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Abstract: Polysaccharides are naturally occurring complex molecules with exceptional physicochem-
ical properties and bioactivities. They originate from plant, animal, and microbial-based resources
and processes and can be chemically modified. The biocompatibility and biodegradability of polysac-
charides enable their increased use in nanoscale synthesis and engineering for drug encapsulation
and release. This review focuses on sustained drug release studies from nanoscale polysaccharides in
the fields of nanotechnology and biomedical sciences. Particular emphasis is placed on drug release
kinetics and relevant mathematical models. An effective release model can be used to envision the
behavior of specific nanoscale polysaccharide matrices and reduce impending experimental trial and
error, saving time and resources. A robust model can also assist in translating from in vitro to in vivo
experiments. The main aim of this review is to demonstrate that any study that establishes sustained
release from nanoscale polysaccharide matrices should be accompanied by a detailed analysis of
drug release kinetics by modeling since sustained release from polysaccharides not only involves
diffusion and degradation but also surface erosion, complicated swelling dynamics, crosslinking,
and drug-polymer interactions. As such, in the first part, we discuss the classification and role of
polysaccharides in various applications and later elaborate on the specific pharmaceutical processes of
polysaccharides in ionic gelling, stabilization, cross-linking, grafting, and encapsulation of drugs. We
also document several drug release models applied to nanoscale hydrogels, nanofibers, and nanopar-
ticles of polysaccharides and conclude that, at times, more than one model can accurately describe
the sustained release profiles, indicating the existence of release mechanisms running in parallel.
Finally, we conclude with the future opportunities and advanced applications of nanoengineered
polysaccharides and their theranostic aptitudes for future clinical applications.
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1. Introduction

In biomedical applications, polysaccharides are utilized as demulcents, drug formu-
lations, new-generation dental materials, hemostatics, in dusting powders, and for the
treatment of mild intestinal conditions. Additionally, they can replace plasma and function
as anticoagulants both in solution and as surface treatments on artificial organs [1]. As such,
polysaccharides are indispensable macromolecules that almost occur in all living organisms
and have significant biological functions. They are becoming more important because
they exhibit a wide range of biological and pharmacological activities, such as anti-tumor,
immunomodulatory, antimicrobial, antioxidant, anticoagulant, antidiabetic, antiviral, and
hypoglycemia functionalities that are extremely sought simply after in biomedical and
pharmaceutical fields [2–6]. Polysaccharides are polymers of sugars that are monosaccha-
rides linked together by glycosidic bonds. All polysaccharides are formed through the
same basic process in which monosaccharides are linked together by glycosidic bonds.
The number of carbons in a monosaccharide molecule determines its classification. Triose
(three carbons), tetrose (four carbons), pentose (five carbons), and hexose (six carbons) are
examples of general categories. The most abundant monosaccharide in nature is hexose
or D-glucose. Galactose, which is used to make the disaccharide milk sugar lactose, and
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fructose, a fruit sugar, are two other common and abundant hexose monosaccharides [7].
An oxygen molecule bridges two carbon rings in these glycosidic bonds. The bond is
formed when a hydroxyl group is lost from one molecule’s carbon and a hydrogen group is
lost from another monosaccharide’s hydroxyl group. The reaction is a dehydration reaction
because two molecules of hydrogen and one of oxygen are ejected. The structure and
properties of the resulting polysaccharide are determined by the structure of the molecules
being combined. A polysaccharide used for energy storage will allow easy access to the
constituent monosaccharides, whereas a polysaccharide used for support will typically
consist of a long chain of monosaccharides that form fibrous structures.

There are different types of polysaccharides [7]. A heteroglycan is a polysaccharide
that is made up of two or more different monosaccharide units. A diheteroglycan is a
polysaccharide that contains two different monosaccharide units; a triheteroglycan contains
three different monosaccharide units, etc. Polysaccharides exhibit a molecular structure
that can be linear or highly branched, composed of the same (homopolysaccharide) or
different (heteropolysaccharide) monosaccharide units. Structural differences confer dis-
tinct physical and chemical properties [8]. Carbohydrates serve two key functions: energy
and configuration. As energy, they can be simple for fast digestion or complex for stor-
age. Simple sugars are monomers known as monosaccharides. These monomers readily
pass through cell membranes and are converted directly into energy. The most significant
monosaccharide is glucose (C6H12O6), as it is the desired energy source for cells.

Polysaccharides are broadly divided into two types: Homo-polysaccharides are com-
posed of a single type of monosaccharide unit. For example, cellulose, starch, and glycogen
(see Figure 1). Hetero-polysaccharides are polysaccharides composed of two or more types
of monosaccharide units. Hyaluronic acid, for example, affords extracellular support for
organisms. Polysaccharides are typically synthesized using one of three methods: (1) step-
wise glycosylation; (2) condensation polymerization; and (3) ring-opening polymerization.
However, unlike nucleic acids and proteins, which can be easily synthesized using commer-
cially available automated synthesizers, the simple chemical synthesis of polysaccharides
with well-defined structures remains an unsolved challenge. The main reasons are the
difficulties in controlling the regioselectivity of multiple hydroxyl groups with similar reac-
tivity, controlling the stereochemistry of glycosidic linkages, and obtaining high molecular
weight polysaccharides [8]. A glycosidic bond, also known as a glycosidic linkage, is an
ether bond that connects a carbohydrate (sugar) molecule to another group, which may
or may not be another carbohydrate. A glycosidic bond is formed when the hemiacetal or
hemiketal group of a saccharide (or a molecule derived from a saccharide) and the hydroxyl
group of another compound, such as alcohol, come together. A glycoside is a substance that
contains a glycosidic bond. The relative stereochemistry of the anomeric position and the
stereocenter farthest from C1 in the saccharide can be used to distinguish between α- and β-
glycosidic bonds when an anomeric center is involved in a glycosidic bond (as is frequently
the case in nature; see Figure 2a). Pharmacologists frequently glucuronidate substances to
increase their water solubility by attaching them to glucuronic acid via glycosidic bonds.
Numerous other glycosides serve crucial physiological purposes. The fungal cell wall, for
instance, is a critical structure with high plasticity that is essential for cellular integrity and
viability. The cell wall regulates many biological functions, including controlling cellular
permeability and protecting the cell from osmotic and mechanical stress. The cell wall is
mainly made up of glucans, chitin, and glycoproteins, as shown in Figure 2b.

Polysaccharides of various types, such as cellulose and its derivatives, chitin and chitosan,
hyaluronic acid, alginate, and pectin, have been used in a variety of applications, including
tissue engineering, drug delivery systems, facemasks, and bio-sensing [9–15]. They are
manufactured or transformed into a variety of forms, including hydrogels, nanoparticles,
membranes, and porous drug delivery media.
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Figure 2. (a) A β-1,6 glucan molecule showing how carbons are numbered. The terminal saccharide is
linked via a β-1,6 glycosidic bond. The remaining linkages are all β-1,3. The formula was reproduced
from Wikipedia. This image is ineligible for copyright and therefore in the public domain because
it consists entirely of information that is common property and contains no original authorship.
(b) A schematic of the structural polysaccharides of the fungal cell wall, which include alpha/beta
glucan combined with chitin and chitosan to form the fungal cell wall [5].

Polysaccharides that contain both hydrophobic and hydrophilic moieties in their molecu-
lar chains are referred to as amphiphilic polysaccharides. Furthermore, because polysaccha-
rides frequently contain a large number of -OH (hydroxyl) and/or -COOH (carboxyl) groups
in their formulae, extra functional groups can be covalently introduced through chemical
modification methods such as sulfation, methylation, carboxymethylation, acetylation, seleny-
lation, and etherification [16–18]. It must be acknowledged that even though polysaccharides
have many chemical complexities, it is possible to propose a chart that can be used to clas-
sify various types of polysaccharides, as shown in Table 1 [16–18]. Certain polysaccharides
concurrently possess several structural characteristics, such as pectin. Pectin is both plant-
derived and negatively charged, and it has branched polymeric architecture [19,20]. Various
polysaccharides, including cellulose, pectin, and hemicellulose, are combined to form the
composite structures that make up plant cell walls. Pectin is one of them and is continually
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produced during cellular expansion. It has been hypothesized that pectin contributes to
cell adhesion because it is prevalent in intercellular spaces. In food, pectin also serves
as a gelling agent. Researchers have attempted to identify and categorize the enzymes
involved in pectin synthesis (see Figure 3), as well as establish the mechanisms of pectin
synthesis [21], in order to reveal the function of pectin, which is essential to both plants
and humans. In fact, many controlled-release formulations based on hydrophilic matrices
have chosen pectin due to its non-toxicity and low production costs (Figure 3), making it a
common biomaterial for the formulation of controlled-release dosage forms [22].

Table 1. Common polysaccharides and their origin.

Classification of Polysaccharides Based on Different Natural Sources

Higher Plants Algal Animal Origin Microbial

Starch Alginates Chitin Dextran

Cellulose Galactans Chitosan Gellan gum

Guar gum Carrageenan Glycosaminoglycans Pullulan

Gum Arabic Fucoidan Hyaluronic acid Xanthan gum

Locust bean gum Ulvan (green macroalgae)Pharmaceutics 2023, 15, x FOR PEER REVIEW  5  of  42 
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Figure 3. (A) Schematic representation of plant cell wall morphology and pectin synthesis. Pectin
is abundant in the primary walls that growing cells create (brown) and the middle lamella that
binds neighboring cells (blue), but it is also present in smaller amounts in secondary walls that are
created after growth has stopped (gray). A simplified representation of the primary cell wall is
shown in the inset at the lower right, where cellulose microfibrils (green), hemicellulose (red), and
pectin (blue) are arranged in one potential configuration. (B) Pectin-rich biomass can be produced
from the lignocellulosic feedstock or naturally pectin-rich plant matter, which can then be processed
into high-bioproductsoducts derived from pectin or saccharified and fermented to produce biofuel.
(C) Potentially advantageous effects of pectin modification on biomass processing in bioenergy crop
plants. In some circumstances, pectin modification might make it possible to skip steps in the processing
process like pectin extraction (curved arrow in (B)). Reproduced with permission from [19].
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As medical polysaccharides derived from plant sources, mushrooms encompass an im-
mense and yet fundamentally untapped source of powerful new pharmaceutical products.
In modern medicine, they can provide unlimited polysaccharide sources with antitu-
mor and immunostimulating properties [23–25]. These polysaccharides are of different
chemical compositions and are composed of β-glucans that have β-(1→3) linkages in the
main polymeric glucan with additional β-(1→6) branches that are crucial in antitumor
action. As such, certain polysaccharides are direct and effective drugs. Table 2 summarizes
commonly available polysaccharide-based drugs along with their biological effects and
applications [26–28].

Table 2. Polysaccharides as drugs and their biological and targeted applications. Data reproduced
with permission from [27], Elsevier 2022.

Source Polysaccharide Drug Form Biological Activity
and Applications

Animal

Heparin

Heparin sodium cream; heparin
sodium lozenge; low molecular

weight heparin sodium gel; heparin
calcium for injection; heparin
(sodium, calcium) injection

Anticoagulant, antiviral [29], a
biosensor for thrombin [30], stabilize,
deliver, and enhance growth factors
like FGF-2 [31], anti-inflammatory
and anti-angiogenic activity [32]

Chondroitin sulfate

Chondroitin sulfate tablets;
chondroitin sulfate (chondroitin

sulfate A sodium) capsules;
chondroitin sulfate (chondroitin

sulfate A sodium) injection

Coatings [31], cell growth,
differentiation, morphogenesis, cell

migration, and bacterial/viral
infections [33], interactions with

matrix proteins, activation of growth
factors, regulation of angiogenesis,
and melanoma cell invasion and

proliferation [34], osteoarthritis [35]

Hyaluronic acid Sodium hyaluronate injection;
sodium hyaluronate eye drops

Drug carriers [36], anti-arthritic [37],
osteoarthritis [38]

Plant

Astragalus PS
Astragalus polysaccharide injection

(2-(chloromethyl)-4-(4-
nitrophenyl)-1,3-thiazole)

Immunoregulatory [39],
anti-oxidative [40], antiviral [41], and

anti-tumor [42,43]

Ginseng PS Ginseng polysaccharide injections
Immunostimulant [44],

hypoglycemic [45],
anti-inflammatory [46]

Fucoidan PS Active pharmaceutical ingredient

Cell proliferation and
differentiation [47], immune

modulation, cancer inhibition, and
pathogen inhibition [48],

antioxidant [49], antitumor [50],
antiviral [51]

Microbial

Lentinan PS
Lentinan injection; lentinan

capsules; lentinus edodes mycelia
polysaccharides tablets

Immunologic activities [52],
antitumor [53], Hepatoprotective, and

Antiviral [54]

Poria PS Poria polysaccharide oral
solution capsular

Antitumor [55], immunomodulation,
anti-inflammation, antioxidation,

anti-aging, antihepatitic, antidiabetics,
and anti-hemorrhagic fever [56]

Capsular PS

Vi polysaccharides typhoid vaccine;
pneumococcal vaccine polyvalent;

group A and C meningococcal
polysaccharide vaccine

Vaccines and passive antibody
therapies [57]

Dextran
Dextran 40 glucose injection;

dextran 70 eye drops; low
molecule dextran

Biotechnological applications [58]
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As shown in Table 2, arabinogalactan, galactomannan, and pectic polysaccharides
derived from higher plants, β-glucans, and glycoproteins derived from mushrooms, and
sulfated polysaccharides derived from seaweed all have antioxidant and immunomodu-
latory properties [26]. Heparin is an anionic glycosaminoglycan with a broad molecular
weight distribution and charge density that is heterogeneous, linear, and highly sulfated. As
a result, heparin can selectively interact with multiple proteins, resulting in a variety of phar-
macological functions such as anticoagulant, anti-viral, anti-tumor, and anti-inflammatory
properties. Lentinan, which is also included in Table 2, has a β-(1, 3)-glucan backbone with
β-(1, 6) branches. It can be extracted from shiitake mushrooms and has been shown to be a
biological response modifier for the treatment of gastric cancer. Recent clinical studies show
that chemo-immunotherapy with lentinan improves survival in patients with advanced
gastric cancer when compared to chemotherapy alone [59]. Finally, high-molecular-weight
dextran is a glucose-derived plasma volume expander. It is easily capable of restoring
blood plasma loss caused by severe bleeding. Severe blood loss can cause organ failure
and brain damage by lowering oxygen levels. Plasma is required for the circulation of red
blood cells, which carry oxygen. Dextran is used to treat hypovolemia (low circulating
blood plasma volume) caused by surgery, trauma or injury, severe burns, or other causes of
bleeding [60].

