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Figure S1. Macroscopic image of the printed scaffold.
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Figure S2. Schematic presentation of the Bioextruder 3D printer. In the Bioextruder, the voltage and
the current control the speed of the screw-driven extruder. The pneumatic pressure helps the dispensing
of the thermoplastic material too. The bed movement and the print speed can be controlled by the
software [1]. In order to prevent the scaffold from slumping, printing speed, macroporosity and the
needle size should be optimized. Parameters were set to achieve 80-85 % macroporosity which is also
confirmed by microCT analysis. Needle G19 was the optimized needle in this study. Printing with a

bigger needle (G17) was not successful due to lower pressure.
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Figure S3. Schematic representation of manufacturing porous scaffolds. The chart shows the
advantages and the problems of each technique [2-6]. With the salt removed, the resulting 3D-polymer

has its initial architecture but entirely hierarchical porous [7].
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Figure S4. Thermogravimetric analysis of polymer-salt composite scaffolds for prediction of

Bioextruder 3D printing success (n=3).
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Figure S5. Effect of the printer needle size in mechanical properties. Printing with a smaller needle size
(G21) resulted in slumping due to heavy porogen and small strut size. Furthermore, the scaffold did

not show suitable mechanical properties (B-C). *** in figures indicate p < 0.001, respectively.
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Figure S6. Porogen size measurement and analysis. (A) schematic presentation of porogen preparation

and SEM analysis. (B) porogen size measurement, P30 (B) and P100 (C) by dynamic light scattering.
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Figure S7. X-ray diffraction spectra. The figure shows X-ray diffraction spectra, crystallite sizes, and

porogen residues on leached samples.
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Figure S8. Energy Dispersive X-ray spectroscopy mapping does not show peaks corresponding to PBS
(Na, P and K) in leached samples.



Figure S9. SEM micrographs of leached NP scaffolds show that the NaOH 0.01M did not have any
effects on the scaffolds after 16 days.
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Figure S10. MicroCT evaluation of P30 and P100 scaffolds by Aviso software (version 9.5.0).
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Figure S11. Microscopic analysis of the leaching process. SEM Micrographs show the leaching process

for 16 days in P30 and P100 scaffolds.
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Figure S12. (A) Leaching Scaffolds in 0.01M NaOH. 45% weight loss confirmed PBS leaching (n=4).
(B) ICP-OES analysis of the scaffolds confirmed complete salt leaching (n=3).
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Figure S13. Chloroform tracing inside the printed scaffolds by NMR. The '"H-NMR showed no traces
or picks of chloroform (CHCI;) inside the scaffolds which confirms complete chloroform evaporation

during the film process.
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Figure S14. Scaffold accelerated degradation analysis. (A) Schematic illustration of PCL hydrolysis
and degradation process. The schematic shows the degradation of the amorphous and crystalline regions
of the polymer [8, 9]. (B) Schematic illustration showing the fluid flow in porous scaffolds and its
effects on the degradation. (C) The figures show the scaffold weight loss (n=5) and the reduction in the
diameter of the filaments (D) during the degradation process (n=5).
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Figure S15. (A) NP scaffold degradation after 48 hours of incubation in 2M NaOH. The green arrow
shows the crack on the filament junction. The red rectangle shows the cross-section of the scaffold. The
yellow rectangle shows the edge of the cross-section of the filament. The NaOH has not penetrated into
the entire filament completely. Most of the degradation is just on the surface and surface erosion can be
identified. (B) microCT of NP 48-hour degraded samples did not show any signs of degradation inside

each filament.
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Figure S16. Gel permeation chromatography GPC analysis shows shorter polymer chains in 48-hour

degraded P30 and P100 scaffolds.
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Figure S17. Fibroblast cell response analysis. (A) PrestoBlue analysis based on culture time. (B)
Fibroblast cell experiment in vitro analysis based on culture time. (C) Fibroblast cell experiment in
vitro analysis based on the types of scaffolds. *, ** and *** in figures indicate p < 0.033, p < 0.002
and p < 0.001, respectively.



