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Abstract: Diabetic kidney disease (DKD) is a serious complication of diabetes mellitus and a leading
cause of end-stage renal disease. Abnormal lipid metabolism and intrarenal accumulation of lipids
have been shown to be strongly correlated with the development and progression of diabetic kidney
disease (DKD). Cholesterol, phospholipids, triglycerides, fatty acids, and sphingolipids are among
the lipids that are altered in DKD, and their renal accumulation has been linked to the pathogenesis of
the disease. In addition, NADPH oxidase-induced production of reactive oxygen species (ROS) plays
a critical role in the development of DKD. Several types of lipids have been found to be tightly linked
to NADPH oxidase-induced ROS production. This review aims to explore the interplay between
lipids and NADPH oxidases in order to provide new insights into the pathogenesis of DKD and
identify more effective targeted therapies for the disease.

Keywords: diabetic kidney disease; lipid dysmetabolism; renal lipids; reactive oxygen species;
NADPH oxidases

1. Introduction

Diabetic kidney disease (DKD), a leading cause of end-stage renal disease (ESRD),
affects 20% to 40% of all individuals with diabetes and accounts for significant morbidity
and mortality in patients with both type 1 (T1DM) and type 2 (T2DM) diabetes mellitus [1].
DKD is characterized by persistent albuminuria and a relentless decline in the glomerular
filtration rate (GFR), both indicating a progressive impairment of renal function [2]. This
loss in function is also associated with well-described histological and morphological fea-
tures including glomerular hypertrophy, mesangial expansion, thickening of the glomerular
and tubular basement membranes, glomerulosclerosis with Kimmelstiel–Wilson nodules,
and tubulointerstitial fibrosis [2–4]. Podocyte injury, a main feature of DKD, is mainly
identified by a decrease in the podocyte count, an effacement of foot processes, and a
loss of slit diaphragm proteins. These typical phenotypic changes are associated with a
defective glomerular filtration barrier and the development of proteinuria. Among these
different morphological changes, podocyte loss is considered to be a strong predictor of
DKD progression in patients with T1DM and T2DM [5–9].

While considerable research has focused on glucose and its metabolism to understand
the pathophysiology of diabetes-induced microvascular complications, abnormal lipid
metabolism and renal accumulation of lipids have also been suggested to play a key role
in the pathogenesis of clinical and experimental DKD [10–15]. Lipid accumulation was in
fact reported as early as Kimmelstiel and Wilson’s description of DKD [16]. Since then,
experimental studies have strongly proposed that examining the altered intracellular lipid
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metabolism may serve as a mean to discover potential therapeutic targets in patients with
DKD [12,14].

Moreover, a large body of evidence highlights the overproduction of reactive oxygen
species (ROS) as a common denominator link for the major mechanistic pathways involved
in the onset and progression of DKD [17]. ROS consist of radical and non-radical oxy-
gen species formed by the partial reduction of oxygen, such as superoxide anion (O2

−),
hydrogen peroxide (H2O2), and hydroxyl radical (HO•). Among the different sources
of ROS, the reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidases
are of particular importance since their sole biological function is the production of ROS.
The NADPH oxidases family comprises Nox1, Nox2, Nox3, Nox4, Nox5, DUOX1, and
DUOX2 isoforms [18]. Multiple preclinical and clinical studies have identified NADPH
oxidases, specifically Nox4 (previously known as RENOX), as major contributors to the
pathophysiology of DKD [19–26].

Interestingly, several lines of evidence suggest that lipids play an important role in
altering cellular redox homeostasis by regulating NADPH oxidases and impairing the
formation of mitochondrial super-complexes [27]. Herein, we aim to review the recent
progress in elucidating the interaction between altered lipid metabolism and NADPH
oxidases with a primary focus on DKD. We highlight the functional relevance of the
crosstalk between lipids, NADPH oxidases, and, more broadly, redox homeostasis in the
pathogenesis of DKD.

2. The Role of Renal Lipids in the Pathogenesis of Diabetic Kidney Disease
2.1. Cholesterol

Lipids are fundamental building blocks of cells. Balancing lipid uptake, synthesis,
utilization, and storage helps regulate cellular lipid homeostasis. While lipids are essential
for physiological functions, increasing evidence suggests that altered lipid homeostasis and
abnormal lipid accumulation may contribute to injury in non-adipose tissues, ultimately re-
sulting in organ dysfunction [10,14,28–30]. Phospholipids, triglycerides, and non-esterified
(free of unsaturated) fatty acids (NEFAs) are the major lipid classes present in the kidney.
It has been previously shown that an altered renal lipid metabolism favors the net accu-
mulation of cholesterol and triglycerides in the kidney cortex of experimental models of
DKD [10,11,14]. Renal lipid accumulation occurs in association with the dysregulation
of genes involved in lipid metabolism. Kidney biopsies of patients with DKD showed
a significant reduction in genes involved in fatty acid β-oxidation pathways including
peroxisome proliferator-activated receptor (PPAR)-alpha, carnitine palmitoyl transferase 1
(CPT1), acyl-CoA oxidase (ACOX), and L-type fatty acid binding protein (L-FABP) [10].
Moreover, the expression of cholesterol uptake receptors including low-density lipoprotein
receptors (LDLr), oxidized LDL, and acetylated LDL was significantly elevated, while
the expression of genes involved in cholesterol efflux including ATP-binding cassette A1
(ABCA1), ATP-binding cassette G1 (ABCG1), and apolipoprotein E (apoE) was significantly
decreased [10]. These data suggest that targeting renal lipid metabolism could be a potential
therapy to slow the progression of DKD.

LDLr and 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase are involved in
maintaining cholesterol uptake and synthesis, respectively, and are both predominantly con-
trolled by sterol regulatory element binding protein-2 (SREBP-2) in the human mesangial
cell line [31,32]. SREBP cleavage-activating protein (SCAP) is regarded as the chaper-
one of SREBP-2 and shuttles SREBP-2 from the endoplasmic reticulum (ER) to the Golgi
apparatus for activation by proteolytic cleavage [33]. The cleaved N-terminal fragments
of SREBP-2 (nSREBP-2) then activate LDLr and HMG-CoA reductase, resulting in enhanced
cholesterol uptake and synthesis. When cells contain sufficient cholesterol, the SCAP-SR-
EBP complex is retained in the ER, thence downregulating LDLr and HMG-CoA reductase
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expression [34]. A recent study outlined that cholesterol contributed to DKD through the
SCAP-SREBP-2 pathway and reported an accumulation of lipid droplets and an increase
in HMG-CoA reductase, LDLr, SREBP-2, and SCAP in the kidneys of diabetic rats [35].
Interestingly, inflammation was shown to be another contributor to the increased lipid
droplet accumulation in the kidneys of db/db mice that resulted from elevated protein levels
of LDLr, SCAP, and SREBP-2 [36]. Angiotensin II levels were also associated with podocyte
injury via elevated expression of LDLr, SREBP-1, SREBP-2, and HMG-CoA reductase and
decreased expression of ABCA1 [37].

