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Abstract: Cancer is one of the leading causes of death, and latest predictions indicate that cancer-
related deaths will increase over the next few decades. Despite significant advances in conventional
therapies, treatments remain far from ideal due to limitations such as lack of selectivity, non-specific
distribution, and multidrug resistance. Current research is focusing on the development of several
strategies to improve the efficiency of chemotherapeutic agents and, as a result, overcome the
challenges associated with conventional therapies. In this regard, combined therapy with natural
compounds and other therapeutic agents, such as chemotherapeutics or nucleic acids, has recently
emerged as a new strategy for tackling the drawbacks of conventional therapies. Taking this strategy
into consideration, the co-delivery of the above-mentioned agents in lipid-based nanocarriers provides
some advantages by improving the potential of the therapeutic agents carried. In this review, we
present an analysis of the synergistic anticancer outcomes resulting from the combination of natural
compounds and chemotherapeutics or nucleic acids. We also emphasize the importance of these
co-delivery strategies when reducing multidrug resistance and adverse toxic effects. Furthermore, the
review delves into the challenges and opportunities surrounding the application of these co-delivery
strategies towards tangible clinical translation for cancer treatment.

Keywords: cancer; conventional therapy; combined therapy; lipid-based nanocarriers; natural compounds

1. Introduction

According to the World Health Organization (WHO), cancer is a serious public health
problem around the world, being the leading cause of mortality and causing more than
6 million deaths yearly [1,2]. While the cancer mortality rate has declined in recent years,
WHO estimates it will reach 13.1 million cancer-related deaths by 2030 [3,4]. Despite
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extensive development of cytotoxic agents, current therapy approaches for cancer are still
ineffective [5]. There are two major treatment options available: surgical procedures or non-
surgical therapy regimens [5]. The surgical intervention is limited by the tumor’s size as
well as the stage of metastasis in the tissues and organs from the site of origin. Non-surgical
treatment options primarily include chemotherapy and radiotherapy, or a combination
of these approaches [6,7]. Even though chemotherapeutic agents have evidenced efficacy
in killing cancer cells by interfering with the process of cell division [5], they still face a
number of challenges, including low bioavailability and lack of selectivity. Consequently,
non-specific body distribution of chemotherapy is a key factor for cancer patient mortality,
followed by chemo-resistance of cancer cells, which is another significant barrier that must
be overcome in order to provide effective cancer treatment [2,3,7–9].

Several strategies have been employed to improve the performance of chemotherapeutic
agents and, as a result, overcome the abovementioned challenges. Among these strategies are
chemical modification, the development of new chemotherapeutic agents that are not detected
by multidrug resistance (MDR) efflux pumps, and the combination of the cytotoxic agent
with a chemosensitizer. Moreover, nanocarriers have been proposed to surpass some of the
chemotherapy challenges. In this regard, nanocarriers for drug delivery are designed to reach
specific organs and act selectively on the target site, providing advantages over conventional
chemotherapeutics [1,7,10]. Some of the nanocarriers’ benefits include increased permeability
through cell membranes and improved protection of the drugs against physical and chemical
degradation. Furthermore, nanocarriers improve the therapeutic potential by optimizing drug
properties such as stability, solubility, and bioavailability [1,11].

A common strategy for cancer therapy based on the association of multiple chemother-
apeutic agents has been implemented as the standard first-line treatment of various ma-
lignancies to improve clinical outcome [2]. This approach has shown great potential,
particularly to solve the issue of MDR in cancer cells [12,13] and improve anticancer effi-
cacy [14–16]. Nonetheless, the administration of multiple drugs is frequently challenging,
as different pharmacological agents have distinct pharmacokinetic profiles, resulting in an
uncoordinated uptake by the tumor cell, affecting the expected synergistic effect [17,18].
Since nanocarriers can deliver multiple pharmacological agents to the same tumor cell in
a single vehicle, the administration of combined drugs utilizing nanocarriers offers the
most recent and most efficient therapy for several cancers. The “same time at same place”
strategy is appealing since it may increase therapeutic efficacy while minimizing damage
to healthy cells through pharmacological synergism, overcoming MDR, and reducing the
effective doses [2,19]. Additionally, due to the importance of minimizing harmful side
effects to healthy cells, the pharmaceutical market has been more receptive to lipid-based
nanocarriers as they are classified by the FDA as generally recognized as safe (GRAS).
Lipid-based nanocarriers are also regarded as safe because they are biodegradable and will
not accumulate in the body [20].

