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Abstract: The diabetes epidemic and the increasing number of patients with diabetic chronic vascular
complications poses a significant challenge to health care providers. Diabetic kidney disease is a
serious diabetes-mediated chronic vascular complication and represents a significant burden for
both patients and society in general. Diabetic kidney disease not only represents the major cause
of end stage renal disease but is also paralleled by an increase in cardiovascular morbidity and
mortality. Any interventions to delay the development and progression of diabetic kidney disease
are important to reduce the associated cardiovascular burden. In this review we will discuss five
therapeutic tools for the prevention and treatment of diabetic kidney disease: drugs inhibiting
the renin–angiotensin–aldosterone system, statins, the more recently recognized sodium-glucose
co-transporter-2 inhibitors, glucagon-like peptide 1 agonists, and a novel non-steroidal selective
mineralocorticoid receptor antagonist.
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1. Introduction

Diabetic kidney disease (DKD) is the main cause of end-stage renal disease (ESRD)
and, alongside drugs inhibiting the renin–angiotensin–aldosterone (RAAS) system and
statins, novel pharmacological agents have recently been proposed to target renal disease
in diabetes.

Sodium-glucose co-transporter-2 (SGLT2) inhibitors, glucagon-like peptide 1 (GLP1)
receptor agonists, and non-steroidal mineralocorticoid receptor antagonists have recently
been shown to have important renoprotective effects in patients with diabetes, which is
also paralleled by a significant and important reduction in cardiovascular morbidity and
mortality [1–3].

We discuss the five therapeutic tools or ‘pillars’ that can be used for DKD in addition
to how recent advances could contribute to the discovery of novel mechanisms of action
and the development of new treatment options in the future.

2. Diabetic Kidney Disease

Global diabetes prevalence is expected to rise to 12.2% (783.2 million), and its related
health cost has been projected to reach USD 1054 billion by 2040 [4]. Of the diabetic
population, approximately one-third will develop DKD, an estimate similar in both type 1
(T1DM) and type 2 diabetes (T2DM). Patients with T2DM represent an older patient group
with more frequent co-existence of pathologies such as cardiovascular disease [5].

Diabetes represents the most common cause of ESRD worldwide [5]. Declining renal
function and albuminuria are independently and additively associated with an increase in
cardiovascular morbidity and mortality [6–8] which is 2–3 times higher than that seen in
patients with diabetes but without DKD [9].
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The clinical presentation of DKD is typically characterized by glomerular hyperfil-
tration, followed by albuminuria, overt proteinuria, hypertension, and progressive renal
function decline that leads to ESRD [10,11]. Most patients with diabetes present with
classical features of DKD as described, but at times renal function decline is not paralleled
by albuminuria, an event mainly observed in T2DM [12–14].

Poor glycemic control drives the development and progression of DKD, and studies in
T1DM have demonstrated that good metabolic control prevents and delays the progression
of DKD [15]. Good metabolic control prevents hyperfiltration, which is believed to be a
risk factor for CKD progression [16–19]. Glomerular hyperfiltration reflects an increase
in glomerular capillary pressure that translates in anatomo-structural damage. Even in
normotensive conditions, glomerular capillary hypertension synergizes with metabolic
perturbations and drives the development and progression of DKD [20–22].

Mechanisms of hyperfiltration have been related to two main mechanisms: an up-
regulation of SGLT2 with increased glucose and sodium reabsorption at the level of the
proximal tubule and increased glomerular expression/secretion of angiotensin-2 [23,24].

Increased sodium and glucose reabsorption at the level of the proximal tubule results
in a reduced amount of sodium to the macula densa that, by tubule-glomerular feedback,
leads to glomerular afferent arteriolae vasodilation [25–28]. In addition, the local activation
of the RAAS with increased levels of angiotensin-2 leads to an increase in efferent arteriolae
vasoconstriction and secondary glomerular hypertension [22,29,30].

It is recognized that the risk of development and progression of DKD lies mainly
on poor glycemic and blood pressure control and their interaction synergize in driving
renal damage [22]. Obesity, mainly visceral, also represents an important factor for DKD
progression [31]. Obesity results in RAAS activation and hyperfiltration [32,33], while
weight loss improves altered glomerular hemodynamics in diabetes [34,35]. Dyslipidemia
has also been implicated in the pathophysiology of DKD and for the development of
albuminuria, with statins proving to be an effective treatment [36–38]. Similarly, for fibrates
there seem to be a positive effect on renal function decline and albuminuria [39,40].