In addition, SREBP-2 has been implicated in the regulation of proprotein convertase
subtilisin/kexin type 9 (PCSK9), a key protein in lipid metabolism [38]. PCSK9 is a serine
protease enzyme that binds to surface LDL receptors, causing their degradation and subse-
quently higher plasma LDL-C levels [39,40]. PCSK9 is mainly expressed in the liver and to
a lesser extent in the small intestine, kidney, and cerebellum [41,42]. Plasma PCSK9 levels
have been shown to be elevated in patients with glomerular filtration barrier disorders
such as nephrotic syndrome [43,44]. Moreover, a systematic review concluded that PCSK9
inhibitors are safe, reliable, and effective medications for decreasing LDL cholesterol levels
in patients with chronic kidney diseases [45]. Since diabetes is a leading cause of chronic
kidney disease, the effect of PCSK9 inhibitor alirocumab was investigated in patients with
T1DM and T2DM. Leiter et al. showed that patients with diabetes who were on insulin
benefited from receiving the combination of alirocumab and statin or alirocumab alone
in patients who could not tolerate statins. After 24 weeks, LDL cholesterol levels were
reduced by about 47.8% in patients with Type 1 DM and by 49% in patients with T2DM [46].
However, when it comes to the role of PCSK9 in the pathogenesis of DKD, data are scarce
and further investigation is needed. One study showed that in non-dialysis DKD, neither
eGFR nor albuminuria influenced plasma PCSK9 levels, but PCSK9 plasma levels were
elevated in patients on lipid-lowering therapy [47]. Similar results were reported in non-
diabetic patients with chronic kidney disease who were not on dialysis and did not receive
statins [48]. However, neither study included a healthy control group. In a study in which
healthy subjects were integrated into the analysis, serum PCSK9 levels were approximately
doubled in chronic kidney patients compared to the control and were inversely correlated
with eGFR [49]. Therefore, more clinical trials and research are needed to investigate the
role of PCSK9 in DKD.

ABCA1 is an ATP-dependent transmembrane protein that mediates the efflux of
cholesterol and phospholipids to apolipoproteins [50,51]. Loss of ABCA1 function impairs
cholesterol efflux and results in cholesterol accumulation in the kidneys [11,52]. Decreased
ABCA1 expression has been shown to be positively correlated with markers of DKD
progression [27]. Notably, we previously reported increased cholesterol in association with
the downregulation of ABCA1 in normal human podocytes exposed to sera from patients
with DKD and in glomeruli from patients with early diabetes, while no changes in LDLr and
HMG-CoA reductase were observed [14]. Furthermore, we previously showed that elevated
tumor necrosis factor (TNF) levels contributed to free cholesterol-dependent podocyte
depletion via a reduction in ABCA1-mediated cholesterol efflux and decreased cholesterol
esterification by sterol-O-acyltransferase 1 (SOAT1) [53]. Intriguingly, podocyte-specific
ABCA1 deficiency aggravated TNF-induced albuminuria, which was fairly prevented by
cholesterol depletion with cyclodextrin. In addition, genetic overexpression of ABCA1 or
cholesterol depletion was sufficient to attenuate TNF-induced albuminuria and prevent
DKD progression in mice with podocyte-specific nuclear factor of activated T cells 1
(NFATc1) activation, a new model of glomerulosclerosis resembling DKD [53]. Moreover,
we found that the inhibition of SOAT1 in human podocytes reduced lipotoxicity-mediated
podocyte injury in DKD in association with increased ABCA1 expression and ABCA1-
mediated cholesterol efflux [54]. Importantly, db/db mice deficient in SOAT1 showed
reduced albuminuria, renal lipid accumulation, foot process effacement, and mesangial
expansion [54]. Finally, small-molecule ABCA1 inducers that are currently being tested
in phase II clinical trials were found to be protective in experimental DKD [27]. These
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findings underline the intracellular accumulation of cholesterol as a major mediator of the
progression of DKD.

2.2. Fatty Acids and Triglycerides

In addition to cholesterol, fatty acids and triglycerides have also been highlighted as
key players in the pathogenesis of DKD [55,56]. We previously described increased triglyc-
eride content in the kidney cortices of podocyte-specific deletion of ABCA1 (Abca1fl/fl)
mice [27]. In addition, in Akita and OVE26 mice, two genetic models of type 1 diabetes, in-
creased renal triglycerides were correlated with an increased expression of sterol regulatory
element-binding protein (SREBP)-1c and carbohydrate response element-binding protein
(ChREBP), which, taken together, contributed to an increased fatty acid synthesis [11].
Increased renal triglycerides were also associated with a decreased expression of PPAR-α
and PPAR-δ, which led to decreased fatty acid oxidation [11]. Additionally, a decreased
expression of farnesoid X receptor (FXR), a negative regulator of SREBP-1c and ChREBP
and a positive regulator of PPAR-α in the liver, was also found to be correlated with in-
creased renal triglycerides [11]. Reduced fatty acid oxidation gene expression has also been
observed in both Abca1fl/fl and BTBRob/ob mice. Moreover, human podocytes cultured
in the presence of sera from patients with DKD have shown reduced expression of fatty
acid oxidation genes [27]. These findings suggest that restoring proper lipid metabolism
and increasing fatty acid oxidation locally in the kidneys may both serve as potential
therapeutic approaches to preventing and treating DKD.

2.3. Sphingolipids

Sphingolipids have also been shown to play a significant role in the development
and progression of DKD. Sphingolipids are typically classified as ceramides (CERs), sph-
ingomyelins (SMs), or glycosphingolipids (GSL) along with their metabolites. Ceramide
acts as a precursor for other biologically active sphingolipids including sphingosine (SPH),
CER-1-phosphate (C1P), and sphingosine-1-phosphate (S1P) [57]. CER, C1P, and S1P have
been demonstrated to regulate a variety of cellular processes such as cell proliferation,
maturation, differentiation, apoptosis, autophagy, inflammation, immunity, and membrane
fluidity. The role of S1P in proper kidney functioning remains poorly elucidated. S1P is
derived from SPH by the action of sphingosine kinase-1 (SK1), and it is cleaved by S1P
lyase [58]. Previous reports showed that neutral ceramidase, SK activity, and S1P levels
were all significantly increased in isolated glomeruli from rats treated with streptozotocin
(STZ) for 4 days, suggesting a possible involvement of S1P in the glomerular proliferative
response in the early-stage of DKD [59]. In addition, SK1 was found to be associated with
enhanced levels of the matrix constituent fibronectin in STZ-induced diabetic rat kidneys
and glomerular mesangial cells exposed to high glucose [60]. In line with this notion, renal
S1P levels were also significantly elevated in STZ-induced diabetic mice [61]. In mice,
knockout of the Sgpl1 gene that encodes S1P lyase 1 contributed to foot process effacement
and severe proteinuria [62]. Interestingly, other studies have proposed that, contrary to
expectations, the upregulation of SK-1 could actually be reno-protective since higher al-
buminuria and increased connective tissue growth factor (CTGF) expression were found
in kidney sections of SK-1 knockout mice as compared to wild-type C57BL/6 mice [63].
Moreover, the administration of S1P1 receptor agonists in experimental DKD models has
been reported to attenuate albuminuria and renal dysfunction [64]. In patients with type 2
diabetes, plasma levels of S1P were decreased and showed a significant decline in parallel
to kidney dysfunction, suggesting that severe nephropathy may have led to the loss in
albumin-associated S1P [65]. Further studies on S1P remain necessary to uncover its exact
role in the development and progression of DKD.
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As mentioned, ceramide is a biologically active sphingolipid that serves as a substrate
for the production of C1P and S1P [58]. Ceramide can be synthesized de novo, generated
by hydrolysis from SM by sphingomyelinases, or generated by the breakdown of GSL and
galactosylceramide to dihydroceramide with subsequent hydrolyzation [66]. Increased
levels of ceramide have been found in the plasma of patients with diabetes and were
strongly correlated with the severity of insulin resistance [67]. In addition, increased
ceramide production due to upregulated expression of serine palmitoyl transferase (SPT), a
key enzyme involved in ceramide de novo synthesis, was reported in tubular epithelial
cells and microvascular endothelial cells and was correlated with increased apoptosis in
STZ-induced DKD [68]. Sphingomyelin phosphodiesterase acid-like 3b (SMPDL3b) is a
lipid raft enzyme that regulates integrin activation, cell migration, and cell survival in
podocytes [69,70]. We previously described SMPDL3b overexpression in normal human
podocytes exposed to sera from patients with DKD and in glomeruli of patients with
insulin resistance and DKD [70]. In our recent study, SMPDL3b overexpression was found
to negatively affect the availability of C1P in human podocytes in vitro and in kidney
cortices of db/db mice in vivo [71]. More importantly, we found that human podocytes that
overexpressed SMPDL3b were unable to phosphorylate protein kinase B (PKB), also known
as Akt, in response to insulin stimulation, indicating insulin resistance. Podocyte-specific
Smpdl3b deficiency in diabetic mice restored C1P levels and protected them from DKD.
Furthermore, exogenous administration of C1P restored insulin signaling in vitro and
prevented DKD progression in vivo [71]. Collectively, these findings highlight SMPDL3b
as a modulator of insulin signaling and suggest that C1P may represent a lipid therapeutic
strategy to treat DKD.