Certain polysaccharides can be activated by physical or chemical stimuli, and after
being triggered, they can facilitate the on-demand burst or controlled release of certain
drugs or molecules [61]. For instance, gellan gum, carrageenan, and alginates have been
used to construct such response-driven hydrogel-based devices. In addition to various
physical or chemical stimuli such as temperature and pH, polysaccharides experiencing
chemical stimuli undergo significant changes in their rheological or physical properties.
Chemical stimuli can be used to induce changes like self-assembly, sol-gel transition, and
hydrogel cross-linking. Most of these changes can lead to the release of molecules or cells,
accompanied by matrix swelling or degradation. Aside from chemically induced modifica-
tions, certain physical stimuli can also cause in situ modifications of the polysaccharides. A
summary of biomedical applications of physico-chemically activated polysaccharides is
given in Table 3. As shown in Table 3, swelling and erosion/degradation-induced drug
release behavior of certain polysaccharides such as pectin and inulin are of immense impor-
tance in controlled release technologies that target sustained release in simulated gastric
fluid (SGF) and simulated intestinal fluid (SIF) environments.

Table 3. Physical or chemical trigger-driven polysaccharide material systems and their potential drug
delivery applications. Data compiled with permission from [61] under Attribution-NonCommercial
4.0 International (CC BY-NC 4.0) license, SAGE Publishers 2018.

Smart Response Biopolymer Blend Application Reference

Sol–gel transition

Kappa carrageenan
Gellan gum Ocular safety [62]

Methylcellulose Ophthalmic drug
delivery system [63]

Alginate

Gelrite Ocular safety [64]

Hydroxypropyl methyl
cellulose

Ophthalmic drug
delivery system [65]

– Ophthalmic drug
delivery system [66]

Aminocaproic acid Drug delivery [67]

Dextran Tyramine Drug delivery/tissue
engineering [68]

Hyaluronic acid Tyramine Drug delivery/tissue
engineering [69]

Modified chitosan
(chitosan-graft-glycolic acid) – Tissue engineering [70]
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Table 3. Cont.

Smart Response Biopolymer Blend Application Reference

Swelling

Modified chitosan
(N-succinyl-chitosan) Aldehyde hyaluronic acid Tissue engineering [71]

Modified calmodulin
(calcium-binding protein)

3-[2-(trifluoromethyl)-
10H-phenothiazin-10-

yl]propan-1-amine
Drug delivery/microfluidic [72]

Poly(L-glutamic acid) Phloretic acid 3D cell culture and
recovery/tissue engineering [73]

Degradation and release

Poly(L-glutamic acid) Phloretic acid 3D cell culture and
recovery/tissue engineering [73]

Alginate – Drug delivery [74]

Dextran – Drug delivery [75]

Self-assembly/folding Peptide-hyaluronan hybrid
hydrogel – Controlled release [76]

Pectin, for instance, undergoes a pH-dependent hydrogel formation where swelling
in SIF can be much greater compared to SGF, releasing only 65% of a model drug over
a period of 12 h [77]. This behavior renders pectin-based tablets or biomaterials highly
suitable for extended release systems [77,78]. As another example, the sol–gel transition of
the mixture of glycol chitosan and oxidized alginate at room temperature can be utilized
for the sustained release of Avastin® for ocular drug delivery [79]. Such a material system
encapsulating Avastin® can be tuned to burst release at an early stage (within 4 h), followed
by a sustained release extending to several days. The sol-gel transformation can be tuned
by increasing the oxidized alginate concentration in the hydrogel [79]. Note that oxidized
alginate gels were shown to be cytocompatible for a variety of cell types, including corneal
endothelial cells. The swelling behavior, degradation profile, and storage modulus of these
modified alginate gels are all affected by alginate oxidation, allowing these properties to be
controlled depending on the degree of oxidation. Moreover, oxidized alginates are better
soluble under physiological conditions, allowing better gelation through dynamic covalent
Schifft-base linkage between amino groups on chitosan [79].

2. Principles and Kinetics of Drug Release: A Brief Review

Drug release from encapsulating matrices is a very complicated process that can
depend on matrix material chemistry, structure (such as porosity, gel state, etc.), medium
conditions such as pH, presence of enzymes, etc., along with external triggers such as
temperature. Drug release takes place in several different modes, such as systems that
release a drug at a slow, i.e., zero or first-order rate, and those that provide an initial rapid
dose, followed by a slow zero or first-order release of sustained components [80]. Certain
sophisticated systems have also been developed suitable for pulsatile drug release [81,82].
The purpose of controlled release systems is to conserve desired drug levels in the blood or
in target tissues for as long as possible. In other words, controlled release matrices must
regulate the drug release rate and duration in an anticipated medium. As such, an initial
faster release or dose is needed in order to rapidly accomplish the effective therapeutic
concentration of the drug. Then, well-defined drug release kinetics must be followed in
order to supply and maintain medical doses and drug levels over a desired period [83].
Table 4 shows the most commonly used mathematical models for evaluating drug release
kinetics that are generally fitted to the experimental release data.
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Table 4. Commonly employed drug release models.

Model Name Equation Measurable Variables and Definitions

Zero order Qt = Q0 − K0t
Qt = Cumulative amount of drug released at time t, t;
Q0 = Initial drug amount in the matrix; K0 = zero-order
release rate constant

First-order log Qt = log Q0 − K1t
3.303

Qt = Cumulative amount of drug released at time t;
Q0 = Initial amount of drug in the matrix; K1 = First-order
release rate constant

Higuchi Qt = KHt0.5 Qt = Cumulative amount of drug released at time t;
KH = Higuchi’s release rate constant

Hixson-Crowell Q1/3
0 −Q1/3

t
= KSt

Qt = Cumulative amount of drug released at time t;
Q0 = Initial amount of drug in the matrix; Ks = Release
rate constant

Baker–Lonsdale
3
2

[
1−

(
1− Mt

Mα

)2/3
]

− Mt
Mα

= 3DmCms
r2

0C0
t

Mt = Amount of drug released at time t; Mα = Amount of
drug released at an initial time; Dm = diffusion coefficient;
Cms = drug solubility in the matrix; r0 = radius of the
spherical matrix; C0 = initial concentration of drug in
the matrix

Korsmeyer–Peppas Mt
Mα

= ktn
Mt/Mα = fraction of drug released at time t; k = kinetic
constant; n = release exponent relating to transport
mechanism

Hopfenberg
Mt
Mα

= 1

−
[
1− K0

C0a0

]n

Mt/Mα = fraction of drug dissolved; K0 = erosion rate
constant; C0 = initial concentration of drug in the matrix;
a0 = initial radius for matrix; n = 1, 2 and 3 for a slab,
cylinder and sphere, respectively.

Poiseuille’s law of
laminar flow

dM
dt = πc

8
r4

η
P1−P2

h

dM/dt = drug release rate; c = concentration of drug in
matrix; r = radius of orifice; η = viscosity of matrix;
P1 − P2 = pressure difference between the inside and
outside of the membrane.

Weibull
log[− ln(1−m)]
= b log(t− Ti)
− log a

m = fraction of the drug in solution at time t; a = time scale
of the process; b = shape parameter; Ti = lag time

A plot of plasma drug concentration versus time is a common way to represent
the drug release profile. The minimum effective concentration, below which the drug is
ineffective, and the toxic concentration, above which undesirable side effects occur, are
both depicted in the plot of Figure 4. Preservation of drug concentration at any instance
between the minimum effective concentration and the minimum toxic concentration is
crucial for safety and therapeutic effectiveness [83]. Drug release kinetics is zero-order
when a constant amount of drug is excluded per unit time, but the rate remains independent
of the concentration of the drug. Several medications are administered in immediate-release
forms, which result in a quick rise in systemic drug concentration. These formulations
may have limitations due to poor patient compliance, harsh side effects, low bioavailability,
or unfavorable pharmacokinetics, despite the fact that they have historically played a
significant role. Although first-order release kinetic drug delivery has been able to improve
pharmacokinetics, it is still not the best option for medications with brief biological half-
lives or narrow therapeutic windows. Zero-order release has the potential to overcome the
issues faced by immediate-release and first-order systems by emancipating the drug at a
constant rate, hence maintaining drug concentrations within the therapeutic zone for an
extended period [83–86].
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Figure 4a exemplifies alginate-based porous sponges to be digested as carriers to
prolong the gastric retention time and controlled release of curcumin. Curcumin was
incorporated into the sponges via an emulsion process [83], and the final composite was
converted into a solid form by freeze-drying [83]. The curcumin release from these sponges
followed the Higuchi profile (Qt = KHt0.5) as shown in Figure 4b as a t1/2 curve, which
translates into a sustained release that was maintained for over 8 h. Figure 4c shows a plot
of plasma drug concentration versus time. There are two important concentration levels
indicated: the minimum effective concentration (MEC), below which the drug is ineffective,
and the maximum therapeutic (tolerated) concentration, above which unwanted side effects
can occur. Maintaining drug concentrations between the minimum effective concentration
and the minimum toxic concentration is critical for safety and therapeutic effectiveness.
Table 4 summarizes a number of popular drug release models developed over the years to
design and study new drug release matrices. The model examples in Table 4 can be briefly
described as follows:

• Zero-order: By releasing medication at a constant rate and keeping drug concentra-
tions within the therapeutic window for a longer period, zero-order drug delivery
systems can solve problems with immediate-release and first-order systems. This
release profile can be used to lower dosage requirements, lessen dosing intervals, and
improve receptor binding, post-receptor effects, and chemical interactions in terms of
pharmacodynamics [87];

• First-order: Various therapeutic agents’ absorption and/or elimination have been
described using this model. However, using a basic theory to define first-order kinetics
is challenging. In this sense, first-order release states that the kinetic release rate
depends on how the drug concentration changes over time [88];

• Higuchi model: The model defines drug release from insoluble matrices as a function
of the square root of time, related to the Fickian diffusion equation. The slope of the
plot gives the Higuchi dissolution constant [89];

• Hixson-Crowell model: This is a cube root law that deals with the dissolution rate
that is normalized with respect to the decrease in solid surface area as a function of
time. Adaptable to matrices where there is a change in the surface area and diameter
of particles or tablets. It assumes no shape change as the suspended solid dissolves;
its surface decreases by two-thirds of its weight [90];

• Baker-Lonsdale: It is a modified Higuchi model and describes the drug release from
spherical matrices [91];
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• Korsmeyer-Peppas model: This model was established specifically for the release of
drugs from polymeric matrices like hydrogels [92]. As a power law, a comprehensive
semi-empirical equation that establishes an exponential relationship between the
release and the time. Modified forms have also been employed that contain the latency
time, which marks the launch of drug release from the matrix;

• Hopfenberg model: It models and correlates drug release from surface-eroding poly-
mers and assumes that the surface area remains constant during the degradation
process. Good for drug release from slabs, spheres, and infinite cylinders displaying
heterogeneous erosion [93];

• Poiseuille’s law of laminar flow. It can model drug release from membrane matrices,
such as monolithic osmotic tablet systems. It is used for drug release from swelling
gels or tables through orifices via pressure difference [93];

• Fickian drug release from Euclidian or fractal matrices can be modeled or approx-
imated by the Weibull function. It is also used to model dissolution-induced drug
release [94,95].