3. Therapeutic Strategies for DKD

The key approach to reduce DKD-mediated ESRD is to prevent and delay the renal
function decline, as once a fall in renal function occurs, it is difficult to regain, apart
from when normoglycemic conditions are implemented for a long time, such as following
pancreas transplantation [41].

3.1. Lifestyle

Lifestyle measures are a key component in the overall management of DKD. Dietary
advice is important in the management of both CKD and diabetes. In CKD, the National
Kidney Foundation guidelines suggest a registered dietician nutritionist’s intervention to
provide nutritional advice [42]. Considerations include reducing dietary protein intake,
ensuring adequate fruit and vegetables, following a Mediterranean diet, and considering
the need for vitamin and mineral supplements [42]. Depending on the patient, advice to
reduce potassium intake and restrict oral fluids may be given [42].

There is no specific recommended diet for diabetes, but general advice includes
eating a variety of fruit and vegetables, reducing carbohydrates, saturated fats, and
salts, and choosing low- over high-glycemic-index foods [43]. A very-low-calorie diet
(825–853 kcal/day) has been shown to lead to remission of T2DM in almost half of patients
at 12 months [44]. A very low carbohydrate diet has been shown to improve glycemic
control but not renal outcomes in DKD [45]. In addition to diet, regular physical activity,
not smoking and weight loss for patients with obesity are advisable in DKD [46].

In parallel to lifestyle, glycemic and blood pressure control, all cornerstones for the
prevention of DKD, we outline five major treatment “pillars” that possess major renal
protective properties (Figure 1).
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Figure 1. The treatment “pillars” for renal protection in diabetes.

3.2. SGLT2 Inhibitors

SGLT2 inhibitors act to reduce proximal tubular glucose reabsorption from the renal
glomerular filtrate [47]. SGLT2 is an energy-dependent sodium-coupled glucose transporter
expressed mainly in the S1 and S2 segment of the nephron proximal tubule [48,49]. SGLT2
is upregulated in diabetes and contributes to both proximal tubule glucose and sodium
reabsorption [26]. The SGLT2 inhibitors were initially developed as oral hypoglycemic
agents. By reducing glucose proximal tubule reabsorption, SGLT2 inhibitors lead to an
increase in urinary glucose excretion, promote weight loss of approximately 4–5 Kg, lower
plasma glucose concentrations, and lead to a reduction in HbA1c of around 1.0% [50].

SGLT2 inhibitors were found to confer both cardiovascular and renal protection; clini-
cal trials have demonstrated that SGLT2 inhibitor treatment results in a 30–40% relative
risk reduction of cardiovascular death and hospitalization, which was mainly driven by
reduction of heart failure [51–53]. The EMPAREG trial was the first to suggest a renopro-
tective role for the SGLT2 inhibitor empagliflozin [54]. Later, other studies such as the
CANVAS and CANVAS-R showed a promising renoprotective effect of the SGLT2 antago-
nist canagliflozin [55]. Subsequently, a prospective study, the CREDENCE trial, enrolled
patients with type 2 diabetes and albuminuria (albumin/creatinine ration 300–5000 mg/g)
and chronic kidney disease (glomerular filtration rate: GFR of 30–90 mL/min/1.73 m2) that
were randomized to the SGLT2 inhibitor canagliflozin at a dose of 100 mg daily or placebo.
All patients were treated with RAAS inhibitors. The trial was stopped earlier due to clear
benefit of patients enrolled in the treatment arm. Patient on SGLT2 inhibitor had a relative
30% reduction of a renal endpoint defined as ESRD, doubling of the serum creatinine
level, or death from renal or cardiovascular causes when compared to the placebo arm [56].
Interestingly, other studies have confirmed these results in patients with T2DM and have
demonstrated that the SGLT2-inhibitor-mediated renoprotective effects occurs also in the
non-diabetic population [57].