A potential role for glycosphingolipid accumulation in DKD was raised in an earlier
work showing that hyperglycemia was associated with enhanced synthesis of glucosyl-
ceramide and ganglioside GM3, ultimately leading to renal hypertrophy in STZ-induced
diabetic rats [72]. The increased glucosylceramide synthesis was paralleled with an in-
crease in UDP-glucose concentration and reducing equivalents in the form of NADPH [72].
Therefore, inhibiting the de novo synthesis of glycosphingolipids may represent a ther-
apeutic modality for DKD. Glycosphingolipid synthesis may be targeted with potent
and selective inhibitors of glucosylceramide synthase [73,74]. In experimental models of
diabetic kidney disease, the inhibition of glucosylceramide synthase attenuated fibrosis, de-
creased extracellular matrix proteins, and reversed mesangial cell hypertrophy by reducing
hyperglycemia-induced phosphorylation of SMAD3 and Akt [75].

3. The Role of NADPH Oxidases in the Pathogenesis of Diabetic Kidney Disease

ROS are thought to be the final common denominator linking the different pathogenic
mechanisms of diabetic vascular complications and specifically of DKD [17]. Excessive
ROS production mediates renal fibrosis and tissue inflammation, imposing deleterious con-
sequences on the structure and function of the kidney [76]. Among the different sources of
ROS, NADPH oxidases appear to play a key pathophysiological role in DKD [77,78]. Recent
studies identified NADPH oxidases as major sources of ROS in the glomeruli and kidney
cortices of rats with T1DM [22–24]. More specifically, Nox4-induced ROS production was
found to mediate renal hypertrophy and increase fibronectin expression, contributing to
the progression of DKD [22]. Consistently, Eid A. et al. previously showed that high
glucose induced apoptosis of cultured mouse podocytes through the production of ROS
via sequential upregulation of cytochrome P450 of the 4A family (CYP4A) and the two
major Nox isoforms (Nox1 and Nox4). It was reported that 20-hydroxyeicosatetraenoic acid
(20-HETE), a major product of CYP4A, increased NADPH-dependent ROS production, up-
regulated Nox1 and Nox4 protein expression, and mediated podocyte apoptosis. To further
confirm the results, inhibition of CYP4A prevented oxidative stress and podocyte apoptosis
in vitro and attenuated albuminuria and podocyte loss in OVE26 mice [25]. Moreover, it
was recently demonstrated that podocyte loss induced by either type 1 diabetes in vivo
or by exposure to high glucose concentrations in vitro was mediated by the activation of
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the mechanistic target of rapamycin (mTOR) complex 1 (mTORC1) through the inactiva-
tion of the AMP-activated protein kinase (AMPK)/tuberin pathway. Notably, mTORC1
activation was correlated with enhanced oxidative stress and increased Nox1 and Nox4
protein expression. Inhibition of mTORC1 using rapamycin significantly attenuated podo-
cyte depletion and glomerular injury by inhibiting Nox4-dependent ROS generation [19].
Furthermore, a recent study suggested a novel function of mTOR complex 2 (mTORC2) in
NADPH oxidase-dependent ROS production and podocyte apoptosis that mediates disrup-
tion of podocyte integrity and albuminuria in type 1 diabetes [20]. Taken together, these
results suggest that mTOR inhibition and/or NADPH oxidase inhibition may constitute
therapeutic approaches to DKD. A recent study provided key findings that underlined the
possible role of Nox5-mediated ROS production in the pathogenesis and progression of
DKD [26]. In human kidney biopsies, Nox5 was found to be expressed in mesangial cells
of glomeruli and appeared to be upregulated in diabetes. In addition, vascular smooth
muscle cell/mesangial cell-specific overexpression of Nox5 in a mouse model of diabetic
nephropathy worsened diabetes-induced albuminuria, renal hypertrophy, mesangial ex-
pansion, ECM accumulation, glomerulosclerosis, and renal inflammation via increased
ROS generation [26]. Collectively, these findings highlight the central role of excessive
NADPH oxidase-derived ROS in the kidney in precipitating renal injury in diabetes.

4. The Crosstalk between Lipids and NADPH Oxidases in Diabetic Kidney Disease
4.1. Cholesterol, Phospholipids, and NADPH Oxidase Signaling in DKD