Drug transport from matrices includes multiple steps driven by different physical or
chemical phenomena, making it challenging, or even impossible, to implement a mathe-
matical model describing it in the right way. The most widely reported drug release models
are the Higuchi model, the zero-order model, the first-order model, and the Korsemeyer-
Peppas model. Note that the physicochemical properties of the drug as well as the polymer
and the drug-to-polymer ratio dictate drug release dynamics from the formulation, and in
many cases, more than one release mechanism can occur during the administration period,
particularly from nanoscale carriers [95].

3. Drugs and Their Properties Encapsulated by Polysaccharides

Drug release studies based on polysaccharides utilized a vast variety of model drugs,
ranging from antiseptics and antibiotics to antioxidants, painkillers, and proteins [95–100].
Table 5 demonstrates some examples of drug-encapsulated pure or modified polysaccha-
rides [101–110]. For instance, chitosan—tamarind seed polysaccharide composite films
were evaluated for the delivery of protein/peptide molecules through transdermal trans-
port. The blend constituent concentrations were adjusted to tune the solubility, pH resis-
tance, and swelling properties of protein encapsulating matrices [103]. In another study
in Table 5, a pH-sensitive biodegradable ternary blended hydrogel film (chitosan/guar
gum/PVP) was developed for antibiotic delivery applications [109]. Different degrees of
crosslinking with sodium tripolyphosphate resulted in controlled swelling and release
of the antibiotic under different pH conditions, like gastric and intestinal fluids. Proba-
bly the most frequently used model drugs are antibiotics and cancer drugs. Hence, it is
important that the readers are familiarized with their properties, functions, and targeted
clinic applications.

Table 5. Some examples of drug loaded polysaccharide systems and their applications.

Drug Mode of Release Polysaccharide Matrix Remarks Reference

Dexamethasone
and Levofloxacin Opthalmic delivery Glycol chitosan/hyalouranic

acid hydrogel film

Burst release of levofloxacin
followed by the sustained
release for dexamethasone

[101]

Miconazole nitrate Oral delivery Chitosan-HPMC/Pectin film
Chitosan-HPMC film found to

be superior as drug
delivery support.

[102]

Peptides and proteins Transdermal Chitosan-tamarind seed
polysaccharide composite film

The film is antimicrobial
and stable. [103]

Paracetamol Colon delivery Pectin/chitosan/hydroxyl
propyl methyl cellulose films Bimodal drug release [104]
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Table 5. Cont.

Drug Mode of Release Polysaccharide Matrix Remarks Reference

Bioactive materials Wound dressing Chitosan cyclodextrin
inclusion complex based film

Presence of cyclodextrin prevent
the loss of bioactives due

to evaporation
[105]

Paracetyl aminophenol In vitro
Silver loaded hydroxyl

ethylacryl chitosan-sodium
alginate hydrogel film

Presence of silver prolonged the
drug release rate [106]

Ketorolec methane Transdermal delivery Cellulose/nanofibril chitosan
transdermal film Sustained release of drug [107]

Ellagic acid Transdermal Chitosan-ellagic
acid-based films

Induce apoptotic death in
human carcinoma cells. [108]

Ciprofloxacin In vitro Chitosan/PVP/Guargum
blended films

pH sensitive ternary blend film
for the controlled release. [109]

Betamethasone,
Sulfadiazine In vitro Chitosan nanocellulose film Ideal for wound dressings [110]

Antibiotics are generally chosen as model drugs in many polymer-matrix release
formulations. Extended-release dosage forms maximize the therapeutic effect of antibiotics
while reducing antibiotic resistance by maintaining a constant plasma drug concentration
over MEC for an extended period (Figure 4c). Table 6 lists some common antibiotics
utilized as model drugs in polysaccharide release studies, along with their target actions
and potential side effects [111,112].

Table 6. Properties of some common antibiotics Note that “cidal” means effectively killing bacteria.
Data reproduced with permission from [112], Elsevier 2019.

Drug Primary Effect Spectrum Side Effects

Ampicillin Cidal Broad (Gram+, some Gram−) Allergic response, diarrhea, anemia

Bacitracin Cidal Narrow (Gram+) Renal injury if injected

Carbenicillin Cidal Broad (Gram+, many Gram–) Allergic responses, nausea, anemia

Cephalosporins Cidal Broad (Gram+, some Gram–) Allergic responses,
thrombophlebitis, renal injury

Chloramphenicol Static Broad (Gram+, Gram–; Rickettsia
and Chlamydia)

Depressed bone marrow function,
allergic reactions

Ciprofloxacin Cidal Broad (Gram+, Gram–) Gastrointestinal upset,
allergic responses

Clindamycin Static Narrow (Gram+, anaerobes) Diarrhea

Dapsone Static Narrow (mycobacteria) Anemia, allergic responses

Erythromycin Static Narrow (Gram+, mycoplasma) Gastrointestinal upset,
hepatic injury

Gentamicin Cidal Narrow (Gram–) Allergic responses, nausea, loss of
hearing, renal damage

Isoniazid Static Narrow (mycobacteria) Allergic reactions, gastrointestinal
upset, hepatic injury

Methicillin Cidal Narrow (Gram+) Allergic responses, renal toxicity,
anemia

Penicillin Cidal Narrow (Gram+) Allergic responses, nausea, anemia

Polymyxin B Cidal Narrow (Gram–) Renal damage, neurotoxic reactions
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Table 6. Cont.

Drug Primary Effect Spectrum Side Effects

Rifampin Static Broad (Gram–, mycobacteria) Hepatic injury, nausea,
allergic responses

Streptomycin Cidal Broad (Gram+, Gram–;
mycobacteria)

Allergic responses, nausea, loss of
hearing, renal damage

Sulfonamides Static Broad (Gram+, Gram–) Allergic responses, renal and
hepatic injury, anemia

Tetracyclines Static Broad (Gram+, Gram–; Rickettsia
and chlamydia)

Gastrointestinal upset, teeth
discoloration, renal and

hepatic injury

Trimethoprim Cidal Broad (Gram+, Gram–) Allergic responses, rash, nausea,
leukopenia

Vancomycin Cidal Narrow (Gram+) Hypotension, neutropenia, kidney
damage, allergic reactions

Moreover, Table 7 lists commonly used antibiotics to treat a variety of cancers, ranging
from soft tissue tumors to Ewing’s sarcoma (a rare bone tissue cancer) [113]. Almost all
antibiotics displayed in Tables 6 and 7 have been incorporated into polysaccharide-based
controlled-release formulations. Encapsulation of antibiotics in nano-engineered polymer
matrices is considered effective against the surge of antibiotic-resistant bacteria.

Table 7. Examples of cancer chemotherapy drugs Data reproduced with permission from [113],
Springer Nature 2017.

Active Substance Indication Mechanism of Action Safety Notes

Docetaxel Breast cancer, non-small cell
lung cancer

Increased assembly of
microtubule

Mutagenicity positive;
Carcinogenicity is not tested

Paclitaxel Soft tissue tumor Inhibition of microtubule
reorganization

Mutagenicity positive;
Carcinogenicity is not tested

Doxorubicin Soft tissue tumor,
ovarian tumor DNA intercalation Mutagenicity positive;

Carcinogenicity is positive

Cyclophosphamide Breast cancer; ovarian cancer DNA intercalation Mutagenicity positive;
Carcinogenicity is positive

Docetaxel Breast cancer, advanced
stomach cancer

Microtubule network
reorganization inhibition

Mutagenicity positive
Carcinogenicity not tested

Epirubicin Breast cancer DNA intercalation Mutagenicity positive;
Carcinogenicity not tested

5-Fluorouracil Head and neck cancer;
breast cancer

Interferes with
DNA replication

Mutagenicity positive;
Carcinogenicity negative

Etoposide Ewing’s sarcoma;
uterine Cancer

Prevents re-ligation of the
DNA strands

Mutagenicity positive;
Carcinogenicity is limited

Rituximab Follicular
lymphomas Bind to CD-20 Mutagenicity is not tested

Carcinogenicity is not tested

Oxaliplatin Colon cancer; rectal cancer Interfere with
DNA replication

Mutagenicity positive;
Carcinogenicity positive

Ifosfamide Ewing’s sarcoma, germ
cell tumor

Interfere with
DNA replication

Mutagenicity positive;
Carcinogenicity positive

By crossing the cell membrane, interfering with cellular elements, and harming bacte-
rial metabolism, antibiotics in nanoscale matrices can act as carriers and delivery agents
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to reach target sites inside bacteria. Antibiotics carried in polysaccharide-based nanocarri-
ers often display high encapsulation efficiency. The distinct characteristics of such drug
carriers in terms of size, shape, and composition present bacteria with multiple simulta-
neous threats, and it is expected that bacterial resistance to various nanoscale conjugates
develops much more slowly [113–115]. In addition to physically destroying bacteria, nano-
polysaccharides with antibiotics also disrupt key molecules involved in bacterial processes,
and hence genetic mutations from abiotic attacks wielded by such systems are less prob-
able. Hence, it is important to briefly exemplify some selected works that incorporated
model antibiotics in nanoscale polysaccharides. Among various antibiotics, for instance,
vancomycin-incorporated chitosan nanoparticles have been developed for contact lens
applications [114]; vancomycin was also incorporated in natural polysaccharide-based
hybrid hydrogels for synergistic wound fumigation using low-intensity near-infrared
light-triggered spatiotemporal antibiotic release and hyperthermia [115].

Other recent works, for example, studied chloramphenicol release dynamics of poly
(vinyl alcohol)/sodium alginate hydrogels made by freeze-thaw and calcium ion crosslink-
ing to imitate gastrointestinal tract conditions and assess the clinical practicability of the
hydrogels as controlled-release drug carriers [116]. Hydrogels of pectin prepared by the re-
action between pectin and bis (3-aminopropyl) amine (APA) exhibited a pH-induced sol-gel
phase transition and were found to regulate the release of gentamicin [117]. Controlled an-
tibiotic release for the management of periodontal infrabony defects using bioactive gelatin-
alginate/apatite nanocomposite films has been demonstrated using tetracycline [118]. A
typical nanoscale structure of apatite nanoparticles is shown in Figure 5a. Caseinate-zein-
polysaccharide complex nanoparticles (Figure 5b) can easily encapsulate hydrophobic
drugs, and via polysaccharide type and chemical cross-linking, the drug release rate can be
regulated [119]. As mentioned briefly before, pectin, as a natural polysaccharide, exhibits
interesting properties for drug delivery, particularly in the form of nanoparticles [120]
(Figure 5c).

A notable study, for example, synthesized methotrexate-conjugated pectin nanoparti-
cles for delivering a cytotoxic drug to hepatic cancer cells. Carbodiimide chemistry was
used to conjugate methotrexate with pectin. The nanoparticles demonstrated sustained
drug release at pH 7.4, while methotrexate’s cytotoxicity was increased when conjugated to
pectin nanoparticles versus free methotrexate [121]. Table 7 exemplifies a number of model
cancer drugs that have been incorporated into polysaccharide release matrices. Alginate
nanoparticles carrying paclitaxel (PTX) were modified with chitosan and folate-chitosan
using a double emulsion cross-linking electrostatic attraction method. The nanoparticles
were between 200 and 300 nm in size, and they were tested for in vitro anti-cancer activity
and cellular uptake by HepG2 cells. The results revealed that the modified nanoparticles
allow sustained release of anticancer drugs while having no cell toxicity [122].

It is also important to mention that bacterial nanocellulose is an effective antibiotic
delivery system that is nontoxic and highly biocompatible. It has been extensively utilized
as a nanostructured (i.e., nanofiber networks shown in Figure 5d) cancer drug carrier and
delivery vehicle in addition to its use as a matrix for improved therapeutic potency while
reducing the adverse effects of chemodrugs by decreasing their dosages [123,124]. Another
common antibiotic incorporation method into polysaccharides is the solid dispersion
technique, which appears to increase the dissolution rate and bioavailability of poorly
soluble drugs. The solid dispersions have unconventional uses in the area of controlled
release dosage matrix design because of the wide availability of certain polysaccharides that
are partially soluble or have excessive swelling capacity in aqueous media, such as ethyl
cellulose, hydroxypropyl cellulose, and hydroxypropylmethyl cellulose [125]. Additionally,
exceedingly precise physio-chemical surface modification techniques to create the ideal
polysaccharide nano-carriers should be made with more biocompatible procedures to tailor
to the drug properties but also eliminate associated toxicological concerns related to surface
functionalization moieties.
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4. Polysaccharide Encapsulated Natural Extracts and Release

It is projected that over 60% of the accepted drugs and new drug developments for can-
cer and infectious diseases will be based on natural extracts [126]. Complex plant-derived
combinations, such as natural extracts, are highly challenging to characterize and study to
document their pharmacological potency properly. However, many natural extracts fea-
ture a multi-targeted mode of action and impending synergistic performance on different
proteins within the same signaling pathway and in several biochemical pathways at once,
rendering them very attractive for anticancer drug development [126]. Natural extracts,
including essential oils, have been incorporated into polysaccharide matrices for biomedical
applications, including sustained drug release [127–133]. Curcumin, for instance, has been
extensively used in polysaccharide nanocarriers as it is a very difficult agent to metabolize
due to its lipophilic nature [134,135]. Another interesting example is the system in the form
of a polymeric film based on chitosan containing aqueous mint and pomegranate peel
extracts that have potent antibacterial activity against Staphylococcus aureus and Bacillus
cereus [136]. Controlling the release of phenolic compounds as natural antioxidants has a
major role in their antioxidant activity. To this effect, recent studies have utilized nanoscale
encapsulation techniques for, for instance, olive leaf phenolic compounds through pectin
complexes to evaluate their release rate [137]. Efficient nanoscale encapsulation of these
extracts enabled their controlled release for up to 20 days in various biological fluids. The
study by Ahmed et al. [138] screened about 23 wild plant extracts along with 24 spice and
herb extracts using ethanol and water. Ethanoic and water-suspended natural extracts were
tested in vitro as anticancer agents employing the trypan blue technique against Ehrlich
Ascites Carcinoma Cells (EACC), while the sulphorhodamine (SRB) assay technique was
used against HepG2 cells. The antioxidant potency of the extracts was measured by 2,
2 diphenyl-1-picrylhydrazyl (DPPH) assay. Based on the summary of their results shown
in Table 8, both ethanoic and water extracts of some plants featured high cytotoxic and
antioxidant action and inhibited the growth of cancer cells.
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Table 8. Anticancer and antioxidant assay results on various plant extracts and herbs and spices.
Data reproduced with permission from [138], Academic Journals 2012.