The latest NICE guidelines recommend the use of SGLT2 inhibitors with metformin as
dual therapy first line for patients with diabetes with established cardiovascular disease,
and advise to consider their use in patients with high risk of cardiovascular disease [58]. In
addition to documented weight reduction, the cardiovascular protective effects of SGLT2
inhibitors include reduction in blood pressure [59] and reduced risk of both new heart
failure and of worsening existing heart failure in patients with reduced or preserved ejection
fraction [51–53,60–62].

SGLT2 inhibitors, including empagliflozin, dapagliflozin, canagliflozin, and
ertugliflozin, have been observed to have beneficial renal effects in several cardiovas-
cular outcome trials. Meta-analyses of these data have demonstrated that in diabetic
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patients, SGLT2 inhibitors reduce the risk of progression of renal disease, ESRD, or death
from renal causes [3].

The 2022 KDIGO guidelines for diabetes management in CKD recommend the use of
metformin and SGLT2 inhibitors for all patients with T2DM, CKD, and an
GFR > 30 mL/min/1.73 m2 [63]. The glucose lowering effects are attenuated at
GFR < 60 mL/min/1.73 m2 and minimal at GFR < 30 mL/min/1.73 m2 [64]. However, the
renal and cardiovascular benefits are seen at any GFR, and guidelines advise continuing
SGLT2 inhibitors even if GFR falls below 20 mL/min/1.73 m2, until renal replacement
therapy is initiated [56]. The cardio-renal protective effects appear within weeks/months
and seem to be independent of the improvement in glycemic control. The SGLT2 bene-
ficial effects are likely to be driven by a hemodynamic mechanism; the main proposed
mechanisms linked with renal benefits include: increased diuresis and improvement in
blood pressure, tubulo-glomerular feedback leading to reduced intraglomerular pressure,
increased tubular oxygenation, and reduced inflammation and fibrosis [65].

Side Effects

An initial drop in eGFR (driven by hemodynamic changes in the glomerular circula-
tion) is seen when SGLT2 inhibitors are initiated; however, there has been no confirmed
increased risk of acute kidney injury (AKI) occurrence, and conversely, they have been
seen to reduce the risk of AKI in patients with T2DM [66]. Due to the increased glucosuria,
SGLT2 inhibitors increase the risk of genital infections and so patients should be educated
with regards to the importance of hydration and personal hygiene [67]. An increased
risk of fractures and amputations has been documented, although evidence is mixed, and
further evaluation is needed to confirm these associations [67]. Similarly, an association
has been made with SGLT2 inhibitors and Fournier’s gangrene, but no causality has been
established [67].

SGLT2 inhibitors lead to increased lipolysis and glucagonemia, and therefore, it has
been recommended that they are held peri-operatively and at times of dehydration and
that ketones be monitored due to the risk of ketosis in the peri-operative setting [68,69].
Healthcare professionals are advised to educate patients on the ‘sick-day rules’ when
initiating SGLT2 inhibitors to enable prevention and recognition of potential ketoacidosis.
If patients are unwell or unable to eat and drink as normal, they should omit the SGLT2
inhibitor and keep themselves as well hydrated as possible; patients should be informed of
the symptoms of diabetic ketoacidosis and to attend Accident & Emergency department
should they develop them [70]. SGLT2 inhibitors should not be restarted until eating
normally for at least 24 h and never restarted if a patient develops ketoacidosis while taking
them [70].

3.3. GLP1 Receptor Agonists

GLP1 is an incretin hormone produced in the distal small bowel and colon that triggers
the release of insulin in response to oral glucose intake. Incretin hormones slow gastric
emptying and increase natriuresis and diuresis [71]. Native GLP1 has a short half-life as it
is cleaved by dipeptidyl-peptidase IV (DPP IV) enzymes and eliminated renally. The GLP1
receptor agonists are synthetized from either exendin-4 from the saliva of the Gila monster,
a species of venomous lizard, or human GLP1 analogues, both of which are resistant to
the DPP IV degradation. The exendin-4 based agents, such as exenatide and lixisenatide,
have a short half-life but strongly inhibit gastric emptying and cause a greater reduction in
post-prandial hyperglycemia [72].