Dysfunction of cholesterol and phospholipid metabolism has been shown to be as-
sociated with an alteration in the NADPH oxidase signaling pathway and an increase in
oxidative stress, resulting in DKD. One of the well-described morphological features of
DKD is hypertrophy. However, the underlying complex signaling pathways that regu-
late renal hypertrophy remain poorly investigated. Increasing evidence has highlighted
calcineurin (Cn), a calcium- and calmodulin-dependent phosphatase, as a mediator of
hypertrophy in DKD [79–84]. Cn, which is activated by insulin-like growth factor-1 (IGF-1)
and transforming growth factor (TGF)-β, was shown to mediate hypertrophy in renal
mesangial cells; its inhibition with cyclosporin or tacrolimus, however, impeded both
glomerular and whole-kidney hypertrophy in diabetic rats [79,85]. More specifically, the
calcineurin A-β (CnAβ) subunit appeared to mediate the renal hypertrophy observed in
DKD [83]. In addition, CnAβ was shown to regulate NFAT, which in turn plays a crucial
role in the pathogenesis of DKD [86]. It is also well documented that NADPH oxidases
(specifically Nox4) mediate hypertrophy and fibronectin expression in DKD [22]. The ex-
pected increase in ROS in response to high glucose was shown to be significantly attenuated
in primary kidney cells lacking a catalytic subunit of Cn (CnAβ−/−), suggesting that Cn
acts upstream of Nox [87]. Consistently, loss of CnAβ decreased high-glucose-induced
Nox2 and Nox4 expression. Moreover, inhibition of NFAT decreased Nox2 and Nox4
expression, while its overexpression upregulated Nox2 and Nox4 expression [87]. These
results suggest that the CnAβ/NFAT pathway regulates NADPH oxidases, thus contribut-
ing to the renal hypertrophy observed in diabetes. More importantly, NFAT activation
has been shown to suppress ABCA1 expression [53]. ABCA1 loss-of-function mutations
are typically observed in patients with Tangier’s disease, which is characterized by the
presence of foamy podocytes on kidney biopsies [88]. Intriguingly, these patients only
develop minimal proteinuria, suggesting that loss of ABCA1 function may cause lipid
accumulation but is insufficient to result in glomerular injury [88]. In fact, neither the
knockdown of ABCA1 in podocytes (siABCA1) in vitro nor the podocyte-specific deletion
of ABCA1 in vivo was enough to cause podocyte apoptosis or glomerular injury, respec-
tively [53]. Notably, fibroblasts from patients with Tangier’s disease are susceptible to a
significant accumulation of cardiolipin [89], a mitochondrial-specific phospholipid that is
crucial in maintaining mitochondrial function and integrity [90]. This suggests that ABCA1
may play a role in mediating the mitochondrial dysfunction seen in DKD [91,92]. Indeed,
in our recent study we observed that ABCA1 knockdown in podocytes resulted in reduced
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oxygen consumption as well as in changes in the oxidative phosphorylation (OXPHOS)
complexes with cardiolipin accumulation [27]. Moreover, in vivo podocyte-specific dele-
tion of ABCA1 (Abca1fl/fl) increased the susceptibility of mice to DKD [27]. To further
establish the role of cardiolipin in DKD and its link with ABCA1, cardiolipin peroxidation
was inhibited using elamipretide, which attenuated DKD in vivo and inhibited ABCA1-
dependent podocyte injury both in vitro and in vivo. Remarkably, ABCA1 knockdown
in podocytes was associated with an increase in superoxide dismutase 2 (SOD2), a mito-
chondrial ROS scavenger [27]. This may provide a plausible explanation as to why ABCA1
deficiency alone is not sufficient to cause glomerular injury. When challenged in a dia-
betic state in which SOD2 is reduced, ABCA1 deficiency resulted in exacerbated podocyte
injury [27]. These observations demonstrate a pathway correlating ABCA1 deficiency to
cardiolipin-driven mitochondrial dysfunction, ultimately leading to DKD. Furthermore,
loss of ABCA1 expression and function can act as a susceptibility factor for DKD, and
its pharmacological induction with cyclodextrin or its genetic overexpression was shown
to prevent the progression of DKD [14,53]. Collectively, these observations highlight a
potential interplay between ABCA1 and NADPH oxidases while taking into account that
NFAT not only activates NADPH oxidases but also suppresses ABCA1 expression. They
also reveal that loss of ABCA1 expression is associated with an alteration in the OXPHOS
complexes with cardiolipin-driven mitochondrial dysfunction, resulting in a shift in redox
homeostasis in the kidney.

Of note, some anti-hyperlipidemic drugs that act by lowering hypercholesterolemia
have been shown to exert an antioxidant effect by inhibiting the NADPH oxidase
pathway (Table 1). Statins act by inhibiting HMG-CoA reductase, a major enzyme
in cholesterol synthesis, thus decreasing endogenous cholesterol production [93]. The
reno-protective role of statins in kidney injury and DKD has been investigated in several
clinical trials [94,95], but the molecular mechanisms underlying this protective role have
yet to be understood. A recent study showed that treatment with pitavastatin amelio-
rated nephropathy in db/db mice by downregulating Nox4 expression in the kidney [96].
Similarly, atorvastatin attenuated diabetes-associated renal injury by reducing Nox4-
induced ROS production and RhoA activity and by normalizing Akt/glycogen synthase
kinase 3 beta (GSK3β) signaling pathways, which are known to be important players
in renal pathology [97]. Likewise, atorvastatin treatment reduced high-fat diet (HFD)-
induced upregulation of Nox2 and Nox4 mRNA and protein expression in collecting
ducts of rats with 5/6 nephrectomy and a high-fat diet [98]. Other plausible explanations
for the reno-protective role of statins include decreased lipid peroxidation, elevated
antioxidant levels, decreased accumulation of advanced glycosylation end products, and
maintenance of podocyte integrity [35,99–101]. These observations suggest that statins
exert their reno-protective role independently of their systemic lipid-lowering effects,
indicating that it is the tissue-specific hypercholesterolemia rather than the systemic one
that plays a role in the pathogenesis of DKD. Probucol is another anti-hyperlipidemic
drug that has recently been shown to have an antioxidant effect. Db/db mice fed a
probucol-containing diet (1.0%) showed reduced levels of cholesterol, triglyceride, and
LDL compared to db/db mice fed a regular diet [102]. Importantly, treatment with probu-
col ameliorated DKD as assessed by a decrease in UAE and glomerular injury and an
increase in podocyte number. This reno-protective effect of probucol might be attributed
to the decrease in oxidative stress observed in the kidneys of db/db mice treated with
probucol as measured by oxidative stress markers including thiobarbituric acid reac-
tive substances (TBARS). Although Nox4 and Nox2 expressions were both elevated in
the kidneys of untreated db/db mice, probucol treatment significantly attenuated only
the expression of Nox2 [102]. Both TBARS (r = 0.92; p < 0.01) and cholesterol (r = 0.79;
p < 0.01) were correlated with albuminuria [102], highlighting the importance of targeting
the lipid dysmetabolism–oxidative stress axis in DKD.
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PCSK9 inhibition has emerged as a novel target for decreasing LDL cholesterol and
preventing coronary heart disease. Treatments aimed at inhibiting PCSK9 are continuously
being developed. Drugs targeting PCSK9 directly (such as the FDA-approved monoclonal
antibody evolocumab) or affecting its expression (such as Ginkgolide B) have been shown
to be effective in the case of kidney diseases. However, the mechanism by which PCSK9
inhibition might exert its protective effect in kidney disease is not well elucidated [45,103].
A possible mechanism by which PCSK9 inhibition might exert its protective effect is by
decreasing oxidative stress [104]. Ginkgolide B treatment has been shown to inhibit Nox4 ex-
pression and attenuate mitochondrial ROS generation [105]. On the other hand, fenofibrate,
a peroxisome proliferator-activated receptor-α (PPAR-α) agonist, is another FDA-approved
drug to treat patients with primary hypercholesterolemia, hypertriglyceridemia, or mixed
dyslipidemia [106]. Fenofibrate has been shown to improve renal function by inhibiting
Nox4 and reducing oxidative damage. It also inhibits apoptosis and attenuates inflamma-
tion in STZ-induced diabetic rats [107]. In addition, drugs that induce cholesterol efflux,
such as cyclodextrin or ezetimibe, demonstrated a reno-protective effect in DKD and DKD-
like glomerulosclerosis [14,27]. Interestingly, both cyclodextrin and ezetimibe have been
shown to play a role in attenuating oxidative stress [108,109]. Niacin has been also shown
to enhance lipid metabolism and have anti-inflammatory and antioxidant effects. Treating
nephrectomized rats with niacin ameliorated kidney injury and was able to attenuate the
upregulation of NOX-4, p22phox, and p47phox [110].

Table 1. The Effect of Anti-Hyperlipidemic Drugs on Regulating the NADPH Oxidase Pathway.