There is currently a growing interest in the use of natural products in cancer prevention
and therapy. Natural compounds and their derivatives have been clinically researched for their
capacity to reverse, inhibit, and prevent cancer progression [21]. Due to their proven efficacy
in a wide range of malignant tumors with minimal side effects and toxicity, some authors
demonstrated that these agents may be a promising option for combination therapy [22]. For
their prospective therapeutic applications, nucleic acids such as plasmid DNA (pDNA),
small interfering RNA (siRNA), and micro-RNA (miRNA) have been developed into potent
tools. Since nucleic acids are able, among other effects, to modulate the expression of genes
responsible for MDR, associating chemotherapeutics with nucleic acids has been suggested
as an appropriate strategy to increase the effect of cancer therapy [23–26]. The combination
of natural compounds and nucleic acids is a less well-known strategy that has the potential
to be very effective as a therapeutic modality that acts by different mechanisms. This
combination can lead to a synergistic improvement of the therapeutic effect, a sensitization
of the cancer cells to the anticancer activity of the natural compound, and a synergic effect
against MDR that restores the anticancer effect.
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This review provides a comprehensive overview of lipid-based nanocarriers used
for the co-delivery of natural compounds either with chemotherapeutic drugs or with
nucleic acids. The utilization of such co-delivery systems offers several benefits, including
synergistic/additive/potentiation effects, sensitization of cancer cells, overcoming of MDR,
and reduction in adverse effects. Given their promising features, there is an increasing num-
ber of reviews exploring the use of natural compounds in cancer treatment (e.g., [27–33]).
However, to date, there has been no comprehensive investigation into the use of lipid-based
nanocarriers for the co-delivery of natural compounds and nucleic acids, nor have there
been any examples provided of the use of lyotropic liquid crystalline nanoassemblies (LL-
CNs). Recently, advanced lipid mesophase delivery systems have emerged as a promising
class of nanocarrier system. These systems have the potential to encapsulate various cargos
with a wide range of lipophilicity properties, making them one of the most advantageous
co-delivery systems for cancer [34]. For these reasons, a thorough and up-to-date overview
of the studies currently available in the literature is still lacking. Lastly, the review examines
the potential opportunities and challenges associated with the implementation of nanocar-
riers for co-delivery of natural compounds and/or chemotherapeutic drugs and nucleic
acids in a clinical context.

2. Natural Compounds: Advantages of Combination Therapy in Cancer

Conventional therapy has evident benefits in cancer treatment; however, despite the
continuous emergence of new anticancer agents, the majority of chemotherapy-based treat-
ment continues to remain ineffective due to an array of factors, which include chemotherapy-
induced toxicity and adverse reactions, insufficient target specificity, and, most importantly,
drug resistance during cancer progression (Figure 1) [9].

In this regard, combination therapy has recently become an emerging strategy for
tackling the drawbacks of chemotherapy. Simultaneous delivery of two or more therapeutic
agents (chemotherapeutic drugs/natural compounds/nucleic acids) can modify different
signaling pathways in cancer cells, providing a synergistic response, improving targeting
selectivity, optimizing therapeutic effect, and overcoming MDR (Figure 2) [2,17,35]. Thus,
taking benefit of the minimal side effects promoted by natural compounds, there is a
tendency to follow the potential strategy of combination therapy [9].
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Figure 1. Problems associated with the classical single-delivery therapy (i.e., administration of each 
of the therapeutic agents in their free form). Nucleic acids, if delivered in the free form, would face 
different pharmacokinetic challenges, including inactivation by nucleases (A), lack of serum stability 
due to the immune system (B) and serum proteins (C), extravasation difficulties (D), non-specific 
distribution in target cells (E), difficulties entering the cell (F), and degradation if not able to escape 
endosomes (G). Chemotherapeutic drugs, when delivered in the free form, have a nonspecific dis-
tribution in cancer cells and healthy cells causing serious adverse side effects, commonly affecting 
hair follicles, the digestive tract, blood cells and nerves. Furthermore, several MDR mechanisms, 
such as drug efflux by multidrug resistance protein 1 (MRP1), P-glycoprotein (P-gp), and breast 
cancer resistance protein (BCRP), or inactivation of apoptotic pathways by B cell leukemia protein 
(Bcl2), can impair their efficiency. Natural compounds, when administered in their free form, exhibit 
a number of pharmacokinetic issues that affect their biodistribution and efficacy (1–6). 
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Figure 1. Problems associated with the classical single-delivery therapy (i.e., administration of each
of the therapeutic agents in their free form). Nucleic acids, if delivered in the free form, would
face different pharmacokinetic challenges, including inactivation by nucleases (A), lack of serum
stability due to the immune system (B) and serum proteins (C), extravasation difficulties (D), non-
specific distribution in target cells (E), difficulties entering the cell (F), and degradation if not able to
escape endosomes (G). Chemotherapeutic drugs, when delivered in the free form, have a nonspecific
distribution in cancer cells and healthy cells causing serious adverse side effects, commonly affecting
hair follicles, the digestive tract, blood cells and nerves. Furthermore, several MDR mechanisms, such
as drug efflux by multidrug resistance protein 1 (MRP1), P-glycoprotein (P-gp), and breast cancer
resistance protein (BCRP), or inactivation of apoptotic pathways by B cell leukemia protein (Bcl2), can
impair their efficiency. Natural compounds, when administered in their free form, exhibit a number
of pharmacokinetic issues that affect their biodistribution and efficacy (1–6).
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delivery of natural compounds and chemotherapeutic drugs or nucleic acids. Adapted from [36,37],
and from [38,39] with permission from Elsevier.