GLP1 receptor agonists are a group of drugs used to treat T2DM and lead to a reduction
in HbA1c. GLP1 receptors are present in many tissues, but with regards to the therapeutic
effects on diabetes, their activation is thought to increase insulin secretion, and reduce beta
cell apoptosis and glucagon release in a glucose-dependent way [71]. Furthermore, GLP1
receptor agonists bind the GLP1 receptor present in the central nervous system and the
gastrointestinal tract and favor weight loss in obese patients through an increase in satiety,
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reducing appetite, delaying gastric emptying, and potentially increasing thermogenesis of
brown adipose tissue [73,74].

Data from clinical trials suggest that GLP1 receptor agonists improve surrogate renal
endpoints, plausibly beyond the effects of improved glycemic control [75]. Exendin-4-
based GLP1 receptor agonists are renally excreted and so their use is contraindicated at an
eGFR < 30 mL/min/1.73 m2 [76]. Meanwhile, the human GLP1 receptor agonists dulaglu-
tide, semaglutide, and liraglutide are longer-acting and are more effective at reducing
fasting blood sugar and HbA1C [77]. They are not eliminated by the kidneys and so can be
safely used down to an eGFR of 15 mL/min/1.73 m2 [76].

Cardiovascular outcome trials have shown that GLP1 receptor agonists are efficacious
in reducing the risk of cardiovascular events (stroke, myocardial infarction, or cardiovas-
cular death) in patients with T2DM [1]. The same trials have shown that GLP1 receptor
agonists prevent worsening of renal function in patients with T2DM. This was measured as
a composite outcome of ≥40% decline in eGFR or doubling of creatinine, need for renal
replacement therapy, new macroalbuminuria, or death from renal disease [1]. The FLOW
trial will be the first dedicated kidney outcome trial to evaluate whether the GLP1 receptor
agonist semaglutide delays progression of kidney disease and reduces the risk of death
from renal or cardiovascular disease in patients with T2DM and CKD (ClinicalTrials.gov
Identifier: NCT03819153). Data are lacking on patients with ESRD on hemodialysis or renal
transplant patients.

Clinical trials on DPP IV inhibitors, which prevent GLP1 degradation, have not shown
a cardiovascular benefit for patients with T2DM [78]. The reasons behind this observation
are unknown but could relate to the "physiological" concentration of circulating GLP1
achieved in patients treated with DPP IV inhibitors versus the "supraphysiological" levels
observed with GLP-1 receptor agonists [79].

Not only do GLP1 receptor agonists improve glycemic control and stimulate weight
loss, but evidence suggests they also confer nephroprotection via interaction with the renal
cells, with GLP1 receptors thought to be present in the kidney [76]. The proposed mecha-
nisms of renal protection include a reduction in oxidative stress, fibrosis, inflammation, and
possibly increased natriuresis [80]. Guidelines (KDIGO) advise the use of GLP1 receptor
agonists in patients with T2DM and CKD who have not achieved glycemic targets with
metformin and SGLT2 inhibitors [63].

Side Effects

GLP1 receptor agonists do not cause hypoglycemia; however, if a patient is already
on insulin or a sulphonylurea, the doses of these may need to be reduced to avoid hypo-
glycemia [81]. The most common side effects of GLP1 receptor agonists are gastrointestinal
such as nausea, vomiting, reflux, diarrhea, or constipation [81,82]. Proposed methods of
managing these include educating patients, escalating dosing more slowly if indicated,
increasing hydration, reducing portion size, and considering switching to an alternative
GLP1 receptor agonist [82]. Associations have been made between GLP1 receptor agonists
and pancreatitis, pancreatic cancer or thyroid cancer; however, current evidence does not
support a causative link [73].

3.4. Non-Steroidal Mineralocorticoid Receptor Antagonists

Activation of mineralocorticoid receptors leads to inflammation and fibrosis contribut-
ing to progression of CKD and cardiovascular dysfunction [69]. While recommended, the
use of steroidal mineralocorticoid receptor antagonists (MRA) for patients with CKD and
heart failure is often limited due to concerns of hyperkalemia, gynecomastia, impotence,
and menstrual disturbances. Finerenone is a non-steroidal, selective MRA with low affinity
for androgen, glucocorticoid, progesterone, and estrogen receptors and high selectivity
for mineralocorticoid receptors [83,84]. It said to be more effective at reducing the patho-
logical processes contributing to CKD than steroidal MRAs, with theoretically lower side
effects [85].