Scientific Name
Anticancer Activity Antioxidant Activity

Water Ethanoic Ethanoic Water

Atriplex sp. 100 49 70.8 50.5

Euphorbia paralias L. 3.3 2.4 81.1 51.8

Cakile maritime scop. 89.7 90.8 56.3 55.6

Panax quinquefolius 64 2.6 11.7 56

Zygophulum album L.F 61.1 32.9 80.3 64.8

Asparagus stipularis 13 5.2 72.7 70.9

Kochia indica wight 2.88 1.6 50.4 72.4

Retama raetam (Forssk) Webb 2.6 1.4 80.2 78.1

Olea europaea L. 0 8.0 50.5 81.1

Pituranthos tortusous 11.2 14.3 58.4 81.4

Limoniastrum monopetalum (L.) Boiss 52.9 3.8 85.6 82

Cistanche phelypaea (L.) 37 100 50.7 85.6

Moricandia nitens 89.2 51 89.8 85.6

Zygophulum simplex L. 61.1 32.9 85.7 44.1

Arum palaestinum 97.3 19.4 12.7 43.1

Anabasis artiaulata (Forssk.) Moq 25 10 40.8 42.7

Thymelaea hirsute (L.) Endl. 54 18 78.6 35.3

Astragalus pinosus. 100 15.8 28.4 19.5

Asphodelus microcarpus salzm 9.1 1.9 60.3 49.5

Solanum nigrum 100 89.7 85.7 55.6

Lotas polyphylles 7.2 7.9 27.0 27.0

Beta vulgaris 64 7.0 41.1 30.3

Herbs and spices

Rosmarinus oficinalis 80.0 61 38.4 65.1

Camellia sinensis 85 86.4 85.4 70.6

Cockatiel 9.8 22.9 56.7 71.4

Punica granatum 6.1 4 85.7 75.8

Glycyrrhiza glabra 36 81 47.4 84.1

Capsicum annuum 24.4 68.6 57.3 25.0

Ocimum basilicum 77.2 76.3 72.3 9.8

Zingiber officinale 47.8 4.9 55.9 35.5

Curcuma longa 39.4 72.4 6.4 43.4

Cassia italca 89.7 90.78 55.4 30.7

Nigella sativa 81 2.54 8.4 8.8

Solenostemma argel 24.66 95 41.3 7

Parviflora 7.83 1.55 42.7 40.3

More specifically, the anticancer actions of 35 plant extracts indicated that 17 ethanoic
and 18 aqueous extracts provided anticancer activity greater than 70% (Table 8). The highest
inhibition (100%) was detected in the ethanoic extracts obtained from Solanum nigrum,
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Atriplex sp., and Astragalus spinosus, followed by Arum palaestinum (97.29%), as shown
in Table 8.

Essential oils are of utmost significance in the pharmaceutical, cosmetic, agricultural,
and food industries [139]. However, essential oils’ potency is based on their bioactivity and
stability. An established method for the preservation of essential oils is polymeric nanoscale
encapsulation. Numerous advantages are available, such as increased water solubility,
efficient defense against deterioration, avoidance of volatile component evaporation, and
controlled and directed release. Nanoprecipitation is one of the many methods used to
create polymeric nanoparticles, and it has garnered a lot of interest. The most notable contri-
bution of nanotechnology to encapsulating essential oils is known as the nanoprecipitation
method [140]. Chitosan is a common encapsulation polymer due to its abundant natural
supply, biodegradability, and free NH2 surface functional groups. The NH2 groups on the
chitosan surface make it simple to graft functionalized molecules such as quaternization,
which is frequently accomplished in an acidic environment. Quaternization strengthens
the ionic character of chitosan. Despite the fact that chitosan’s cationic nature alone exhibits
antibacterial activity due to its interaction with negatively charged bacterial membranes,
the material’s nanoscale size further enhances its antibiofilm activity [141]. Electrospinning
is also a very common method to encapsulate essential oils in chitosan, while there are
several solubility issues associated with other polysaccharide polymers [142].

Phenolic compounds are imperative micronutrients in our diet, and there is growing
evidence that they may prevent degenerative illnesses like cancer, inflammation, and neu-
rodegenerative diseases [143,144]. The main constraints on the use of phenolic compounds
are their low bioavailability and ease of destruction under environmental stresses. It has
been suggested that polysaccharide nano-encapsulated phenolics can be protected better
and metabolized easier with high efficiency [143]. For example, polyphenols may interact
with starch and be transported through the digestive system as a result. The starch-based
carriers can deliver polyphenols with targeted or sustained release after physicochemical or
enzymatic modification [144,145]. Table 9 demonstrates a number of selected examples of
phenolic compounds like curcumin encapsulated in nanoscale or sub-micron-scale polysac-
charide structures that are tailored towards improving their bioavailability and sustained
release through the skin or through gastrointestinal mechanisms.

Table 9. Examples of nanoencapsulated phenolic compounds with anticancer, antibacterial and
antioxidant properties. Some polysaccharide nano-encapsulating matrices were also surface modified
either by polymeric coating or functionalization shown under “Wall structure” column. NPs signify
nanoparticles. Data reproduced with permission from [143], Elsevier 2016 and [144] Elsevier 2021.

Matrix Phenolic
Compound Wall Structure Fabrication Size Range (nm) Target Application Ref.

Cylocdextrin NPs Curcumin &
doxorubicin

Chitosan/poly(butyl
cyanoacrylate)

Acidic anionic
polymerization 130–135 Anticancer drug release [146]

Cylocdextrin NPs Catechin Chitosan/poly(-glutamic
acid)

Polyelectrolyte
self-assembly 140–150 Controlled antioxidant

release [147]

Cylocdextrin NPs Curcumin Poly(butyl) cyanoacrylate
(PBCA)/chitosan Polymerization 200

Prevention of hepatic
carcinoma with
antiangiogenic effects

[148]

Cylocdextrin
nanomicelles Curcumin β-lactoglobulin/alginate Nano-suspension

protein complexation 280 Sustained nutraceuticals
delivery [149]

Cylocdextrin NPs Cathecin β-cyclodextrin Inclusion complex 67–470 Sustained antioxidant
delivery [150]

Cylocdextrin NPs Oleoresin Hydroxypropyl
β-cyclodextrin Inclusion complex 100–105 Sustained antibacterial

delivery [151]

Nano-starch Quercetin Cross-linked sodium
trimetaphosphate

Self-assembly
technique 20–40 Delivery through

epithelium absorption [152]

Micro-starch Polyphenols from
Hibiscus sabdariffa Octenyl succinic anhydride High shear

homogenization 500–800 Sustained antibacterial
effect [153]

Micro-starch Resveratrol n/a Solvent precipitation 500–800 Sustained antibacterial
effect [154]

Nano-starch Curcumin Polyvinyl alcohol Sol-gel transformation 300
Controlled delivery
of curcumin in
cancer prevention

[155]
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More encapsulating edible polymer systems have been reviewed in [156], how-
ever, with a major focus on improving the physicochemical and functional properties
of food or food packaging. Additionally, a comprehensive review on the application
of nano/microencapsulated phenolic compounds against cancer [157] indicated the im-
portance of targeted sustained release of phenolic compounds but did not present and
discuss sustained release dynamics and pharmacokinetics of these compounds in nanoscale
polysaccharide matrices.

For instance, very few studies exist that demonstrate the detailed release analysis
of phenolic compounds from nanoscale pectin matrices. It has been shown that pectin-
decorated selenium nanocarriers of curcumin can accomplish enhanced physicochemical
and biological properties [158], and the authors used the Ritger-Peppas model to con-
clude that an anomalous (non-Fickian) drug transport mechanism was achieved from their
nanoparticles. In another recent work, functionalized cellulose-based nanocarriers were
fabricated by applying an acid-alkali treatment to cellulose. Folic acid was then conjugated
with the nanocellulose. For the controlled delivery of curcumin, glycidyl methacrylate
(GMA) and hydroxyethyl methacrylate (HEMA) were polymerized with folic acid and
conjugated to the nanocellulose matrices. The authors used the Korsmeyer-Peppas kinetic
model and concluded that their release mechanism followed drug diffusion and simulta-
neous polymer matrix swelling [159]. Using various mathematical models like first-order,
zero-order, Hixson Crowell, Korsmeyer-Peppas, and Higuchi, Kumari et al. [160] studied
curcumin release from lemongrass cellulose nanofibers at various simulated pH conditions.
In all of the simulated pH conditions, it was found that curcumin release was best fitted
to the Korsmeyer-Peppas equation with an R2 value of 0.94 (pH 1.2), 0.96 (pH 5.3), 0.92
(pH 6.8), and 0.94 (pH 7.4). The diffusional exponent, or n value, is related to the drug
transport mechanism. If n < 0.45, Fick’s diffusion mechanism prevails, and for n values
between 0.45 and 1, the non-Fickian diffusion mechanism takes over. For all the pH values
studied, the n value remained below 0.25, and the authors concluded that since curcumin
was adsorbed on the nanocellulose surface via Langmuir and Freundlich isotherms, indi-
cating coexistence of homogeneous monolayers and heterogeneous multilayers over the
nanofibers, curcumin was released via swelling and diffusion [160].

Other natural extracts based on animal feedstock, such as ovalbumin, have also been
used for controlled release studies encapsulated in chitosan or carrageenan nanoparticles,
and release for up to 21 days could be maintained [161]. In another study [162], bovine
serum albumin was used as a model drug to systematically examine the applicability of
bacterial nanocellulose as a drug delivery matrix. Freeze-dried and never-dried matrix
forms were made and tested for drug release. For albumin release from both nanocellulose
matrix systems, a dependence on concentration, temperature, time, and pre-swelling was
shown. The results suggested an overlap of diffusion- and swelling-controlled release that
could be described by the Ritger-Peppas equation [162].

5. Drug Release from Polysaccharide-Based Nanofibers

One of the most common nanofiber drug release matrices is based on chitosan and
its blends of composites with other biopolymers. It is generally claimed that chitosan
nanofibers obtained by electrospinning have distinctive properties such as high surface area,
good porosity, being nontoxic and biocompatible against cell cultures, being biodegradable
and renewable, having low immunogenicity, being inherently antibacterial, and being easy
to produce on a large scale [163]. Shikhi-Abadi et al. [163] presented an extensive review
on the use of chitosan nanofibers as carriers to deliver anticancer drugs under in vitro
conditions. In this section, we will focus on the drug release dynamics, including sustained
delivery studies and release model-data comparisons from polysaccharide-based nanofibers
encapsulating various drugs and natural extracts. Some studies on polysaccharide-based
nanofibers focused on fast or burst release, such as oral films for drug delivery prepared
from chitosan or pullulan electrospinning nanofibers that contain aspirin [164]. For in-
stance, tetracycline hydrochloride (TCH) antibiotic-loaded poly(ω-pentadecalactone-co-ε-
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caprolactone)/gelatin/chitosan nanofibrous membranes were fabricated as a controlled
drug delivery system in a very recent work [165]. In vitro drug release studies were then
carried out, and mathematical modeling was used to identify the drug transport mech-
anism. TCH was released over the course of 14 days, starting with a burst in the first
hour and then continuing over time. With 96.5% total drug release and 11.8% initial burst
release, the 1% TCH-loaded sample was demonstrated to be effective with regard to gram-
positive (Staphylococcus aureus and Bacillus subtilis) bacteria, but it had little effect on
gram-negative (Escherichia coli) bacteria (no inhibition zone was seen below 3% TCH
concentration). The authors implemented four mathematical equations (zero order, first
order, Higuchi, and Korsmeyer-Peppas) for the release of TCH from the nanofibrous mem-
branes. The best-fitted mathematical model was selected based on the highest coefficient of
determination (R2). The authors indicated that depending on the release exponent, n, the
release mechanisms were identified as: n < 0.5 pseudo-Fickian diffusion, n = 0.5 Fickian
diffusion, 0.5 < n < 1 non-Fickian diffusion, n = 1 case II transport (zero order release),
and n > 1 super case II transport [165]. It is important to note that the authors therein
excluded the initial burst-release data points and used linear fits to the rest of the data. They
treated the initial burst dynamics separately, in which about 10% of the drug was released
within one hour. Table 10 shows intercepts, slopes, and coefficients of determination (R2)
obtained from linearized fits. High coefficients of determination (R2 > 0.96) were extracted
by applying Higuchi and Korsmeyer-Peppas models, indicating TCH release from the
nanofibrous networks was diffusion-controlled. The best fit to the in vitro drug release
profiles was Korsmeyer-Peppas (R2 ∼ 0.98–0.99). The TCH release mechanism was revealed
to be pseudo-Fickian-type diffusion because the Korsmeyer-Peppas release exponent (n)
values were less than 0.5 (between 0.236 and 0.268) for all preparations. The logarithm of
the release rate constant was shown as Korsmeyer-Peppas intercept values and is shown in
Table 10. The preparations loaded with 0.5% and 1% TCH released drugs the fastest. The
authors did not use other potential models such as Weber-Morris (intra-fiber, intra-particle)
diffusion that might also describe the release profile in [165].

