

Log P 3.64 5.51 8.29
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To confirm the key role of lonidamine in the cytotoxicity of the obtained complexes,
analogue 21 without lonidamine moiety was obtained (Scheme 2). The complex was
synthesized by coordination of ligand 20 to ruthenium aqua complex with an oxalate group
obtained in situ.
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Scheme 2. Synthesis of the Ru(II) analogue without lonidamine.

Cytotoxicity of new Ru(II) complexes was investigated by the MTT assay on human
cancer cell lines A549 (non-small cell lung cancer), MCF7 (breast cancer), SW480 (colon
carcinoma), and HCT116 (colorectal carcinoma) (Table 2).

Table 2. Antiproliferative activity against human tumour cells.

Compound Linker, n
IC50, µM

A549 MCF7 SW480 HCT116

cisplatin 9 ± 1 13 ± 1 22 ± 1 12 ± 1
Lonidamin [46] >90 30 ± 10 >90 nd

7 2 39 ± 2 41 ± 2 34 ± 4 nd
8 3 37 ± 4 18 ± 3 30 ± 7 nd
9 4 29 ± 6 20 ± 3 25.0 ± 0.3 nd

10 6 55 ± 3 48 ± 1 41 ± 2 nd
11 8 74 ± 4 65 ± 3 45 ± 4 nd
12 3 33 ± 9 14 ± 1 18 ± 3 11 ± 3
13 6 21 ± 6 10 ± 3 15 ± 1 12 ± 1
14 12 14 ± 1 14 ± 2 16 ± 1 12.1 ± 0.6
15 3 21 ± 4 19 ± 2 nd 25 ± 1
16 6 13.6 ± 0.6 13 ± 4 nd 12 ± 2
17 12 15 ± 1 19 ± 4 nd 12 ± 2
18 3 8 ± 1 9 ± 2 8 ± 1 7 ± 1
19 12 9 ± 2 15 ± 4 10 ± 2 9 ± 1
20 3 >200 >200 >200 >200
21 3 >200 >200 >200 >200

nd—not defined. The drug-treatment period was 72 h. The results are expressed as the mean values ± SD from
three independent experiments performed in triplicate.

Complexes show cytotoxicity in a medium micromolar range exceeding or equal activ-
ity of the parent organic drug lonidamine and corresponding ligands 1–6 [47,49]. Moreover,
in some cases, their activity is higher than the cytotoxicity of cisplatin. Cytotoxicity studies
have established that, regardless of the complex stability in the presence of DMSO, cytotox-
icity was in a similar range. For complexes 18–19, it was shown that the introduction of
the second ligand containing lonidamine into the structure leads to a two-times increase in
cytotoxicity in in vitro tests compare to complexes with only one ligand. An increase in
the linker length about twice increases activity, however, it significantly raised lipophilicity.
Unfortunately, we did not observe any selectivity toward the cancer cells in the experi-
ments with the non-tumorigenic WI38 cell line (IC50 25.05 ± 0.03 for 15). Moreover, the
antiproliferative study confirmed the significance of lonidamine moiety in the compound,
as ligand 20 and complex 21 exhibited no activity. For further cell death studies by flow
cytometry, complexes 12, 14, 18, and 19 were chosen, and cisplatin was used as a reference
drug (Figure 4).
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Figure 4. Flow cytometry studies of apoptosis induction on HCT116 cell lines (1a–f incubation for
48 h, 2a–f incubation for 72 h) and caspase activation (3a–f incubation for 48 h, 4a–f incubation for
72 h), 1–4a—control, 1–4b—cisplatin (20 µM), 1–4c—complex 12 (25 µM), 1–4d—complex 14 (25 µM),
1–4e—complex 18 (20 µM), 1–4f—complex 19 (20 µM).

Cytometric studies of apoptosis induction and caspase activation on the HCT116 cell
line revealed that Ru(II) organometallic compounds with lonidamine-containing ligands
at an early stage (after 24 h of incubation) do not lead to significant apoptosis induction
(~15%), and there are no cells with activated caspases (0%). This is probably due to the slow
transformation to the active form of the Ru-prodrug. However, after 48 h, and especially
after 72 h organometallic derivatives start to show significant apoptosis induction which is
accompanied by caspase activation.

Thioredoxin reductases belong to the thioredoxin system and play a crucial role in
regulating redox processes, transcription, and protection from reactive oxygen species.
TrxR1 is one of the cytosolic isoforms of this enzyme, which is overexpressed in cancer
cells, making it a target for developing new anticancer therapies [53]. Due to the presence
of the selenocysteine enzyme in the active centre, the majority of known TrxR inhibitors
are electrophilic compounds [54], making it necessary to study the inhibitory effect of new
compounds on TrxR1 in vitro.

To assess whether the engagement of thioredoxin reductase 1 contributes to the cy-
totoxic action of novel Ru(II) complexes, we evaluated selected compounds as TrxR1
inhibitors in a functional in vitro assay. Complexes 12, 15, and 18, which comprise
lonidamine/oxalate, lonidamine/malonate, and bis-lonidamine moieties, respectively,
were tested at a final concentration of 100 µM (Figure 5). We have found that these Ru(II)
complexes lack significant TrxR1 inhibitory properties regardless of the ligand’s nature,
unlike previously reported Ru(III) complexes [40]. Thus, it appears that the ruthenium
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oxidation state and the presence of the Ru-C bond play a definitive role in the compounds’
mechanism of action.
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4. Conclusions

The ruthenium organometallic compounds with lonidamine ligand connected by an
imidazole linker were prepared. The presence of oxalate, malonate moiety, or second
lonidamine ligand leads to high stability in the ligand exchange reaction. These complexes
showed good antiproliferative activity and high lipophilicity but also some increase in
activity with an increase in the length of the linker. The study on the mechanism of cell
death revealed slow induction of apoptosis without activation of caspases. In contrast
to previously studied Ru(III) complexes with the same ligand, the TrxR1 is not inhibited
by Ru(II) organometallic analogues. The new compounds described herein represent
an interesting and promising class of antiproliferative ruthenium complexes that will be
studied further, including in vivo evaluation.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/pharmaceutics15051366/s1, Figure S1. Experimental spectrum
for complex 15, simulated spectrum for [M + H]+, simulated spectrum for [M + Na]+; Figure S2.
Experimental spectrum for complex 16, simulated spectrum for [M + H]+, simulated spectrum for
[M + Na]+; Figure S3. Experimental spectrum for complex 17, simulated spectrum for [M + H]+,
simulated spectrum for [M + Na]+; Figure S4. Experimental spectrum for complex 18, simulated
spectrum for [M − Cl]+; Figure S5. Experimental spectrum for complex 19, simulated spectrum for
[M − Cl]+; Figure S6. Signal shifts in 1H NMR spectra of ligand 5 and complexes 11, 14.
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