Pharmaceutics 2023, 15, 1343 6 of 16

Finerenone binds similarly to its receptor both in the heart and kidney when compared
to the steroidal MRA spironolactone, which is preferentially distributed in the kidneys.
Compared with eplerenone, another steroidal MRA, finerenone holds more potent anti-
inflammatory and anti-fibrotic effects on the heart and kidney in experimental animal
models. Non-steroidal MRAs have a better benefit–risk ratio than steroidal MRAs, with a
reduced risk for hyperkalemia [85].

In two major phase 3 trials, FIDELIO-DKD and FIGARO-DKD, conducted in patients
with T2DM and chronic kidney disease, finerenone treatment on top of maximally tolerated
RAAS inhibitor treatment was shown to confer both renoprotection (composite of >40%
reduction in eGFR, kidney failure, or death from renal cause) and cardioprotection (com-
posite of cardiovascular death, non-fatal myocardial infarction or stroke, hospitalization
for heart failure) [86,87]. In FIDELIO-DKD, patients either had a urine albumin–creatinine
ratio (UACR) of 30–300 mg/g with an GFR of 25–60 mL/min/1.73 m2 of body surface
area as well as diabetic retinopathy or a UACR of 300–5000 mg/g with an GFR of at least
25–75 mL/min/1.73 m2 [86]. The inclusion criteria of FIGARO-DKD were similar, with
patients either having a UACR of 30–300 mg/g with an GFR of 25–90 mL/min/1.73 m2 or
a UACR of 300–5000 mg/g with an GFR of at least 60 mL/min/1.73 m2 [87]. Patients with
symptomatic heart failure with reduced ejection fraction were not eligible for inclusion in
these trials.

The results of these two trials were combined in the pre-specified FIDELITY analysis,
which confirmed the clinical cardiac [hazard ratio (HR): 0.86, 95% confidence interval (CI):
0.78, 0.95] and renal (HR: 0.77, 95% CI: 0.67, 0.88) protective properties of finerenone [88].
Cardio- and renaoprotective effects seemed independent of change in blood pressure as
finerenone conferred only a modest effect on blood pressure [86–88].

Side Effects

A meta-analysis of the use of finerenone (when used in combination with another
RAAS blockade agent) demonstrated an increased incidence of hyperkalemia compared
with placebo but lower than with spironolactone. The increase in potassium plasma
levels observed was moderate at only 0.17 mmol/L; however, potassium monitoring is
advised [83]. NICE guidelines state finerenone should not be initiated at an eGFR of
<25 mL/min/1.73 m2 and it should be discontinued if GFR < 25 mL/min/1.73 m2 [76].
Other listed side-effects are hypotension and pruritus [89].

3.5. RAAS Inhibitors

The RAAS is central to blood pressure regulation and fluid and electrolyte balance.
RAAS inhibition with angiotensin-converting enzyme inhibitors (ACEis) and angiotensin-2
receptor blockers (ARBs) reduces the activity of angiotensin and thereby leads to vasodi-
lation, reduced sympathetic adrenergic activity, increased natriuresis and diuresis, and
inhibition of cardiac and vascular remodeling. Blood pressure control is effective against the
progression of DKD [37] and ACEis and ARBs are the first-line treatment for patients with
DKD [37]. RAAS blockade has been shown reduce albuminuria and to be renoprotective
for this patient group [90]. The benefits to renal function that these medications provide
exceed that attributable to blood pressure lowering [90]. However, double RAAS blockade
with ACEis/ARBs has been associated with an increased risk of acute kidney injury and
hyperkalemia [91]. In patients with T2DM on ACEIs, ARBs, or combination treatment, the
addition of a mineralocorticoid antagonist results in ~50% reduction in albuminuria [92]
and retains the renoprotective effect [86,93,94].