Anti-Hyperlipidemic
Drugs Mechanism of Action

Effect on Oxidative
Stress and NADPH

Oxidases
Major Findings Reference

Pitavastatin Inhibits HMG-CoA
reductase

- Decreases Nox4

- Decreases albuminuria
- Decreases urinary

8-OHdG and 8-epi-PGF2α
- Normalizes renal

mesangial expansion
- Decreases TGF-β1 and

fibronectin expression

[96]

Atorvastatin Inhibits HMG-CoA
reductase

- Decreases Nox4

- Decreases albuminuria
- Reduces renal

hypertrophy
- Reduces ROS generation
- Reduces RhoA activity
- Normalizes Akt/glycogen

synthase kinase 3 beta
(GSK3β) signaling
pathways

[97,98]

Probucol Increases the rate of LDL
catabolism

- Decreases Nox2

- Decreases UAE
- Improves fibrosis
- Increases podocyte

number
- Decreases ROS production

[102]

Evolocumab Monoclonal antibody
against PCSK9

- Decreases
intracellular H2O2
production in
peripheral blood
mononuclear cells
(PBMCs)

- Lowers plasma lipids
- Improves arterial stiffness [104]

Ginkgolide B Downregulates PCSK-9
expression

- Decreases Nox4
along with the
attenuation of
mitochondrial ROS
generation

- Alleviates the
Ox-LDL-induced
inflammatory cascades
and altered lipid
metabolism in human
umbilical vein endothelial
cells (HUVECs)

[105]
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Table 1. Cont.

Anti-Hyperlipidemic
Drugs Mechanism of Action

Effect on Oxidative
Stress and NADPH

Oxidases
Major Findings Reference

Fenofibrate

Peroxisome
proliferator-activated
receptor-α (PPAR-α)

agonist

- Potentiates
antioxidant defense
systems by
enhancing catalase
and superoxide
dismutase enzyme
activities and
glutathione content

- Reduces oxidative
damage by
lowering
malondialdehyde
(MDA) generation

- Attenuates the
expression of Nox4

- Improves creatinine
clearance and protein
excretion

- Lowers plasma levels of
blood urea nitrogen,
creatinine, and uric acid

[107]

Cyclodextrin Removes cholesterol
from cells

- Reduced the
production of ROS
following ingestion
of apoptotic cells in
both WT and
Abca1−/−Abcg1−/−

efferocytes

- Preserves viability of
macrophages following
exposure to oxidized
phospholipids and/or
apoptotic cells

[108]

Ezetimibe Inhibits of Niemann–Pick
C1-like 1 protein

- Decreases the
urinary excretion of
8-hydroxy-2’-
deoxyguanosine, a
parameter of
oxidative stress, and
increases the
urinary excretion of
nitrate and nitrite
(NOx)

- Reduces urinary
albumin excretion [109]

Niacin Lipid-lowering drug

- Lowers plasma
malondialdehyde
(MDA)

- Reverses or
markedly attenuates
the upregulation of
NOX-4, p22phox,
and p47phox

- Does not affect
gp91phox expression

- Ameliorates hypertension,
proteinuria,
glomerulosclerosis, and
tubulointerstitial injury

- Reduces histological
injury and mitigates
upregulation of oxidative
and inflammatory systems
in the remnant kidney

[110]

Aside from the interplay between cholesterol and NADPH oxidases, an interaction
between phospholipids and NADPH oxidases has also been shown to play a key role in
the progression of DKD. Lysophosphatidic acid (LPA) is a small phospholipid derivative
present in most tissues and body fluids. LPA acts as a potent mitogen by activating the
six G protein-coupled LPA receptors (LPAR1 to LPAR6). LPA is associated with a wide
range of biological cell responses such as proliferation, migration, and apoptosis [111,112].
It can also induce cell damage through the generation of ROS, inflammatory cytokines,
and pro-fibrotic factors in several tissues including the kidney [111–115]. Increasing ev-
idence has reported elevated LPA levels in the sera of patients with diabetes as well as
in the kidney cortex of db/db mice, suggesting a possible role of LPA in DKD [116,117].
Consistently, a recent study showed that LPA signaling was activated in the STZ-induced
mouse model of type 1 diabetes as manifested by a significant increase in the levels of LPA
type 1 receptor (LPAR1) mRNA and protein as compared to a non-diabetic model [118].
Treatment with AM095, a specific pharmacological inhibitor of LPAR1, attenuated glomeru-
lar injury in the kidney of STZ-induced diabetic mice [118]. To investigate the potential
role of oxidative stress in LPA signaling in diabetic kidney failure, ROS production was
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measured in LPA-treated SV40 MES13 cells, an immortalized mouse mesangial cell line,
using flow cytometry. LPA treatment was shown to increase ROS production, whereas
treatment with AM095 significantly inhibited this increase. Interestingly, increased ROS
production was positively correlated with the NADPH oxidase protein expression level.
Treatment with AM095 attenuated this increase in mesangial cells as well as in the kidneys
of diabetic mice [118]. Toll-like receptor 4 (TLR4) activates the inflammatory response and
simultaneously activates NADPH oxidases. Treatment with AM095 inhibited LPA-induced
TLR4 expression in mesangial cells and in the kidneys of STZ-induced diabetic mice. In
addition, AM095 suppressed LPA-induced fibrotic factors and pro-inflammatory cytokines
through the downregulation of phosphorylated NFκBp65 and c-Jun N-terminal kinases
(JNK) [118]. Pharmacological or siRNA inhibition of TLR4 and NADPH oxidase mimicked
the effects of AM095 [118]. These findings suggest that the LPAR1-specific antagonist
AM095 attenuates glomerular injury in type 1 diabetic model by inhibiting TLR4/NF-κB
and the NADPH oxidase system, consequently suppressing the inflammatory signaling
cascade in the kidneys of diabetic mice. More importantly, this study highlighted a potential
crosstalk between LPA and NADPH oxidases in the pathogenesis of DKD.

4.2. Fatty Acids, Triglycerides, and NADPH Oxidase Signaling in DKD

Accumulating evidence has elucidated a possible crosstalk between triglycerides,
fatty acids, and NADPH oxidases in DKD. SREBP-1 is an important transcription factor
regulating lipid synthesis. The potential involvement of SREBP-1 in kidney diseases has
been well elucidated in DKD experimental models such as Akita and OVE26 mouse models
of T1D [11,13,15,119]. SREBP-1c is preferentially active in driving the transcription of genes
involved in fatty acid synthesis [120]. SREBP-1c activation results in the accumulation of
triglycerides in the kidney and is associated with mesangial matrix expansion, increased
expression of profibrotic factors, and proteinuria [11,13,15,119]. In line with the notion that
accumulation of tissue lipids may be a potential source for oxidative stress, a recent study
showed that transgenic mice overexpressing nuclear (active) SREBP-1c under control of the
phosphoenolpyruvate carboxykinase (PEPCK) promoter (PEPCK-TgSREBP-1c) exhibited
renal abnormalities resembling DKD [121]. SREBP-1c-overexpressing glomeruli also had
a markedly higher expression of components of the NADPH oxidase system (including
p47phox and p67phox) as compared to control mice. This indicated that glomerular SREBP-1c
could directly induce oxidative stress through NADPH oxidases. More importantly, similar
observations were reported in STZ-induced diabetic mice with activation of endogenous
SREBP-1c. Interestingly, renal injury and oxidative stress were attenuated in SREBP-1-null
mice. In addition, adenoviral overexpression of nuclear SREBP-1c in MES13 mesangial
cells increased TGF-β and p47phox expression, whereas adenoviral dominant-negative
SREBP-1c suppressed TGF-β expression [121]. These findings suggest that activation of
glomerular SREBP-1c could contribute to the development of DKD through a NADPH
oxidase-dependent mechanism. Surprisingly, a recent study showed that inhibition of
SREBP-1 by fatostatin did not improve DKD in T1D mice [122]. Therefore, further investiga-
tion of the efficacy of SREBP inhibitors and the specific role of SREBP-1 in the pathogenesis
of DKD is warranted.