Table 10. Mathematical model parameters obtained from TCH release data as a function of drug
loading concentration. Data reproduced with permission from [165], Elsevier 2022.

Amount of
Drug (%) 0.5 1 3 5

Models Intercept Slope R2 Intercept Slope R2 Intercept Slope R2 Intercept Slope R2

Zero order 32.53 0.285 0.8642 34.9 0.332 0.8836 26.07 0.192 0.8298 17.77 0.138 0.8324
First order 3.47 0.006 0.7288 3.55 0.006 0.7679 3.25 0.005 0.7192 2.86 0.006 0.72

Higuchi 20.39 4.34 0.9724 20.95 5.023 0.9836 17.59 2.969 0.9636 11.68 2.131 0.9649
Korsmeyer-

Peppas 1.28 0.262 0.9843 1.32 0.268 0.989 1.21 0.236 0.9906 1.03 0.245 0.9909

Understanding the methods to control drug release and how they affect the efficacy
of the formulation is just as crucial as understanding the physicochemical mechanisms
involved. For instance, drug concentration can be changed to alter the release profile
because when it was increased from 0.5% to 5% in [165], the overall drug release decreased
from 97% to 42%. Secondly, despite the fact that 1% TCH-loaded nanofibers displayed 97%
of the total drug released, no inhibition zone was visible below 3%. The total amount of
drug released from the 3% drug-loaded matrix, despite having a drug payload that is three
times higher [165], was only 61%. This suggests that the formulation is more effective than
the amount of drug it releases. A pseudo-Fickian diffusion mechanism suggested in [165]
is similar to the Fickian curve, but the approach to final equilibrium is slower in pseudo-
Fickian diffusion. This drug release behavior should not directly influence the formulation’s
effectiveness or the total drug released, however slower it will be. In another study [166], a
nanofiber drug delivery structure based on polycaprolactone/chitosan blends containing
5-fluorouracil (5FU) was developed. Nanofiber features and drug release performance of
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various nanofibers were investigated. Increasing the chitosan content in the nanofibers
sustained the drug release period. The drug release mechanism from all the nanofibers
could be represented by Fickian diffusion based on the Korsmeyer-Peppas model, which is
suitable for colorectal cancer.

Table 11 displays the release kinetic parameters for numerous nanofiber mats. The
diffusional release exponent varies in a range of 0.1112 to 0.3709 for all formulations
that follow the Fickian diffusion mechanism, in which 5FU release is via diffusion or
permeation through nanofiber matrices. The drug release period was 120 h, and the
nanofiber degradation during this period was insignificant. Pectin-based nanofibers are
also effective drug release matrices. Feng et al. [167] developed a polysaccharide-based
nanofiber matrix for colon-targeted sustained release of salmon calcitonin (sCT), which is
a peptide. Sodium alginate and sCT-loaded liposomes coated with pectin were the shell
and core layers, respectively. The authors used different release models and found that the
release followed a complex mechanism. Their core-shell nanofiber matrix further improved
the burst release of sCT into simulated gastric and intestinal fluids.

Table 11. Cancer drug release kinetic parameters for various nanofiber compositions. Data repro-
duced with permission from [166], Wiley 2018.

Nanofiber Formulations
pH

Korsmeyer-Peppas Parameters

Mechanism of Release
PCL:Chitosan Percent Drug

(5FU) n a R2

69:31 1
7.4 0.136 0.523 0.94

Fickian diffusion
4.4 0.1595 0.501 0.93

77:23 1 7.4 0.149 0.490 0.94 Fickian diffusion

87:13 1 7.4 0.143 0.481 0.93 Fickian diffusion

93:7 1 7.4 0.111 0.476 0.86 Fickian diffusion

100:0 1 7.4 0.370 0.151 0.96 Fickian diffusion

Four mathematical models were used to examine the release kinetics of sCT contained
in a core-shell nanofiber matrix dispersed in various media. The best model for each
simulated gastrointestinal fluid was determined by the highest value of the coefficient of
determination (R2). Table 12 shows the equations and calculated R2 values for each release
rate measurement in various simulated media. The Higuchi has the highest R2 values for
SGF and SIF media, indicating that Fickian diffusion mode was used for the release of sCT.
The model’s best fit for the release in the SCF medium was a b value between 0.75 and 1,
which indicates that the release of sCT in SCF followed a case II transportation (zero order)
in which an additional mechanism must also be working in tandem with the zero order
process. The authors concluded that the core-shell nanofiber mat is an appropriate delivery
vehicle for sCT with a tunable, complex release process with different mechanisms.

In a very recent work [168], the electrospinning of the chitosan/pectin blend sys-
tem was demonstrated using starch-derived cyclodextrin (hydroxypropyl-γ-cyclodextrin
(HPγCD)) molecules. The nanofiber films having different chitosan/pectin ratios had high
swelling (water uptake) rates, indicating hydrogel-forming capability. The authors used
HPγCD molecules to encapsulate curcumin, with ∼89% curcumin loading efficiency. Their
nanofibrous films demonstrated a pH-responsive release profile of curcumin in pH 5.4
and 7.4 media. The samples were labeled, for instance, as chitosan (3%)/pectin (1%) and
chitosan (2%)/pectin (2%) systems with 30% (w/v) curcumin in CD (CD–Cur-IC) [168]. The
release behavior was examined using five different kinetic models (zero-order, first-order,
Higuchi, Korsmeyer-Peppas, and Hixson-Crowell). The applied formulations and the
R2 values are summarized in Table 13. The highest R2 values (0.9485) were obtained for
3%Chit/30%CD–Cur-IC at pH 5.4, confirming a sustained release process compared to
other release systems. A relatively higher R2 value was obtained with the Korsmeyer-
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Peppas model for 2%Chit/2%Pect/30%CD–Cur-IC at pH 5.4, which might indicate the
existence of erosion-induced release, although the R2 value itself does not justify the su-
periority of one release process over the other. The authors concluded that the curcumin
release from nanofiber mats has a pH-responsive, controlled release potential for normal
skin and wounds.

Table 12. Release kinetic parameters and mechanisms of sCT in different stimulated media. Data
reproduced with permission from [167], Elsevier 2019.

Release Medium Model Equation R2 Release Kinetic Mechanism

Simulated gastric fluid
(SGF)

First order Ln(1 − Q) =
−0.01623 t − 0.08337 0.81752 −0.01623

Fickian diffusion

Higuchi Q = 0.05996 t1/2 +
0.02079

0.96895 0.05996

Weibull LnLn [1/(1 − Q)] =
0.44996Lnt − 2.4400 0.93381 0.44996

Ritger-Peppas LogQ = 0.42334logt −
1.07969 0.92736 0.42334

Simulated intestinal
fluid (SIF)

First order Ln(1 − Q) = −0.03724 −
0.12604 0.83910 −0.03724

Fickian diffusion

Higuchi Q = 0.11943 t1/2 +
0.00116

0.97276 0.11943

Weibull LnLn[1/(1 − Q)] =
0.59929Lnt − 2.0242 0.91437 0.59929

Ritger-Peppas LogQ = 0.54001logt −
0.91097 0.89799 0.54001

Simulated colonic
fluid (SCF)

First order Ln(1 − Q) = −0.12648 –
0.13138 0.96725 −0.12648

Case II transport
Higuchi Q = 0.19442 t1/2 +

0.08698
0.95482 0.19442

Weibull LnLn[1/(1 − Q)] =
0.82806Lnt − 1.5129 0.98481 0.82806

Ritger-Peppas LogQ = 0.5275logt −
0.67359 0.92158 0.5275

Table 13. The coefficient of determination (R2) values of samples calculated by using different kinetic
models. Data reproduced with permission from [168], American Chemical Society 2022.

Kinetic Model 3%Chit/30%CD-
Cur-IC (pH 7.4)

3%Chit/30%CD-
Cur-IC (pH 5.4)

2%Chit/2%Pect/
30%CD-Cur-IC

(pH 7.4)

2%Chit/2%Pect/
30%CD-Cur-IC

(pH 5.4)

Zero-order 0.4992 0.6901 0.5070 0.2005

First-order 0.7359 0.9485 0.7923 0.2181

Higuchi 0.7135 0.8461 0.7065 0.3727

KorsmeyerPeppas 0.6955 0.7148 0.6397 0.7271

Diffusion exponent
(n value) 0.3813 0.4131 0.3473 0.3971

Hixson-Crowell 0.6602 0.9574 0.6912 0.2121

Similarly, Cephalexin-incorporated electrospun core-shell nanofibers were made from
poly(vinyl alcohol) (PVA) compounded with numerous polysaccharides such as chitosan
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(CH), carboxymethyl cellulose (CMC), carboxymethyl starch (CMS), and hydroxyproyl
cellulose (HPC), with the PVA:polysaccharide ratio maintained at 90:10 [169]. The in vitro
drug release experiments were fitted with several models to determine the drug release
modes, including non-linear regression methods. Drug release was sluggish within the first
8 h. Furthermore, drug release was predominantly controlled by a diffusion mechanism,
which makes this system suitable for wound repair. The kinetic models tested in this
study were Korsmeyer-Peppas, Peppas-Sahlin, and Weibull. Applying the Korsmeyer-
Peppas model for all the samples yielded n values lower than 0.5, indicating a Fickian drug
diffusion or quasi-Fickian diffusion, and the transport of the drug occurred via the polymer
network, not through the penetration of solvent or liquid into the nanofiber mats [169].

The mechanistic impact of manufacturing parameters and the release medium on drug
release is exemplified in [170]. Nanocellulose/gelatin composite cryogels with tunable
porosity, reversible nanofiber network features, and biocompatibility were developed by
using chemical cross-linking of dialdehyde starch to enable controlled 5-fluorouracil (5-
FU) release, as shown in Figure 6 [170]. Therein, the mode of drug release depended on
the cryogel morphology and other parameters such as the NFC/gelling ratio, density,
degree of cross-linking, and pH value. The pore structure could be tuned by modifying the
relative concentrations of nanofibrous cellulose (NFC), gelatin, and dialdehyde starch. The
mode of drug release depended on the cryogel morphology (NFC/gelling ratio, density
and degree of cross-linking, pH value, etc.). The sustained release from the nanofiber
networks could reach 12 h in a simulated intestinal environment [170]. The drug release
data of three representative samples was fitted using zero-order, first-order, Higuchi, and
Korsmeyer-Peppas models. Most of their nanofiber networks were more consistent with
the Korsmeyer-Peppas model, which originates from Fick’s law theory and is an ideal drug
release kinetic model. In another study, core-shell electrospun nanofibers were prepared by
blending Dextran (Dex) and polyvinylpyrrolidone (PVP) in water dispersions. Afterwards,
ciprofloxacin-loaded PVP/Dex nanofibers were made by the emulsion electrospinning
method [171].
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Figure 6. Nanocellulose/gelatin composite cryogels with controllable porosity, tunable swelling ratio,
and reversible cross-linking structure were designed and used as the carriers for sustained drug
release [170].

Emulsions were formed by dissolving the antibiotic in an edible oil. The authors
applied Korsmeyer-Peppas, Peppas-Sahlin, and Weibull models to the experimental data
to investigate the drug release mechanism from different forms of core-shell and polymer
blend nanofibers. Release from all the samples studied was accurately described by the
Weibull model. This indicated the occurrence of a release in accordance with Fickian
diffusion in fractal space. They also argued that such a release mechanism indicates the
dispersed drug did not percolate within the nanofiber network.
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The RAOA destroyed the intramolecular hydrogen bonds in alginate, thus enhancing
its molecular flexibility. Its chemical structure also allows the loading of hydrophobic
drugs with negligible cytotoxicity into L929 cells. The loading of the hydrophobic anti-
inflammatory drug, ibuprofen, with the aid of PVA is illustrated in Figure 7. Depending on
the RAOA/PVA ratios in the solution blends, the encapsulation efficiency and the descrip-
tion of the release data with the Korsmeyer Peppas model showed efficiency exceeding
50% and non-Fickian diffusion, respectively. This result revealed that the swelling and
degradation properties of the drug-encapsulating electrospun composite nanofibers and
the diffusion of the drug jointly controlled the ibuprofen release rates.