Side Effects

Adverse effects of ACEis and ARBs include hyperkalemia, renal impairment, angio-
edema, and dizziness; a cough can also occur with ACEis [95]. Use of ACEis or ARBs
in patients with low renal function (CKD4–5), or combination of a mineralocorticoid
antagonist with ACEis or ARBs therapy, can often increase plasma potassium or result in
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AKI. When starting an ACEis, or increasing the dose, it is advised to check renal function
and electrolytes 1–2 weeks later, with dose adjustment or medication cessation being
considered if the GFR decreases by >25%, creatinine increases by >30%, or serum potassium
is >5 mmol/L [95]. Patients with conditions such as CKD stage 4–5 or heart failure are
at higher risk of hyperkalemia [96]. Clinicians should conduct a careful risk–benefit
assessment for those patients whom double RAAS blockade is to be considered [97].

3.6. Statins

An inverse relationship exists between GFR and cardiovascular disease, with car-
diovascular disease being the predominant cause of increased mortality in patients with
CKD [6]. Renal dysfunction alters the composition of lipids to a more atherogenic profile;
hypertriglyceridemia, reduced HDL cholesterol, and variable LDL and total cholesterol are
seen [98]. Dyslipidemia per se is also a recognized risk for CKD and its progression [99]. As-
sociation of British Clinical Diabetologist and UK Renal Association guidelines recommend
annual lipid profiles for patients with DKD [100].

Statins are 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitors
that act to disrupt the liver’s production of cholesterol. NICE guidelines state that adults
with CKD should be offered a statin to reduce their risk of cardiovascular events [8]. A
renoprotective effect of statins, independent from cholesterol lowering, has also been postulated
and a reduction in microalbuminuria has been observed [101–105]. Atorvastatin has been seen
to reduce cardiovascular disease by 42% in those with GFR 30–60 mL/min/1.73 m2 [106]. The
Association of British Clinical Diabetologist and UK Renal Association suggest the use of
a statin in patients with DKD and that treatment targets should be a total cholesterol of
≤4 mmol/L, non-HDL cholesterol ≤2.5 mmol/L, and LDL cholesterol to ≤2 mmol/L [100].

Side-Effects

Listed side-effects of statins include myalgia, gastrointestinal symptoms, hyper-
glycemia, nasopharyngitis, headache, and hepatotoxicity [107]. NICE guidelines advise
measuring liver function tests at 3 and 12 months after initiation of treatment. Many statins
are metabolized renally and so their doses should be reduced at lower creatinine clearance
levels. Statin use can cause myopathy and rhabdomyolysis that can lead to their discon-
tinuation; however, the rates of these adverse effects are low (1.6 cases per 100,000 person
years and 5 cases per 100,000 person years, respectively) [108]. If symptoms of myalgia or
cramps occur then creatinine kinase levels should be measured, and if they are >5 times the
upper limit of normal, then a statin should be held [107].

4. Recent Developments and Future Directions

Recent discoveries of new therapeutics such as SGLT2 inhibitors, GLP1 receptor ago-
nists, and non-steroidal MRAs have taken an important role in the treatment of cardiorenal
disease in the diabetic and non-diabetic population. Like in the 1990s with the introduction
of RAAS inhibitors, today, we have been learning from novel molecules with cardiorenal-
protective therapeutic properties that can be utilized to reduce cardiovascular morbidity
and mortality (Figure 2).

The SGLT2 inhibitors, initially developed as hypoglycemic agents, have demonstrated
an important cardiorenal protective effect in patients with and without diabetes [51–57]. The
mechanism behind the hypoglycemic effect of SGLT2 inhibitors is well understood [109].
Conversely, we are still not fully aware of the processes behind their cardiorenal-protective
role. The SGLT2 inhibitor-mediated cardiorenal-protective role starts within a few months
from their initiation [110]. The observed rapid and beneficial cardiorenal protective effects
mediated by SGLT2 inhibitors is also seen in patients without diabetes, suggesting a
mechanism which is unlikely to be mediated by an amelioration in glycemic control [57,60].
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Figure 2. Proposed renoprotective mechanisms of action of SGLT2 inhibitors, GLP1 receptor agonists,
non-steroidal MRAs, statins, and inhibitors of the RAAS (see text for detailed explanation).