PPAR-α is a ligand-dependent nuclear receptor that plays a crucial role in lipid
metabolism [123]. PPAR-α can be activated by fatty acids, prostaglandins, and exoge-
nous compounds such as fibrates [123]. PPAR-α is primarily expressed in tissues with high
fatty acid metabolism activity and helps regulate genes involved in fatty acid synthesis and
oxidation [124]. PPAR-α has been reported to be expressed in glomerular and renal tubular
cells with the role of regulating lipid accumulation in the kidney [125]. In fact, fenofibrate,
a PPAR-α agonist, was found to exert reno-protective effects in DKD by attenuating lipotox-
icity in the kidney [126,127]. PPAR-α deficiency has been shown to worsen the progression
of DKD by increasing extracellular matrix production and inflammation in the kidney [128].
However, the underlying molecular mechanisms of the reno-protective effects of PPAR-α
agonists remain poorly elucidated. It was recently demonstrated that diabetic PPAR-α−/−
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mice had a significant increase in Nox4 expression as compared to diabetic wild-type mice,
suggesting that the reno-protective role of PPAR-α agonists may be attributed to their
antioxidant activity [129]. Additionally, treatment with fenofibrate improved renal function
in diabetic rats by attenuating oxidative stress and decreasing Nox4 expression [107]. A
recent study revealed that K-877 (pemafibrate), a selective PPAR-α modulator (SPPARMα),
significantly attenuated albuminuria in db/db mice as compared to their control littermates.
It also induced a significant decrease in total diacylglycerol (DAG) content in the glomeruli
of db/db mice [130]. Among multiple sources, protein kinase C (PKC)-induced activation
of NADPH oxidases has been described as a major source for ROS production in diabetes
mellitus [131,132]. PKC activation in hyperglycemia is likely to be correlated with elevated
levels of free fatty acids (FFAs) and accumulation of lipid intermediates such as DAG [133].
Inhibition of the DAG-PKC-NADPH oxidase pathway provides a promising therapeutic
approach for DKD. K-877 was shown to attenuate mesangial expansion in db/db mice by
inhibiting the DAG-PKC-NADPH oxidase pathway, ultimately leading to a decrease in
oxidative stress [130]. Taken together, these studies underline a crucial interplay between
PPAR-α, DAG, PKC, and NADPH oxidases.

FXR is another important nuclear receptor that has been shown to play a pivotal role in
regulating both bile acid and lipid metabolism [134–136]. FXR is activated by endogenous
bile acids, with chenodeoxycholic acid being the most potent endogenous ligand followed
by deoxycholic acid, lithocholic acid, and lastly cholic acid [137]. FXR is abundantly ex-
pressed in the liver, intestine, kidney, and adrenal glands, but to a lesser extent in heart
and adipose tissues [138–140]. In mouse kidneys, FXR was shown to be expressed in both
isolated proximal tubule cells and glomeruli. Additionally, FXR has been detected in both
cultured mouse mesangial cells and podocytes [141]. In kidney biopsies from patients
with nephropathy associated with diabetes and obesity, FXR mRNA is significantly de-
creased in both glomeruli and tubules [142]. FXR knockout mice with STZ-induced type 1
diabetes demonstrated an exacerbated renal injury compared to age-matched C57BL/6
wild-type mice injected with STZ. These mice exhibited an increase in albuminuria, base-
ment membrane thickening, glomerulosclerosis, podocyte injury, mesangial expansion,
and tubulointerstitial fibrosis [143]. Importantly, FXR deficiency augmented neutral lipid
accumulation in both glomeruli and tubulointerstitium and increased renal cholesterol
and triglyceride levels [143]. Renal lipid dysmetabolism was accompanied by an increase
in the expression of SREBP-1c and its target genes acetyl-CoA carboxylase (ACC), fatty
acid synthase (FAS), and stearoyl-CoA desaturase-1 (SCD-1) [143], which play a role in
fatty acid and triglyceride synthesis. Moreover, FXR deficiency led to the upregulation of
the LDL receptor and lectin-like oxidized LDL receptor-1 (LOX-1), increasing cholesterol
and oxidized LDL uptake [143]. Remarkably, treatment with FXR agonists ameliorated
DKD in different mice models of diabetic nephropathy including db/db mice with type 2
diabetes [141]; DBA/2J mice fed a high-fat, high-cholesterol diet [12]; and STZ-induced
type 1 diabetic DBA/2J mice [143]. Activating FXR restored renal lipid homeostasis by
inhibiting ChREBP and SREBP-1c, reducing fatty acid synthesis and triglyceride accu-
mulation [12,141,143]. Furthermore, the FXR agonist INT-747 increased the expression of
genes involved in fatty acid oxidation and lipid catabolism, including PPAR-α, PPAR-γ
coactivator-1α (PGC-1α), CPT1a, uncoupling protein-2 (UCP-2), and lipoprotein lipase
(LPL) [12]. In addition, FXR activation attenuated oxidative stress as assessed by a decrease
in Nox2 and p22phox expression [12,141,143].

Besides FXR, bile acids also activate the membrane-bound G protein-coupled receptor
(TGR5). Although both are activated by bile acids, TGR5 expression and function are
distinct from FXR except in some cases in which their roles complement [144,145]. TGR5
mRNA expression was detected in the small intestine, gall bladder, liver, brown adipose
tissue, spleen, placenta, lung, kidneys, and some areas of the nervous system [144–146]. In
the kidneys, TGR5 mRNA expression was detected in both human and mouse tubules and
glomeruli [147]. Notably, TGR5 mRNA expression in kidney biopsy specimens from pa-
tients with DKD or obesity-related glomerulopathy was significantly decreased compared
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to normal kidney biopsy specimens, and TGR5 mRNA levels were inversely correlated
with the progression of the disease [147]. Treatment of diabetic db/db mice with the selec-
tive TGR5 agonist INT-777 ameliorated diabetic renal injury. INT-777 attenuated urinary
albumin excretion, podocyte loss and injury, mesangial expansion, and macrophage infil-
tration [147]. INT-777 is thought to exert its reno-protective effect through upregulating the
expression of master regulators of mitochondrial biogenesis (such as SIRT3 and PGC-1α),
inhibitors of oxidative stress (such as Nrf-1), as well as inducers of fatty acid β-oxidation
(such as PPAR-α, CPT1β, and UCP-2) [147]. Interestingly, targeting the FXR/TGR5 pathway
with the dual agonist INT-767 attenuated renal injury by preventing lipid accumulation,
enhancing mitochondrial biogenesis and fatty acid β-oxidation, and decreasing oxidative
stress [142]. Particularly, treatment with INT-767 reduced Nox2 and p22-phlox mRNA
expression [142]. Collectively, these data suggest a possible interplay between FXR/TGR5
pathway, lipid metabolism, and Nox-dependent oxidative stress (Figure 1).
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 Figure 1. Diabetes-induced alteration in fatty acid and triglyceride metabolism upregulates NADPH
oxidase-dependent ROS production in the kidney. TGR5 is bile acid-activated GPCR that plays
a pivotal role in upregulating mitochondrial biogenesis and fatty acid β-oxidation. FXR is a bile
acid-activated nuclear receptor that plays an important role in regulating lipid metabolism. FXR
activation upregulates the expression of PPAR-α, which is involved in lipid catabolism and fatty
acid β-oxidation, while inhibiting the expression of genes that are involved in cholesterol and
oxidized LDL-uptake. In addition, FXR activation inhibits the expression of SREPB-1c and its
target genes, which are involved in the synthesis of fatty acids and triglycerides. In DKD, both
receptors are downregulated, leading to lipid accumulation and injury. Importantly, the decrease
in TGR5 and FXR expression leads to an increase in NADPH oxidase-dependent ROS production,
further exacerbating kidney injury. ACC: acetyl-CoA carboxylase; CPT1: carnitine palmitoyltrans-
ferase 1; FAS: fatty acid synthase; FXR: farnesoid X receptor; FXRE: FXR response element; LOX-1:
lectin-like oxidized LDL receptor-1; LDLr: low-density lipoprotein receptors; LPL: lipoprotein lipase;
PPAR-α: peroxisome proliferator-activated receptor- α; PPRE: PPAR response element; PGC-1α:
peroxisome proliferator-activated receptor-gamma coactivator 1 alpha; RXR: retinoid X receptor;
SCD-1: stearoyl-CoA desaturase-1; SIRT3: NAD-dependent deacetylase sirtuin-3, mitochondrial;
SREBP1-c: sterol regulatory element-binding protein 1-c; TGR5: G-protein-coupled bile acid receptor;
UCP-2: uncoupling protein-2.
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4.3. Sphingolipids and NADPH Oxidase Signaling in DKD