2.1. Overcoming Multidrug Resistance

MDR is a mechanism that emerges after cells’ exposure to chemotherapeutic agents
and refers to the capacity of cancer cells to become resistant to the agents’ effect and can
result in the development of malignant cell metastases [40,41]. The cellular mechanisms of
MDR can be divided into two general classes: (i) those that block the delivery of chemother-
apeutic agents to their target sites, and include the abnormal vasculature which results
in low oral chemotherapeutic absorption, early renal clearance, poor bioavailability, and
lower tumor site accumulation; or (ii) those that emerge in cancer cells primarily as a result
of genetic and epigenetic alterations and directly affect the efficacy of chemotherapeutic
agents, and include apoptosis deregulation, increased repair of drug-induced DNA damage,
and, enhanced efflux of chemotherapeutic agents [40,41].

Although a wide range of different factors can contribute to MDR, drug efflux changes
are considered the major cause of classical MDR [42]. Drug efflux is enhanced by the
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overexpression of human ATP-binding cassette (ABC) membrane transporters. These
transporters are accountable for removing chemotherapeutic agents from cancer cells.
Among the ABC transporters, the multidrug resistance protein (MRP) P-glycoprotein (P-gp)
is an ATP-dependent drug efflux pump also referred to as multidrug resistance protein 1
(MRP1) (Figure 1). P-gp, the best-studied drug efflux pump, is a significant contributor to
chemotherapy failure [42,43]. Furthermore, it has been reported that resistant cells have
significantly greater levels of P-gp, and their overexpression is linked to a poor prognosis
in a variety of cancers [44].

P-gp-mediated MDR affects several classes of chemotherapeutic agents, such as an-
thracyclines (e.g., daunorubicin and doxorubicin (DOX)), taxanes (e.g., paclitaxel (PTX) and
docetaxel (DTX)), epipodophyllotoxins (e.g., etoposide), and camptothecins (e.g., topotecan
and methotrexate (MTX)). As a result, strategies to reverse P-gp-mediated MDR have been
extensively researched since the early 1980s, and three generations of P-gp inhibitors are
currently classified [40,41,45]. Despite promising in vitro results, there is not, unfortunately,
an irrefutable proof of efficacy for the currently available inhibitors, since various clinical trials
have been performed to evaluate their anticancer effect, but no significant improvements
have been found [21,40]. The development of an ideal inhibitor is commonly associated
with the difficulty of finding compounds with high potency and specificity, and with low
intrinsic toxicity. Furthermore, it is difficult to achieve specificity of the inhibitors to the ABC
transporters, as well as interactions between chemotherapeutic agents and inhibitors [21].