Many hypotheses have been postulated. The renoprotective effect seems to be related
to changes in glomerular hemodynamics. We are aware of the importance of glomerular
hemodynamic perturbation in DKD [22], and how inhibition of glucose and sodium reab-
sorption in the proximal tubule of the nephron could lead, by tubulo-glomerular feedback,
to an increase in sodium at the macula densa and secondary afferent glomerular arteriolae
vasoconstriction with protection of glomerular hemodynamics [23]. This is supported by
an evident fall in GFR when patients are started on a SGLT2 inhibitor [111], a phenomenon
seen in most patients which represents a functional hemodynamic change and can quickly
be reversed by stopping the medication.

This theory has been disputed, and studies have instead proposed that the reduc-
tion in renal vascular resistance conferred by SGLT2 inhibitors is due to post-glomerular
vasodilation rather than afferent arteriolae vasoconstriction [112].

Other important mechanisms that have been postulated are the known effects of these
drugs to promote erythrocytosis. An analysis from the EMPA-REG OUTCOME trial [51]
suggests that an increase in hematocrit could account for more than 50% reduction in
mortality observed in the study. The increase in hematocrit is seen in both the diabetic
and non-diabetic population treated with SGLT2 inhibitors and has led investigators to
hypothesize that this class of drugs could act via an increase in erythropoietin secretion by
the kidney [113,114].

There are suggestions that SGLT2 inhibitors could act on hypoxia-inducible factors
(HIF)-1α and HIF-2α, which in turn could act as mediators for the renoprotective effect [115].
Diabetic chronic kidney disease is characterized by tissue hypoxia [116], oxidative [117] and
endoplasmic reticulum stress [118], and an altered and inadequate autophagic response to
cellular stress [119] that lead to activation of HIF-1α and inhibition of HIF-2α.

The altered balance of HIF-1α/HIF-2α favors inflammatory and fibrotic processes as
seen in both the glomerular and tubular compartment in the diabetic kidney [120]. SGLT2
inhibitors reduce oxygen consumption in the proximal tubule by inhibiting the activity of
the energy dependent glucose transporter SGLT2. This results in reduced cellular stress,
and enhance nutrient deprivation signaling, which contributes to inhibition of HIF-1α and
stimulation of HIF-2α resulting in an increase in erythropoiesis (better tissue oxygena-
tion) [115]. Importantly, the shift in HIF-1α/HIF-2α balance, in favor of HIF-2α, also results
in reduction of renal inflammation and fibrosis. The evidence that the known hypoxia
mimetic cobalt chloride mirrors the SGLT2 inhibitors effects in the kidney [115] supports
this hypothetical mechanism of action for the renoprotective properties of SGLT2 inhibitors.
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SGLT2 inhibitors promote natriuresis and volume depletion and activate the RAAS
system [121] as seen in patients with familial glycosuria (a genetic condition characterized
by mutations of the SGLT2 gene) [122]. Another proposed renoprotective effect of SGLT2
inhibitors is that, in patients treated with ACEis, angiotensin converting enzyme-2 activity
predominates leading to formation of angiotensin 1–7 which in turns activate the Mas
receptor promoting beneficial anti-inflammatory and anti-fibrotic effects [123].

A lot of discussion has been conducted on the observed increased ketogenesis seen
with the use of SGLT2 inhibitors in clinical trials in patients with T2DM. Ketones are
an efficient substrate that could benefit tissue homeostasis by relieving hypoxic stress,
improving renal function, and preventing progression to CKD [124]. This theory has been
challenged as ketone bodies circulating levels are increased in patients with diabetes and in
diabetes the kidney is per se a ketogenic organ [125].

The renoprotective effect of GLP1 agonists is not yet fully understood. Like for SGLT2
inhibitors, data from clinical trials conducted in patients with T2DM have shown that
treatment with GLP1 receptor agonists reduced the risk of cardiovascular events and
slowed the development of albuminuria in diabetic patients, demonstrating a direct cardio-
and renoprotective action independent of their effect on glycemic control [1,126]. GLP-1
receptor agonists seem to counteract the action of the RAAS. Infusion of GLP1 receptor
agonists, in patients with diabetes, results in a reduction in plasma angiotensin-2 which
has been postulated to contribute to renal protection [127,128].

Both GLP1 receptor agonists and SGLT2 inhibitors appear to have some effect on
RAAS which could potentially explain their cardiorenal-protective effect. The underlying
mechanisms are yet to be fully explained, and further work should focus on the interaction
of these drugs on RAAS [129].