Figure S18. Film surface characterization. SEM of PCL films shows the surface topography before the
experiment. The red squares and yellow squares show the surface and inside the pores structures,

respectively.
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Figure S19. Blood cell interaction with PCL films. The microscopic analysis shows the blood cells
attachment on the surface and inside the pores on NP, P30 and P100 films. The red squares show the

magnified area. The pore structures provide anchoring sites to entrap blood cells.
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Figure S20. Whole blood clotting on PCL films. Pores on the P30 films entrap the RBCs and large
pores on P100 prepare the suitable surface for blood cell attachment. The red squares show the

magnified area.
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Figure S21. Plasma clotting on PCL films. Microscopic analysis shows denser fibrin network formation
on porous films than the NP. The micrographs show plasma clotting on the surface and inside the pores.
The red squares show the magnified area on the pores and green square show the magnified area on the

surface of the films.
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Figure S22. PRP attachment to PCL films. Microscopic analysis confirms that porous films show more
PRP attachment than the NP. The micrographs show PRP attachment on the surface and inside the

pores. The red squares show the magnified area.



Cefazolin Sodium Salt

H
PO O N
N=i‘¢«$n:1r_nf,3\}.,5,, CHs

dlom W Drug Flow @

into the Pores

Cy4H13NsNa0,S;

Drug Loading EI’

Sterilized Scaffolds Dry Overnight

: Shaking Incubator
200 rpm
37°C

‘ 2 Transferring the Scaffolds to New Tubes

(Keeping Old Tubes for Drug Loss Measurement) Spectrophotometer

E B Q EI + 0.2 mL Fresh PBS to Tubes
Drug Loss BB
Measurement r o 0.2 mL PBS
o/
B C
Cefazolin Drug Released
100
— HD NP
90- - HD P30
= 80 - HD P100
2 70 ~LDNP
2 60 LD P30
8 LD P100 - Cefazolin Loading Efficiency
o 50 X
2 =
w 40 = 2100 B
2 30 T 3 e e
20 w §§w:§3 i S
. W [
10- @0 B L o
g e
0 e S ® -
50 100 175 270 414 678 =3

Time (Hour)

w)
m

Cumulative Drug Release (High Dose) Cumulative Drug Release (Low Dose)

=
wn
(=]

150 NP I NP

P30 ® ETTIg S s P30 &
P100 & P100 &

100 100

w

o
(%)
(=]

Cumulative Percentage
of Total Drug Released (%)
Cumulative Percentage
of Total Drug Released (%)

2Hr 7Hr 24Hr S50Hr 100Hr 175Hr 270Hr 414Hr 678Hr 2Hr  7Hr  24Hr 50Hr 100Hr 175Hr 270Hr 414Hr 678Hr

Time (Hour) Time (Hour)

Figure S23. Cefazolin drug release. (A) Schematic presentation of the method for drug
delivery experiment. (B) drug release profile and loading efficiency. (D-E) drug release analysis.

* ** and *** in figures indicate p < 0.033, p <0.002 and p < 0.001, respectively.
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Figure S24. Drug release kinetics. The graphs show how different drug doses and scaffolds follow

different kinetics orders during drug release. In order to understand the mechanism and kinetics of drug



release, the results of the in vitro drug release study were fitted into various kinetic equations (Zero-
order, First-order, Higuchi and Korsmeyer-Peppas). In the Peppas model, the mechanism of the release
model is characterized by using the release exponent “n” calculated from the first 60% of the drug
release. Release kinetics were fitted to the Korsmeyer-Peppas model. Nonporous scaffolds showed
super case Il transfer with n > 0.89 which corresponds to zero-order. All porous scaffolds showed a
Quasi-Fickian diffusion mechanism with n < 0.45. Later, the release kinetic followed the Higuchi model
[10-12].
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Figure S25. Cefazolin tracing inside the dug released scaffolds by '"H-NMR. (A) the representative 'H-
NMR analysis shows there are no cefazolin spectra in the CDCls dissolved PCL scaffolds. (B) There is
no detectable cefazolin in the extracted samples which confirm the complete release of the drug. Data

from NaOH cefazolin also did not show any drug release.
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