Pharmaceutics 2023, 15, x FOR PEER REVIEW  22  of  42 
 

 

on the RAOA/PVA ratios in the solution blends, the encapsulation efficiency and the de-

scription of the release data with the Korsmeyer Peppas model showed efficiency exceed-

ing 50% and non-Fickian diffusion, respectively. This result revealed that the swelling and 

degradation properties of the drug-encapsulating electrospun composite nanofibers and 

the diffusion of the drug jointly controlled the ibuprofen release rates. 

 

Figure 7. Schematic diagram of fabrication of drug-loaded RAOA/PVA electrospun composite nan-

ofibers. Reductive-amination of oxidized alginate derivative (RAOA) through chemical modifica-

tion can be electrospun into nanofiber mats and used for controlled release [172]. 

Core-shell  nanofibers were  relatively  unknown  until  recently,  but  now  they  are 

widely used in biomedicine thanks to their unique properties. They can be made either by 

electrospinning with a coaxial nozzle or by electrospinning immiscible polymer blends or 

emulsions through a single nozzle. The production of core-shell nanofibers with a wide 

range of compositions and diameters  is made possible by a number of electrospinning 

parameters. Core-shell nanofibers have some advantages over monolithic nanofibers, in-

cluding better drug, protein, gene, or probiotic amalgamation into the nanofibers, addi-

tional control over drug release, and maintenance of protein structure and activity during 

electrospinning [173]. It has been stated that the primary functions of core-shell fibers are 

to provide better preservation of sensitive bioactive molecules and superior control of bi-

omolecule release. These functions have been expanded to include the ability to form fi-

bers from almost any material and the ability to modify the physical and mechanical prop-

erties of the fibers in a flexible manner [174]. Moreover, core-shell nanofibers can allow 

the incorporation of dual drugs (one in each fiber) [175]. 

6. Drug Release from Polysaccharide‐Based Nanoparticles 

Polysaccharide-based nanoparticles find applications as nanoscale delivery systems, 

Pickering emulsion stabilizers, and material reinforcing additives  in  the fields of nano-

medicine, cosmetics, and food [176]. In a recent work [177], starch nanoparticles from dif-

ferent botanical origin were prepared by nanoprecipitation. To deliver biodegradable an-

tioxidant starch-quercetin nanoparticles, quercetin was incorporated into the starch nano-

particles. Researchers looked at how the source of the starch affected the release kinetics, 

Figure 7. Schematic diagram of fabrication of drug-loaded RAOA/PVA electrospun composite
nanofibers. Reductive-amination of oxidized alginate derivative (RAOA) through chemical modifica-
tion can be electrospun into nanofiber mats and used for controlled release [172].

Core-shell nanofibers were relatively unknown until recently, but now they are widely
used in biomedicine thanks to their unique properties. They can be made either by elec-
trospinning with a coaxial nozzle or by electrospinning immiscible polymer blends or
emulsions through a single nozzle. The production of core-shell nanofibers with a wide
range of compositions and diameters is made possible by a number of electrospinning
parameters. Core-shell nanofibers have some advantages over monolithic nanofibers,
including better drug, protein, gene, or probiotic amalgamation into the nanofibers, addi-
tional control over drug release, and maintenance of protein structure and activity during
electrospinning [173]. It has been stated that the primary functions of core-shell fibers
are to provide better preservation of sensitive bioactive molecules and superior control of
biomolecule release. These functions have been expanded to include the ability to form
fibers from almost any material and the ability to modify the physical and mechanical
properties of the fibers in a flexible manner [174]. Moreover, core-shell nanofibers can allow
the incorporation of dual drugs (one in each fiber) [175].
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6. Drug Release from Polysaccharide-Based Nanoparticles

Polysaccharide-based nanoparticles find applications as nanoscale delivery systems,
Pickering emulsion stabilizers, and material reinforcing additives in the fields of nanomedicine,
cosmetics, and food [176]. In a recent work [177], starch nanoparticles from different botanical
origin were prepared by nanoprecipitation. To deliver biodegradable antioxidant starch-
quercetin nanoparticles, quercetin was incorporated into the starch nanoparticles. Researchers
looked at how the source of the starch affected the release kinetics, antioxidant activity, and
quercetin loading percentage. Along with the coefficient of determination R2 and the AIC,
Table 14 shows the different release model parameters that the authors studied.

Table 14. Parameters obtained by fitting the quercetin release profiles to different release models. Note
that Mt/M∞ signifies the fraction released in time ti. Data reproduced with permission from [177],
Elsevier 2018.

Model Parameter Pea Starch Potato Starch Corn Starch

Peppas-Sahlin
Mt
M∞

= k1tm + k2t2m

R2 0.994 0.997 0.997

AIC 37.980 29.910 22.878

k1 20.868 10.740 19.305

k2 −1.857 −0.493 −2.071

m 0.325 0.457 0.226

Weibull
Mt
M∞

= 1− exp
[
−(t−Ti)

β

α

]
Ti: Lag time.

β: A constant related to the shape of the dissolution curve
α: Scale parameter that defines the time scale.

R2 0.994 0.984 0.997

AIC 37.402 49.867 21.800

α 2.845 5.033 4.379

β 0.178 0.289 0.160

Ti 4.342 3.493 2.651

Korsmeyer-Peppas
Mt
M∞

= Ktn

K: A constant that depends on the dosage form characteristics.
n: Release exponent that indicates the release mechanism

R2 0.976 0.966 0.995

AIC 51.299 56.493 25.911

k 25.791 17.067 19.261

n 0.161 0.240 0.146

Higuchi
Mt
M∞

= kt1/2

k: Higuchi dissolution constant.

R2 0.211 0.629 0.117

AIC 87.719 80.627 80.265

k 5.258 4.993 3.660

Baker-Lonsdale
3
2

[
1−

(
1− Mt

M∞

) 2
3
]
− Mt

M∞
= kBLt

kBL: A release constant.

R2 0.480 0.783 0.289

AIC 83.135 74.736 77.889

Note that the Akaike information criterion (AIC) is a mathematical method for as-
sessing how well a model fits the data. In statistics, AIC is needed to compare different
possible models and decide which one is the best fit for the data. They found that the
Peppas-Sahlin, Weibull, and Korsmeyer-Peppas models fit their experimental data the best.
The drug release from hydrophilic polymers with various geometries is defined by the
Peppas-Sahlin model (Table 14). According to the model, the case-II relaxation mode and
Fickian diffusion are two additive transport mechanisms that can have an impact on the
release. For Mt/M∞ < 0.6, the equation is valid. The first term in the equivalence gives
the Fickian diffusion contribution, which results from the typical molecular drug diffusion
caused by a chemical potential gradient. The second term denotes the contribution to
case-II relaxation brought on by relaxation in hydrophilic polymers. This refers to polymer
chain arrangements in water or biological fluids that are related to swelling. Table 14
demonstrates that for all of the starch-quercetin nanoparticles, the values of k1 (the Fickian
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diffusion constant) are orders of magnitude higher than k2 (the case II relaxation constant).
This means the drug molecules are released mainly by Fickian diffusion. It has been argued
that the negative k1 or k2 values can be interpreted as interference from the competing
release component, but with a minor contribution to the final release profile [177]. There
have also been reports of multilayer nanoparticles with the potential for drug release.
Dodecyltrimethylammonium chloride (DTAC) was used to homogenize a nanoemulsion
template to create multilayer nanocapsules, as reported in [178]. Because carrageenan
sulfate groups can interact electrostatically with chitosan protonated amino groups to form
polyelectrolyte nanocapsules, this method of synthesizing them was chosen (see Figure 8a).
The authors looked at the performance of drug release using the lipophilic model drug
diflunisal (DF). To define the primary release mechanisms as a function of the number of
deposited layers and to categorize their applicability as controlled release systems, the
results were fitted with various kinetic models. More specifically, the investigation results
from the DF release mechanism from the oil-core nanoscale capsules were analyzed by
relating them to the models shown in Figure 8b.
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Figure 8. (a) Multilayer nanoparticles obtained from κ-carrageenan (κ-CAR) and chitosan (CS)
were deposited onto olive oil nanoemulsion droplets (NE) via layer-by-layer (LbL) self-assembly.
(b) Drug release models applied to the release measurements. Note that the notation NE(κ-CAR/CS)x

represents nanoemulsion as NE and x is the number of layers obtained from the NEs. Figure compiled
with permission from [178], MDPI, 2018.
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The n values for the NE(κ-CAR/CS)1—κ-CAR (three layers) and NE(κ-CAR/CS)2
(four layers) compounds are very close to 1 (see Table 9), signifying a Case II transport
mode in the Korsmeyer-Peppas model. Although the results tabulated in Figure 8b (see
also Figure 8a left panel) for the three-layer system display fitting statistics with R2 values
around 0.98 for the zero-order model (a linear line profile), the visual inspection of the
total % DF release curve of the 3-layer in Figure 8a deviates significantly from a zero-order
behavior. The data in Figure 8a can be applied to such cases as Case II transport, which
imitates the influence of polymer relaxation on molecules’ association in the matrix [178].
In a fascinating recent study, it was discovered how Triton X-100 and saponin, a naturally
occurring surfactant derived from Sapindus rarak, affected the way that cellulose and starch
nanoparticles were altered for the encapsulation and release of hydrophobic drugs [179].
The effectiveness of drug loading (Paclitaxel, PTX) was reported by the authors to have
decreased. The authors have also reported that drug loading efficiency increased for both
nanoparticles when 10 mM NaCl salt was added with the surfactant Triton X-100, and that
Triton X-100 concentrations above 5 mM decreased dug encapsulation efficiency. In the case
of saponin surfactant, there was no effect of salt addition on drug encapsulation efficiency.
The use of saponin (100 ppm) with or without NaCl caused almost a triple increase in drug
loading efficiency in the nanoparticles. The Higuchi model did not fit their data well, and
hence they concluded that the release mechanism was not rapid dissolution of the drug
as suggested by this model but rather diffusion of the dissolved drug. This means that
upon contact with the release medium, as the matrix swells, the drug dissolves not rapidly,
leaving the matrix, but rather starts diffusing in a much slower manner. The authors also
indicated that the Korsmeyer-Peppas model failed to fit the overall experimental data at
pH 5.8 and 7.4. They argued that the Korsmeyer Peppas is a semi-empirical power law that
should correlate to either Fickian diffusion or a Case-II transport. The exponents, n, and the
R2 values were below 0.5 and 0.9, respectively, and they indicated that since the n values
were all below 0.5, the drug release should follow Fickian diffusion [179]. A sigmoidal
model also fitted their data. The sigmoidal model can describe release profiles following an
initial burst release of the drug and a slower sustained release over longer periods.

A recent study demonstrated the synthesis of green banana starch nanoparticles cross-
linked with citric acid and encapsulating β-carotene [180]. Mean particle size, encapsulation
efficiency, and β-carotene release in simulated gastric and intestinal fluids were measured
and studied. The applied drug release models exhibited a diffusion of released β-carotene
into food simulant media. In conclusion, the authors indicated that the cross-linked
nanoparticles revealed better controlled release under gastric conditions, mainly in the
simulated intestinal fluid, signifying that they can be suitable vehicles for intestine-specific
targeting. The authors used the Kopcha model described by the relation Mt = At0.5 + Bt
where A and B refer to the diffusion and erosion constants, respectively [180]. More
specifically, in the Kopcha model, A and B are constants that signify the diffusion and
erosion mechanisms involved in the molecule release from the starch nanoparticles. Some
nanoparticles (depending on their crosslinking degree) showed greater A than B values
in the release media, while the A/B ratio was greater than 1 in all cases, indicating that
Fickian diffusion is the main mode of β-carotene release in all simulated media.

Capsaicin (CAP) is an alkaloid with multiple physiological effects, but its application
as an encapsulated drug is challenging. Tao et al. [181] used capsaicin-loaded indica rice
starch nanoparticles (CAP-IRSNPs) to enable controlled release from the matrices with
average particle sizes of 617.84 ± 6.38 nm, an encapsulation efficiency of 70.05 ± 1.78%
and a loading capacity of 13.41 ± 0.18%. They tested numerous theoretical release models,
i.e., zero-order kinetics model, first-order kinetics model, Higuchi, Korsmeyer-Peppas, and
Hixson-Crowell equations and models, to elucidate drug release mechanisms, as shown
in Table 15.
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Table 15. The fitted equations and the coefficient of determination (R2) of CAP release kinetic models
in free form and from prepared CAP-IRSNPs in 50% ethanol solution, PBS of 1.2 and 7.0. CAP:
capsaicin; CAP-IRSNPs: capsaicin-loaded indica rice starch nanoparticles. Data reproduced with
permission from [181], Elsevier 2022.