In the last few years, non-steroidal MRAs (finerenone) have been developed [130].
Steroid hormones bind their receptor which in turn interacts with many other different
molecules (e.g., transcriptional cofactors) that contribute to the cellular activity of the
specific ligand [131]. It has been observed that more than 300 different cofactors interact
with members of the nuclear hormone superfamily. These cofactors allow ligand- and cell-
type/tissue-specific cellular events that lead to different physiological responses [132]. The
different cellular responses then translate into diverse actions seen between the different
type of steroid and non-steroidal ligands. Modulation of the ligand (e.g., non-steroidal
MRAs) results in different specific cellular/tissue effects that confer its specific mode of
action [85] (Figure 3).

The non-steroidal MRA finerenone’s renoprotective effect resides in the
anti-inflammatory and anti-fibrotic actions of MRA driven by RAAS inhibition [130]. Both
spironolactone and eplerenone have greater accumulation in the kidney when compared to
finerenone, which, in turn, has an equal distribution in the heart and kidneys. Finerenone
has no active metabolites and has a short half-life which may enable a more rapid rever-
sal of hyperkalemic episodes with this drug (especially when utilised with other RAAS
inhibitors) [133]. This allows the use of finerenone for cardiorenal protection in conjunction
with RAAS inhibition with ACEis or ARBs as described in the FIGARO and FIDELIO
trials [86–88].

The mechanisms behind the cardiorenal benefit of SGLT2 inhibitors, GLP1 receptor ag-
onists, and non-steroidal MRA are not fully understood, but it appears that the modulation
of RAAS activation, as seen in disease, is central to the mechanism of action of these drugs.

Better understanding of the mechanisms behind the renoprotective properties of these
recent new class of drugs is crucial. Clear knowledge of the mechanisms of action could
favor the discovery of novel target for treatment and the development of new molecules.
For example, alternative non-steroidal MRAs are currently being studied [134]. Some are
looking into aldosterone synthesis inhibition, aldosterone gene epigenetic regulation, and
targeted inhibition of specific downstream effects of the mineralocorticoid receptor [135].
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Figure 3. Steroidal and nonsteroidal MRAs mechanisms of action. Aldosterone binds to mineralocor-
ticoid receptors (MR) and by translocating into the nucleus and binding to specific nuclear hormone
response elements (HRE), recruits transcriptional cofactors and then initiates the transcription of
target genes (e.g., NfKB, nuclear factor kappa-light-chain-enhancer of activated B cell; AP-1, activator
protein-1; TGFβ1, transforming growth factor β1; ET-1, endothelin-1; CTGF, connective tissue growth
factor; PAI-1, plasminogen activator inhibitor 1). Increased activation of the MR promotes proinflam-
matory and profibrotic processes that drive renal disease. Both steroidal and non-steroidal MRAs
bind to MR inhibiting aldosterone from binding to MRs. This prevents the downstream activation
of proinflammatory and profibrotic mechanisms. Steroidal MRAs, by interacting with cofactors
that affect gene transcription, function as partial MR agonists. Conversely, non-steroidal MRA (e.g.,
finerenone) anti-inflammatory and anti-fibrotic effects are more pronounced than those of steroidal
MRAs (see text for detailed explanation).

Studies are also looking at potential synergistic properties of non-steroidal MRAs with
SGLT2 inhibitors; in the FIDELIO-DKD trial, lower rates of hyperkalemia were observed in
patients receiving SGLT2 inhibitors [136]. Other studies are looking at the combination of
non-steroidal MRAs and SGLT2 inhibitors on cardiorenal outcomes [133].

Better understanding of the mechanism of action of drugs could also help towards
personalized patient treatments with the identification of patients that could benefit in
different way from the use of new molecules.

5. Summary and Conclusions

The fight against diabetic kidney disease is centred on the prevention of its devel-
opment and progression. In recent years, significant new tools have become available to
prevent and treat DKD. Prevention requires aggressive treatment and close follow up of
patients with diabetes. Early intervention will improve patients’ health outcomes, quality
of life, and health- and society-related costs. Studies aimed at better understanding the
mechanisms of these new molecules may open new opportunities for patients’ personalized
treatments and for the development of new therapeutic targets.
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