Increasing evidence has described an interplay between ceramide and redox sig-
naling that modulates various cell functions and leads to the development of renal
dysfunction and cardiovascular disease. It was previously shown that ceramide stim-
ulated the activation of ROS-producing enzymes including xanthine oxidase, NO syn-
thase, the mitochondrial respiratory chain enzymes, and NADPH oxidases [148,149].
In particular, ceramide has been shown to activate NADPH oxidases in a variety of
mammalian cell types such as human aortic smooth muscle cells, endothelial cells
(ECs), and macrophages [150–152]. The activation of NADPH oxidases requires the
translocation and aggregation of its subunits. Therefore, it was suggested that ceramide
induces the activation of NADPH oxidases by mediating the fusion of small raft domains
to ceramide-enriched membrane platforms, subsequently clustering the subunits of
NADPH oxidases and leading to an active enzymatic complex. In fact, the activation of
the sphingomyelinase enzyme mediates the production of ceramide molecules, which
spontaneously assemble to form microdomains that fuse to large ceramide-enriched
membrane platforms [153]. In such membrane raft platforms, NADPH oxidase subunits
assemble into an active enzymatic complex that produces ROS [154,155]. The ceramide-
enriched membrane platform with Nox subunit clustering and enzyme activation is
termed the membrane raft redox signaling platform (MRRSP) [57]. The MRRSP is depen-
dent on the activation of sphingomyelinase to produce ceramide in response to various
physiological or pathological stimuli [57]. MRRSP and its associated oxidative stress
through increased NADPH oxidase activity have been reported to mediate glomerular
injury and sclerosis during hyperhomocysteinemia (hHcys) [156].

Homocysteine (Hcys), a sulfur-containing amino acid, is formed as a metabolic inter-
mediate during the metabolism of methionine. Increasing evidence has highlighted the
role of Hcys in health and disease [157]. Perturbations in the intracellular metabolism of
homocysteine and its subsequent circulating accumulation, termed hyperhomocysteine-
mia (hHcys), have been well documented in the progression of chronic kidney disease
(CKD) [157,158]. In addition, in T2DM, hHcys was shown to be strongly correlated
with an increased risk of cardiovascular disease (CVD) and mortality [159]. In previous
experimental studies, Hcys also appeared to increase the production of extracellular
matrix (ECM), consequently promoting the sclerotic process in vessel walls and other
tissues [160,161]. Moreover, it was previously demonstrated that sustained elevations of
plasma Hcys mediated glomerulosclerosis in both a hypertensive Dahl salt-sensitive rat
model and a normotensive rat model [162]. In a hospital-based case-control association
study, elevated Hcys plasma levels were causally associated with an increased risk of
DKD in Chinese patients with diabetes [163]. Recent studies have indicated that Hcys
increases superoxide production via NADPH oxidases, subsequently stimulating the
production of tissue inhibitor of metalloproteinase-1 (TIMP-1) in renal mesangial cells
and leading to collagen deposition [164]. Considering that ceramide is a major activator
of NADPH oxidases in different cells [57,165,166] and that NADPH oxidases contain the
Rac protein, a regulatory component that allows for a high affinity binding to lipids, a
recent study investigated the role of ceramide in the Hcys-induced activation of NADPH
oxidases in rat mesangial cells. Hcys was shown to increase de novo production of
ceramide in rat mesangial cells, and it markedly increased the level of GTP-bound Rac,
which was paralleled by enhanced activity of NADPH oxidases. Treatment with a Rac
GTPase inhibitor (GDPbS) and a de novo ceramide synthesis inhibitor (fumonisin B1
(FB1)) abolished Hcys or ceramide-mediated effects [156]. These results indicate that
Hcys activates NADPH oxidases in a ceramide-dependent pathway. In vivo, treatment
with the de novo ceramide synthesis inhibitor myriocin decreased renal ceramide levels
and NADPH oxidase activity and attenuated glomerular injury in uninephrectomized
Sprague Dawley rats fed a folate-free diet for 8 weeks. In rats treated with apocynin, a
NADPH oxidase inhibitor, similar beneficial results were seen in protecting the glomeruli
from hHcys-induced injury [167]. These observations support the notion that de novo
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ceramide production is involved in Hcys-induced NADPH oxidase activity in the kid-
ney and further underline the interplay between sphingolipids and NADPH oxidases
in DKD.

Notably, the formation of lipid raft (LR) redox signaling platforms in glomerular
endothelial cells (GEnCs) accounts for the early event of hHcys-induced glomerular injury.
A recent study revealed a co-localization of LR clusters with the NADPH oxidase subunits
gp91phox and p47phox in GEnC membranes in response to hHcys. Moreover, the NADPH
oxidase activity was significantly increased upon Hcys stimulation. Interestingly, hHcys
resulted in increased permeability of GEnC with disruption of the microtubule network,
leading to glomerular injury [168]. In fact, endothelial cell injury leads to an increase
in glomerular capillary permeability, enhancing the efflux of albumin from glomerular
capillaries. This induces mesangial cell expansion, leading to eventual glomerular injury
and sclerosis [169].

Acid sphingomyelinase (Asm), a ceramide-producing enzyme, was also shown to play
a key role in mediating glomerulosclerosis and podocyte injury associated with increased
NADPH oxidase activity during hHcys [170]. Renal ceramide production, Asm mRNA
and activity, urinary albumin excretion, the glomerular damage index (GDI), NADPH-
induced ROS production in the renal cortex, and podocyte injury were all attenuated in
uninephrectomized Asm-knockout mice (Asm−/−) or Asm short hairpin RNA (shRNA)-
transfected wild-type mice compared with wild-type (Asm+/+) mice [170]. Furthermore,
the hHcys-induced glomerular injury was significantly improved in gp91phox knockout
(gp91−/−) mice. Proteinuria, the glomerular damage index (GDI), foot process effacement,
and podocyte loss due to hHcys were all significantly attenuated in gp91−/− mice as
compared to wild-type (gp91+/+) mice, further establishing the role of NADPH oxidases in
hHcys-induced podocyte injury [171].