Release Medium Empty Cell Mathematical Model CAP CAP-IRSNPs

50% ethanol solution Zero-order kinetics model R2 0.425 0.551

First-order kinetics model R2 0.999 0.992

Higuchi model R2 0.748 0.807

Korsmeyer-Peppas model R2 0.995 0.873

n 0.032 0.366

Hixson-Crowell equation R2 0.744 0.830

PBS of 1.2 Zero-order kinetics model R2 0.155 0.688

First-order kinetics model R2 0.996 0.996

Higuchi model R2 0.293 0.878

Korsmeyer-Peppas model R2 0.557 0.899

n 0.111 0.434

Hixson-Crowell equation R2 0.379 0.961

PBS of 7.0 Zero-order kinetics model R2 0.524 0.461

First-order kinetics model R2 0.996 0.997

Higuchi model R2 0.675 0.836

Korsmeyer-Peppas model R2 0.828 0.887

n 0.228 0.347

Hixson-Crowell equation R2 0.689 0.863

The best expressive kinetics model was chosen for the experimental measurements
based on the results shown in Table 15 by comparing the coefficient of determination (R2).
The first-order and Korsmeyer-Peppas models with R2 greater than 0.9 best fit the data.
The highest R2 value for the first-order model indicates that the drug release rate variations
and kinetics were affected by capsaicin concentration. Furthermore, the capsaicin release
profiles of two composites were second-best fitted with the Korsmeyer-Peppas model, with
n values for the release exponent of 0.032 and 0.366, respectively. The values were less
than 0.45, indicating that capsaicin release from IRSNP matrices follows Fickian and/or
molecular diffusion of drug chemical potential gradients [181].

Ergin et al. [182] developed a colon-targeted delivery system for enhancing the
oral bioavailability of S-adenosyl-l-methionine (SAMe). They prepared nanoparticle-in-
microparticle (NIM) formulations containing SAMe using pectin. The physicochemical
properties of nanoparticles were studied, while an optimization study was carried out by
factorial design to understand the effect of formulation variables on nanoparticle properties.
The drug release models, shown in Table 16, were fitted to the drug release data. The drug
release data after 2 h in a simulated colon fluid were used for NIMs since they all had
delayed release structures. Results were statistically evaluated by using determination co-
efficients (R2), adjusted determination coefficients (R2

adjusted), Akaike Information Criteria
(AIC), and Model Selection Criteria (MSC). Release constants (k) and n values were esti-
mated for each model used (Table 16). The AIC method comprises the sum of squared mean
differences between measured and calculated values pertaining to the selected method. A
lower AIC value indicates that the model is better. The MSC model is a modified reciprocal
form of the AIC. MSC values greater than 2 or 3 yield information about the aptness of the
model [182]. The evaluation was based on the highest R2, R2

adjusted, MSC, and AIC values.
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Table 16. Applied mathematical models to the release data of pectin nanoparticles (upper line)
and NIMs (polymer shell coated nanoparticles-lower line) with their statistical evaluation. Data
reproduced with permission from [182], Elsevier 2021.

Model * Equation R2 R2
adjusted AIC MSC n

First-order F = 100
(

1− e−k1t
) 0.7974

0.8280
0.7974
0.8280

66.63
39.04

0.8394
0.9753

–
–

Hixson-Crowell F = 100
[
1− (1− kHCt)3

] 0.6895
0.7167

0.6895
0.7167

70.48
42.03

0.4124
0.4763

–
–

Higuchi F = kHt0.5 0.8749
0.9730

0.8749
0.9730

62.30
27.92

1.321
2.8287

–
–

Hopfenberg F = 100
[
1− (1− kHB + 5)n] 0.7140

0.7619
0.6731
0.7024

71.74
42.99

0.2722
0.3167

–
–

Korsmeyer-Peppas F = kKPtn 0.9969
0.9937

0.9961
0.9921

16.87
21.19

4.378
3.9503

0.376
0.430

* In all models: F is the fraction (%) of drug released in time t. k1: first-order release constant. kHC: Hixson-
Crowell release constant kH: Higuchi release constant. kHB: Hopfenberg release constant. kKP: release constant
incorporating structural and geometric characteristics of the drug-dosage form. n is the diffusional exponent
indicating the drug-release mechanism.

According to Table 16, the Korsmeyer-Peppas model appears to be the best fit to the
release data, with the Higuchi model coming in second. Korsmeyer-Peppas parameter n was
0.43, indicating the Fickian diffusion mechanism for NIMs. The n value for nanoparticles was
0.376. Although the Fickian diffusion mode is thought to be valid within 0.43 and 0.50, it can
be defined by n values less than 0.43, i.e., around 0.3 ± 0.1, for drug release from spherical
polymer particles with a wide size distribution, as stated in [181–183]. The Higuchi model
revealed a diffusion-controlled release mechanism as a variant of Korsmeyer-Peppas (n = 12).

Pectin-based, resistant, interactive, and versatile hydrogel nanoparticles for oral ad-
ministration have also been prepared [184]. A number of surfactants were used for drug
inclusion, such as Pluronic, Tween, and Na Lauryl Sulfate, which the authors indicated
may modulate the drug release patterns. As a model drug, tolbutamide was chosen. It
shows a discrete and pH-dependent solubility in water. To manipulate the morphology of
the nanoparticle gels, blending with agarose or freeze-drying was employed (see Figure 9a).
Tolbutamide release kinetics from freshly prepared matrices were fitted by the Higuchi
model, whereas the lyophilized ones followed the Korsmeyer-Peppas model. Therefore, the
nanoparticle-hydrogel chain rearrangement process can tune the release during the rehydra-
tion process. The examination of the morphology of the prepared nanoparticle/hydrogel
systems indicated a honeycomb-like structure, the size and density of which were de-
pendent on the blend system concentrations, surfactant type, and fresh preparation or
freeze-drying, as shown in Figure 9b–e. For instance, a sample that contained 15 mg of
agarose, 15 mg of pectin, 30 mg of Tween, and 10 mg of the drug in Figure 9e had a much
finer and denser porous structure. Drug release data indicated that the release from freeze-
dried matrices started with rehydration, governed by the microstructure, but also with
subsequent drug dissolution and diffusion processes. In the case of freshly prepared sam-
ples, the drug could diffuse from the already highly hydrated hydrogel to the surrounding
medium, following the Higuchi model [184]. Drug release from the freeze-dried samples
fitted well to the Kosmeyer-Peppas and confirmed that the release from these matrices was
governed by the relaxing and rearrangement processes that disrupt the hydrogel chains
during rehydration.
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Figure 9. (a) A schematic representation of nanoscale hydrogels and pore architecture as well as used
surfactants and freeze-drying and oral drug delivery kinetics. (b–e) SEM micrographs of freeze-dried
pectin and blend systems. The samples concretions are: Pec: 30 mg Pec and 10 mg drug, APec: 15 mg
Agarose, 15 mg. Pec and 10 mg drug. Pec-T3 30 mg Pec, 30 mg Tween 10 mg drug APec-T3: 15 mg
Agarose, 15 mg. Pec, 30 mg Tween and 10 mg drug [184].

Due to the pH sensitivity of chitosan, Aydin and Pulat [185] reported 5-fluorouracil
(5-FU) encapsulated chitosan nanoparticles to investigate the potential of localized drug
delivery for tumor locations. Chitosan nanoparticles were approximately 200 nm in size.
Their findings revealed a significant swelling response for pH 5 particles with a final
particle diameter of 450 nm. After 408 h of incubation, in vitro release studies revealed a
controlled and sustained release of 5-FU from the nanoparticles, with cumulative release
values ranging from 29.1–60.8% due to different pH environments.

The zero order, first order, Higuchi, Hixson-Crowell, Korsmeyer-Peppas, and Kopcha
models were used to assess the kinetics of 5-FU release from nanoparticles. The determi-
nation coefficient values (R2) and release parameters extracted from the model fitting to
the measured data are shown in Table 17. Based on determination coefficient values, the
release data was best described by the Higuchi model at all pH values, indicating that
5FU is released by diffusion, as shown in Table 17. Furthermore, the exponent, n, of the
Korsmeyer-Peppas release model (high correlation values) is around 0.3, confirming that
Fickian diffusion is the controlling factor in drug release. Because the Kopcha model can
predict the contribution due to diffusion and polymer relaxation, the results in Table 17
confirmed that drug release occurred via Fickian diffusion.
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Table 17. Mathematical models and parameters based on release data. The data is reproduced with
permission from [185], Hindawi Publishing.

Zero-Order First-Order Higuchi’s Hixson-Crowell Korsmeyer-Peppas Kopcha

pH R2 R2 R2 R2 R2 n R2 A/B

3.0 0.77 0.81 0.93 0.80 0.80 0.28 0.89 36.87

4.0 0.76 0.82 0.93 0.80 0.80 0.30 0.93 37.12

5.0 0.81 0.89 0.96 0.87 0.87 0.34 0.97 43.08

6.0 0.76 0.82 0.93 0.80 0.80 0.30 0.92 36.93

7.4 0.75 0.79 0.92 0.78 0.78 0.31 0.93 36.91

It is critical to understand the precise mass transport mechanisms involved in the drug
release and to forecast the subsequent drug release kinetics in order to evaluate a given
drug release mode in a nanoscale polysaccharide therapeutic system. As we have seen,
numerous mathematical models have been created to design a variety of straightforward
and intricate drug delivery systems as well as to predict the overall performance of the
release. Once polysaccharide-derived drug release materials are commercialized, it will
be very important to distinguish between how to apply these equations to recognize the
various factors that affect the release velocity and how the dissolution performances can
vary and affect the efficacy or the therapeutic regimen of patients [186–191].

For example, in recent years, polysaccharide-based nanomaterials have been exten-
sively investigated as ideal carriers to enhance drug bioavailability in the ocular system
due to their biocompatibility and drug encapsulation [191]. Indeed, many recent studies
have focused on the structural instability of polysaccharides in the synthesis of nanocarri-
ers and their translations, including bioactive polysaccharide-based nanomaterials, new
strategies in nanocarrier design, and their behavior in ophthalmic therapy. The focus
is on possibilities (see Figure 10a). Additionally, compared to most synthetic polymers,
their low immunogenicity and low toxicity provide an advantage for the development of
pediatric formulations [190]. In-depth research on the safety and effectiveness of nanoscale
innovative therapeutics is required before they can be introduced into pediatric dental
practice. However, polysaccharide-based drug delivery matrices offer promising thera-
peutic options for the management of the most prevalent dental diseases and conditions
in children, including periodontitis, oral biofilm prevention, endodontic therapy, and the
prevention of dental caries [192,193] (see Figure 10b).
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Kurczewska [194] indicates that even though there is a large diversity of formulations
in polysaccharide-based drug delivery systems, the most widely used materials are alginate,
chitosan, hyaluronic acid, pectin, dextran, starch, and cellulose.

7. Pharmacological Activity of Polysaccharides and Their Stimulus Release Properties

In addition to being excellent vehicles for drug loading and controlled release, many
polysaccharides have very advantageous pharmacological properties [195]. Polysaccha-
rides are isolated from natural resources such as plants, animals, fungi, and seaweed
and have received increased attention in recent years due to their wide range of phar-
macological activities, including anticancer, immunomodulation, antioxidant, antiseptic,
and anti-inflammatory effects [196]. Particularly, it has been demonstrated that sulfated
polysaccharides from seaweed, arabinogalactan, galactomannan, and pectic polysaccha-
rides derived from higher plants, β-glucans and glycoproteins derived from mushrooms,
and pectic polysaccharides derived from higher plants all possess antioxidant and im-
munomodulatory activities [197]. The (1→6)-α-d-glucan from Dimocarpus longan is thought
to have excellent antitumor properties, and the (1→3)-β-d-glucan is well-known for its abil-
ity to regulate the immune system [198]. Recent research has revealed that Bullacta exarata’s
mannoglucan and sulfated polysaccharide extracts have a variety of biological benefits,
including hepatoprotective, antioxidant, anticancer, antihypertension, and hypocholes-
terolemic effects [199]. According to topical pharmacological research, the polysaccharides
isolated from Cordyceps sinensis have anti-fibrosis, anti-tumor, and immunomodulatory
properties [200]. Sargassum pallidum polysaccharides have been shown in modern pharma-
cological studies to have a wide range of beneficial health-promoting properties, including
antioxidant, anticancer, hypolipidemic, and immunomodulatory activities [201].

Very recent literature reviews also highlighted the importance of stimulus-based re-
lease from polysaccharides [202,203]. Li et al. [202] reviewed combined cancer immunother-
apy advancements in polysaccharide-based stimulus-responsive nanomedicines. System
development, targeted delivery, drug release, and improved antitumor effects were tabu-
lated and discussed, with particular emphasis on precise and controlled drug release in
response to internal or external stimulus that was tailored towards cancer immunotherapy.
For instance, pH-responsive starch-based hydrogels produced by graft copolymerizing with
various acrylic monomers could be designed to swell in a controlled manner. This would
regulate, for instance, how quickly caffeine (a model drug) was released [204]. Additionally,
an authoritative review by Alvarez-Lorenzo et al. [205] presented ionic polysaccharides that
can be crosslinked to form hydrogel networks that are sensitive to a variety of internal and
external stimuli, making them ideal for switching drug release on and off via various mech-
anisms. They examined the current state of the art in crosslinked ionic polysaccharides as
components of drug delivery systems that can regulate drug release in response to changes
in pH, ion nature and concentration, electric and magnetic field intensity, light wavelength,
temperature, redox potential, and specific molecules (enzymes, illness markers, and so on).