Recently, MRRSP-induced ROS generation was shown to induce the activation of
NOD-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome. NLRP3
mediates the inflammatory response in different cells including renal podocytes and tubular
cells [172]. The redox activation of NLRP3 inflammasome is considered an underlying
pathogenic mechanism of glomerulosclerosis and consequent ESRD [173,174]. More im-
portantly, NLRP3 activation mediates the production of caspase-1, interleukin (IL)-1β,
IL-18, and other cytokines, thus promoting the inflammatory cascade reaction, which is
crucial for the pathogenesis of DKD [175,176]. Glomerular injury associated with obesity
has also been shown to be attributed to the MRRSPs in GEnCs. Visfatin, an adipokine
reported in obesity and diabetes mellitus, was shown to increase sphingomyelinase activity,
leading to an increased production of ceramide and clustering of NADPH oxidase sub-
units gp91phox and p47phox in membrane rafts, forming MRRSP. The formation of MRRSP
was inhibited by prior treatment with MR disruptor filipin, sphingomyelinase inhibitor
amitriptyline, sphingomyelinase siRNA, gp91phox siRNA, and adiponectin. Visfatin also in-
creased the permeability of GEnC in culture and resulted in the disruption of microtubular
networks [177].

Recent studies have reported that S1P, another biologically active sphingolipid, can
stimulate Nox2 and Nox4-dependent ROS production in different cells. S1P has been
shown to increase Ca2+ sensitization in vascular smooth muscle cells (VSMCs) by acting
on Rho A/Rho kinase pathway, subsequently activating NADPH oxidase-induced ROS
production [57]. Mechanistically, S1P was found to mediate p47phox translocation in fibrob-
lasts, thus leading to Nox activation [178]. In the kidney, S1P is considered to be a potent
vasoconstrictor of the preglomerular microvasculature, which is closely correlated with the
pathogenesis of DKD [179]. The interplay between S1P and NADPH oxidases in the kidney
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warrants further investigation. The activation of NADPH oxidases by sphingolipids such
as ceramide and S1P and the decrease in the activity of antioxidant defenses such as nitric
oxide (NO) and SOD are described as crucial players in the crosstalk between sphingolipids
and ROS production in DKD [75,180].

5. A Two-Way Crosstalk: Increased ROS Production May Cause Lipid Dysmetabolism

Increased ROS generation in DKD may also lead to lipid dysmetabolism. Several
studies associated the development of obesity and metabolic syndrome with NADPH
oxidase-induced ROS production. Nox4 activity was shown to increase transiently dur-
ing obesity development in control mice fed a high fat, high sucrose (HFHS) diet for
8 to 16 weeks [181]. Adipocyte-specific deletion of Nox4 delayed the onset of insulin
resistance in mice fed with the HFHS diet, improved plasma lipids, and attenuated
inflammation in both liver and adipose tissue [181]. Moreover, fat accumulation and
BMI were positively correlated with systemic oxidative stress in both humans and
mice [182,183]. Interestingly, treatment of KKAy mice, a model of diabetic obesity, with
the NADPH oxidase inhibitor apocynin reduced the production of ROS in adipose tissue
and attenuated adipocytokine dysregulation. In addition, treatment with apocynin
attenuated insulin, glucose, plasma triglycerides, and hepatic triglycerides levels in
KKAy mice [182]. Intriguingly, mice overexpressing the Nox subunit p22phox in smooth
muscle cells (tgsm/p22phox) developed an evident increase in body weight, insulin re-
sistance, leptin resistance, and other metabolic syndrome characteristics upon high-fat
feeding [184]. Collectively, these data suggest that NADPH oxidases may play a role in
lipid metabolism.

In addition, Grove et al. previously reported that the inhibition of ROS produc-
tion with pyridoxamine inhibited the accumulation of phospholipid and glycolipid
species from four different classes including gangliosides, sulfoglycosphingolipids,
lysophospholipids, and phosphatidylethanolamines in the glomeruli and/or tubules
of endothelial nitric oxide synthase deficient C57BLKS db/db mice. Furthermore, the
inhibition of ROS production prevented nephropathy progression in these mice [116].
Thus, increased ROS generation in DKD could promote the synthesis of GSLs. Im-
portantly, inhibiting NADPH oxidases using the first-in-class pan-NADPH oxidase
APX-115 was shown to protect db/db mice from renal injury by reducing cholesterol
and triglyceride content locally in the kidneys [185]. Similarly, in STZ-induced mice,
treatment with APX-115 was able to reverse diabetes-induced lipid accumulation in
the kidney. APX-115 was able to restore the expression of the lipolytic enzymes such
as CPT1 and ACOX1 that are downregulated in diabetes, suggesting a role of NADPH
oxidases in fatty acid β-oxidation in both mitochondria and peroxisomes. Furthermore,
treatment with APX-115 was able to decrease the expression of the lipogenic enzymes
fatty acid synthase and SREBP-1c (Figure 2) [186]. In a study conducted by Lee et al.,
mice that expressed human Nox5 in podocytes (NOX5 pod+) were fed an HFD. The
body weight of NOX5 pod+ mice did not differ significantly from their control litter-
mates. However, treatment with APX-115 but not ACT-705500 (ACT), which is a Nox1
and Nox4 inhibitor, reduced body weight gain in NOX5 pod+ mice that were fed an
HFD. Additionally, APX-115 treatment decreased total cholesterol and total triglyceride
levels and inhibited lipid accumulation in the liver, suggesting that APX-115 improved
HFD-induced lipid dysmetabolism [187]. Notably, APX-115 treatment also ameliorated
diabetic kidney disease in NOX5 pod+ mice [187]. These data suggest that NADPH
oxidases play an important role in regulating both systemic and local lipid metabolism.
However, further studies should be conducted to elucidate the mechanisms behind
Nox-induced lipid dysmetabolism.
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Figure 2. Diabetes induces upregulation of NADPH oxidase-dependent ROS production, leading to
renal lipid dysmetabolism. In DKD, diabetes inhibits the AMPK pathway, causing upregulation of the
mTOR pathway. Subsequently, mTOR activation leads to the activation of NADPH oxidases. NADPH
oxidase-induced ROS production has been shown to alter renal lipid metabolism by inhibiting fatty
acid β-oxidation and upregulating lipogenesis. ACOX1: acyl-CoA oxidase 1; AMPK; 5′ AMP-
activated protein kinase; CPT1: carnitine palmitoyltransferase-1; FAS: fatty acid synthase; mTOR:
mechanistic target of rapamycin; SREBP-1c: sterol regulatory element-binding protein 1-c; TSC1:
hamartin; TSC2: tuberin.

6. Conclusions

Renal accumulation of lipids and abnormal intracellular lipid metabolism play a
central role in the pathogenesis of diabetic kidney disease. Examining lipids and their
altered metabolism has thus been of great interest to scientists in the race to find a treatment
for DKD. The accumulation of cholesterol in the kidneys appears to be a major mediator of
DKD and is favored by the dysregulation of several lipid metabolism genes. Fatty acids,
triglycerides, and sphingolipids also play a key role in the pathogenesis of DKD. Along with
lipid accumulation and altered metabolism, the production of ROS by NADPH oxidases is
also recognized as a major contributor to the pathophysiology of DKD. Inhibiting NADPH
oxidase appears to be a plausible approach to treat DKD. Here, we summarized the clinical
and experimental evidence supporting the central role of lipids in the pathogenesis of
DKD with a particular focus on the lipids that also alter redox homeostasis in an NADPH
oxidase-dependent manner. We believe that further studies on the role of cholesterol,
phospholipids, triglycerides, fatty acids, and sphingolipids in activating NADPH oxidases
should show great promise in finding potential therapies for DKD.
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