Polysaccharides such as chitosan, chondroitin sulfate, dextrans, cyclodextrins, guar
gum, pectin, inulin, and others have been utilized for colon-specific delivery. The readers
are referred to Tiwari et al. [206], who summarized various polysaccharides and approaches
for stimuli-responsive drug delivery for colon targeting, with a focus on drug delivery
systems such as microspheres, nanoparticles, hydrogels, matrices, and beads. Finally, it
is important to state that in vivo and ex vivo studies on various polysaccharides are of
immense importance. For instance, a potentially useful biomedical substance is bacte-
rial nanocellulose (BNC). Three-dimensional (3D) BNC biomaterials’ hemocompatibility
(haemolysis and thrombogenicity) as well as acute and subchronic immune reactions were
examined in [207]. Based on these in vivo studies, it was reported that 3D BNC only
induced a mild acute inflammatory response, not a foreign body or chronic inflamma-
tory response, and did not affect the wound’s ability to heal [207]. Another study [208]
developed a hydrogel based on hyaluronic acid (HA), methylcellulose (MC), and Polox-
amer Pluronic-F127 (F127). It was developed as an endoscopic vehicle for delivering
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biological drugs with proven efficacy in acute and chronic EC in rats while causing less
immunogenicity. Similarly, in [209], it was discussed how to use in situ-forming pectin
hydrogels as cell carriers for tissue engineering and regenerative medicine strategies. To
promote cell-matrix adhesion, pectin was successfully grafted with a peptide. For at least
14 days, human mesenchymal stem cells (hMSCs) embedded in pectin hydrogels were
viable and metabolically active. Furthermore, they formed intercellular networks within
the pectin hydrogels, migrated outward, and produced endogenous extracellular matrix.
Polysaccharide-based hydrogels can be designed with varying biodegradability under
physiological conditions, depending on the application. In fact, this property is directly
related to their in vivo biocompatibility [210]. The ability to degrade slowly or quickly is
determined by the polysaccharide used, the chemical nature of the linker, the degree of
crosslinking, and the type of further functionalization with an additional ligand [210].

8. Biopharmaceutics and Pharmacokinetics Considerations

A key area of the pharmaceutical sciences is known as "biopharmaceutics," which
studies the relationship between a drug’s physicochemical properties in dosage form
and the pharmacology, toxicology, or clinical response that needs to be studied after the
drug is administered. The dosing regimen affects both the safety and effectiveness of a
drug. For numerous medications, there can be significant variations in the ideal dosage
and dosing intervals. Additionally, the ideal dosage for a single drug can vary greatly
between patients [211]. The processes of the drug’s absorption, distribution, metabolism,
and excretion (ADME) pattern are all included in pharmacokinetics, which is the study of
the time course of a drug within the body (the amount and duration of systemic exposure
to the drug). Pharmacokinetic parameters are typically derived from the analysis of
drug concentrations in plasma or blood [212]. The key pharmacokinetic variables that
characterize the ADME processes are given as the area under the concentration-time
curve (AUC), the volume of distribution (Vd), the half-life (t1/2), and the clearance (Cl) of
the drug. They also include the maximum plasma concentration and the time at which
this concentration is reached (Cmax and Tmax, respectively), as well as the area under
the concentration-time curve (AUC) [213]. Due to their unusual chemical and physical
properties, nano-engineered matrices for the delivery of cytotoxic agents in particular
have significantly altered the pharmacokinetic behavior of the parent drugs. Because the
physicochemistry of nanocarriers is so important, it is imperative to briefly discuss here the
key factors that affect their kinetics [214].

When used in conjunction with pharmacodynamic modeling, physiologically based
pharmacokinetic (PBPK) modeling has proven to be a useful instrument for characterizing
and predicting the systemic disposition, target exposure, efficacy, and toxicity of various
types of drugs [215]. Although it is frequently touted as a benefit, the multi-functionality
of nanoscale drug matrices also leads to different and more complex in vivo disposition
properties when compared to a conventional formulation of the same drugs. For instance,
tissue partition coefficients, cell uptake rate, and drug release rate are likely to be time-
and tissue-dependent, making it difficult to parameterize their spatiotemporal disposi-
tion in PBPK models. Meanwhile, due to differences in biological conditioning, model
parameters calibrated against one administration route may not predict the outcome of
another. Nanocarriers are a diverse population of individual particles with varying particle
properties. The average particle properties may not accurately predict the behavior of
individual nanocarriers. Two formulations with the same average but different property
distributions can have vastly different disposition performances. As such, there is a lack
of a reliable analytical method for characterizing and tracking nanoparticles as individual
nanoparticles in vitro and in vivo [216]. Unsolved issues like incomplete knowledge of
nanocarrier elimination in vivo, potential toxicity, and unaccounted-for pharmacokinetic
behavior prevent nanocarriers from being used clinically for drug delivery. Hence, it is
important to focus not only on drug delivery at the nanoscale but also on developing stable,
low-toxicity, clinically applicable nanoscale frameworks for drug delivery [217].
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9. Statistical Analysis of Release Profiles

In general, mathematical models are used as a perception of a real system with as-
sumptions and simplifications and are able to interpret and predict experimental results.
These mathematical expressions, which include additional parameters in their equation
that may or may not be related to physicochemical properties, provide a qualitative and
quantitative description of the primary phenomena involved in drug release. The models
include mechanistic realistic systems in which real phenomena like drug diffusion or disso-
lution, erosion, swelling, precipitation, and polymer degradation are taken into account,
making them complex to apply. Empirical or semi-empirical theories are not based on
actual chemical, physical, or biological phenomena, but they are somewhat realistic from a
physical-chemical standpoint, making them generally simple to apply and explain [218].

Simple linear regression analysis using the sum of squares method is generally used
with the help of software such as the free “R Project for Statistical Computing” to fit each
model. Such software can be used to calculate the model acceptance criteria, including the
linear regression indexes (intercept I and slope S), regression coefficient (R2), adjusted or
corrected regression coefficient (R2

a), sum of squares of residual (SSR), sum of squares of
error (SSE), sum square of total variation (SST), T-statistic, and F-statistic. The percentage of
the variation in the dependent variable that can be predicted from the independent variable
or variables is known as the coefficient of determination, abbreviated R2 or r2, in statistics.
The adjusted R2 parameter attempts to account for the phenomenon of R2 increasing
automatically when additional explanatory variables are added to the model [219]. There
are numerous methods for adjusting. The adjusted R2

a can be negative, but it must always
be less than or equal to R2. Unlike R2, adjusted R2

a increases only when the increase in R2

(due to the addition of a new explanatory variable) is greater than would be expected by
chance [219]. The Akaike information criterion (AIC) is a widely used tool in statistical
modeling [220]. AIC was introduced as an extension to the maximum likelihood principle,
making it the first model selection criterion to gain widespread acceptance. Once the
structure and dimensions of a model have been defined, maximum likelihood is typically
used to estimate its parameters.

Another statistical criterion for model selection that is gaining popularity in the field
of dissolution data modeling is the model selection criterion, or MSC [221]. The MSC has
been normalized to be independent of the scaling of the data points and is a modified
reciprocal form of the AIC. The model with the largest MSC will be the most appropriate
model when comparing various models. As a result, getting a sense of what the MSC
means in terms of how well the model fits the data is relatively simple. A MSC value of
two to three or higher typically indicates a good fit [221,222]. Readers who are interested in
an in-depth analysis of model comparison algorithms for drug release can consult the work
of Zhang et al. [221], which also provides free software for drug release data analysis.

10. Summary and Future Trends

There has been a lot of effort put into the development of biodegradable and biocompati-
ble nanomaterials that possess several potential benefits, such as passive or active targeting.
Additionally, it is important to note that the mucoadhesive properties of polysaccharides are
very important for ensuring delivery systems remain at the site of absorption over an extended
period of time. In this study, we reviewed a number of important nanoscale polysaccharide
systems in terms of their application challenges, strengths, and weaknesses as drug deliv-
ery systems, with particular attention to drug release kinetics [223]. Polysaccharides can be
classified into two main clusters: polyelectrolytes and non-polyelectrolytes. Polyelectrolytes
can be further divided into cationic (chitosan), anionic (alginate, heparin, pectin, hyaluronic
acid), and neutral (pullulan, dextran) subgroups based on their intrinsic charge. In particular,
the use of pectin and its derivatives with low water solubility deserves more attention. This
property of pectin can be either an advantage or a disadvantage, depending on the active
ingredient content.
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The classification of polysaccharide-based nanoparticles developed as drug carriers
and delivery systems is presented in Table 18.

Table 18. Classification of polysaccharide-based nanoparticles as carriers for drug delivery and
release. Data compiled from [223] no written permission required TUOMS PRESS, Tabriz University
of Medical Sciences.

Nanoparticle System Physicochemical Properties Comments References

Chitosan
Shows mucoadhesive properties

and ability to open tight junctions
between epithelial cells

Its cationic nature mediatesdelivery
of negative molecules such as DNA [224,225]

Alginate Shows mucoadhesive and
gelling properties

Its anionic nature mediates
deliveryof cationic agents [226,227]

Heparin
An anionic and highly sulfated

polysaccharide that shows
anticoagulant properties

Ideal system for delivery
of growthfactor [228,229]

Hyaluronic acid Affinity to water absorption and
gel forming

Facilitates passive tumor targeting
through CD44

receptor-mediated endocytosis
[230,231]

Dextran A neutral polysaccharide with
lower cytotoxicity

Degradation of nanoparticles
occursby dextranase [232]

Pulluan A neutral polysaccharide
produced by a specific fungus

Relative high cost of pullulan
haslimited its application [233]

Pectin An anionic polysaccharide with
gelling and film forming ability

Nanoparticles are degraded by
pectinase secreted by bacteria
present in the large intestine

[234,235]

On the other hand, mathematical modeling of drug release from nanoscale polysac-
charide matrices is of great importance, with particular attention to describing the chemical
and physical phenomena that govern drug delivery. The concept of personalized medicine
proposes treating each individual patient as a unique subject through optimized medication.
The use of nanoscale polysaccharides in personalized medicine can reduce side effects and
enhance the efficacy of the therapeutic treatment. Combining patient uniqueness with
nanoscale engineering of drug delivery systems based on polysaccharides requires careful
attention to drug release kinetics and the models that describe such dynamics. Mathemat-
ical drug release models can unravel what is not directly observable, such as molecules,
atoms, and subatomic particles, and help establish certain standards that can be specifically
applied to a certain class of patients [236].

Nanoscale polysaccharide drug delivery vehicles can stay in the blood circulatory
system for a sustained period and enable the release of integrated drugs as per the specified
dose. Hence, fewer plasma fluctuations with reduced adverse effects may be expected.
Being natural and non-toxic, they penetrate into the tissue while facilitating easy uptake
of the drug by cells, allowing efficient drug delivery, and causing the desired effect at the
targeted location. Their polyelectrolyte features can enable direct interactions to treat the
diseased cells with improved efficiency and reduced or negligible side effects. Many new
drug release materials are being engineered from nanoscale polysaccharides in order to
more effectively deliver promising new drugs to target tissues and cells. Many newly
developed nanoparticles made from this type of material also demonstrated innovative
methods for getting oral biologics past the intestinal barrier—something that has been
elusive for generations of pharmaceutical designers [235,237].

Mathematical drug release models from nanoscale matrices have advanced our under-
standing of cellular transport mechanisms, and many more research groups and reports
have used these insights to develop potential new drugs encapsulated in polysaccharides.
Design, characterization, analysis, formulation, and delivery should be optimized. As thera-
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peutic modalities have expanded beyond small molecules to include nucleic acids, peptides,
proteins, and antibodies, nanoscale polysaccharide drug matrices have emerged to address
challenges such as live-cell delivery with nano-engineered polysaccharides [237]. These
matrices must be designed to mimic key biological processes like host-responsive insulin
secretion and must be used more in advanced cell therapies to reduce dosing frequency
and minimize medical interventions. Cell therapies with polysaccharides should utilize
established methods to modify drugs and their microenvironment to control drug action, ef-
ficacy, and toxicity; equally, specific improvements demonstrated with polysaccharide-cell
methodologies can also support other classes of therapeutics.

Moreover, nanoparticles fabricated from polysaccharides are becoming more common
platforms to facilitate sustained release and imaging and are thus becoming materials of
choice in nano-theranostics. To date, however, nanoscale polysaccharide sustained drug
release and modeling are still at the academic research level. The transformation of some of
this research into clinical trials must start even though substantial work is still required in
reliable manufacturing and scale-up, the establishment of regulatory means for therapy and
diagnostics, and eventual theranostic innovations like advanced multimodal imaging [237].
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