Consequently, in order to overcome such limitations, researchers have shifted their
attention to novel approaches for MDR prevention in cancer. In this regard, natural com-
pounds have emerged as an appealing solution, primarily due to their chemosensitizing
capacity [46]. Chemosensitizers are small molecules that can increase the sensitivity of
cancer cells to chemotherapeutic agents, and those that act as ABC membrane transporter
inhibitors are particularly effective. The main example is inhibitors obtained from natural
sources, also known as fourth-generation inhibitors, which can interact with ATP bind-
ing sites or act directly at MRP binding sites. Natural inhibitors have the potential to be
considerably more successful since they offer the most diverse and innovative chemical scaf-
folds [21]. Moreover, natural compounds with anticancer properties are widely available, as
evidenced by the Naturally Occurring Plant-based Anti-Cancer Compound-Activity-Target
Database (NPACT) [47]. The main natural compounds evaluated as chemosensitizing
agents are highlighted in Figure 3.
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Figure 3. Main natural compounds considered chemosensitizing agents, according to their chemical
family [47].
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Although a wide range of natural compounds, such as terpenoids, alkaloids, steroids,
and saponins (Figure 3), have recently been employed to overcome MDR [46,47], phenolic
derivatives and flavonoids have been the most cited and studied. According to in vitro
biochemical and pharmacological studies, the majority of flavonoids could modulate ABC
transporters by competitively binding to the substrate-binding sites and, as a result, de-
laying cellular efflux [21]. From these chemical families of natural compounds, resveratrol
(RSV), curcumin (CUR), and epigallocatechin-3-gallate (EGCG) are the most promising
as they can also directly interact with MDR genes [47]. For example, CUR, a polyphenol
found in plants of the genus Curcuma, modulates cancer signaling pathways, primarily
by inhibiting the nuclear factor kappa B (NF-kB) pathway, as shown in Figure 4. In more
detail, CUR modifies signaling pathways of the apoptosis process, by interfering with X-
linked inhibitor of apoptosis protein (XIAP), cell proliferation (cyclin D1, ciclo-oxigenase-2
(COX-2), C-myc), cellular inhibitor of apoptosis protein-1 (CIAP-1), cell metastasis (C-X-C
chemokine receptor type 4 (CXCR4), ICAM-I), cell invasion (matrix metallopeptidase 9
(MMP-9)), and angiogenesis (vascular endothelial growth factor (VEGF)) [47]. This natural
compound also displays P-gp inhibitory activity by downregulating the phosphoinositide
3-kinases (PI3K)/protein kinase B (Akt) [36].
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Figure 4. Potential targets associated with Curcumin anticancer activity. This natural compound
induces a reduction in its target genes by inhibiting NF-kβ signaling. Bcl-2-B-cell limphoma-2;
COX-2-ciclo-oxigenase-2; IL-6-interleukin 6; IL-10-interleukin 10; IL-18-interleukin 18; MMP9-matrix
metallopeptidase 9; NF-kβ-nuclear factor kappa B; VEGF-vascular endothelial growth factor; XIAP-
X-linked inhibitor of apoptosis protein.

2.2. Synergistic, Additive, and Potentiation Effects

The combination of therapeutic agents can result in the following complementary
effects [35,48]: (i) synergistic, when the final effect is greater than the sum of individual
agents’ effects, resulting in cooperative targeting of activity regulation but with each agent
targeting different sites; (ii) additive, that promotes greater or equal effect to the sum of
individual agents’ effect; however, both agents act on the same target or pathway; and,
(iii) potentiation, in which one agent can enhance the effect of the other or minimize its side
effects by regulating pharmacokinetics and/or pharmacodynamics. Furthermore, when
both agents in a combination therapy act on the same pathway or target, an undesirable
antagonist effect may occur (i.e., when the resultant therapeutic effect is less than the sum
of effects of each agent delivered).
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2.3. Reducing the Side Effects

Combination therapy may also avoid the toxic side effects that normally affect healthy
cells. This could happen if one of the co-delivered agents is antagonistic to the other in terms
of cytotoxicity. For example, antioxidant supplementation during anticancer treatment
may decrease adverse reactions, primarily due to the prevention of reactive oxygen species
(ROS)-mediated injury, without compromising anticancer activity [47].

2.4. Decreasing the Effective Chemotherapy Dose

One significant drawback of chemotherapy is the high dose of cytotoxic drugs re-
quired to achieve a therapeutic effect, which causes serious side effects. In this context,
combination therapy appears to be a promising alternative, since the combination of a
natural compound and a chemotherapeutic drug may promote an increase in the cytotoxic
effect (due to previously described synergistic, additive, or potentiation effects), improve
chemotherapeutic performance, and reduce the effective dose required to achieve the
necessary therapeutic outcomes [47].

3. Lipid-Based Nanocarriers for the Co-Delivery of Natural Compounds and Other
Therapeutic Agents

Classic single-delivery therapy (i.e., single administration of the therapeutic agents
in their free form) can be challenging due to several drawbacks, including the presence of
highly organized physical, physiological, and enzymatic barriers, which make targeting
cancer cells with minimal side effects particularly difficult (Figure 1). Furthermore, the
varying physiochemical and pharmacodynamic properties of different agents can limit their
successful co-delivery [49]. Thus, as previously stated, nanocarriers are an advantageous
option for overcoming these challenges, since they are designed to reach specific organs
and act selectively on the target site [1,7,10]. In this regard, several nanocarriers have been
widely explored for the delivery of anticancer drugs [5]. Lipid-based nanocarriers present
some attractive features such as: non-toxic degradation products, biodegradable matrix,
low toxicity, high capacity to incorporate lipophilic and/or hydrophilic compounds, and
ability to achieve controlled release of encapsulated therapeutic agent [50,51].

3.1. Co-Delivery of Natural Compounds and Chemotherapeutics

Table 1 provides several examples of lipid-based nanocarriers co-encapsulating a
chemotherapeutic agent and a natural compound for cancer treatment.
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Table 1. Examples of lipid-based nanocarriers co-encapsulating a chemotherapeutic agent and a natural compound for cancer treatment.

Chemotherapeutic Agent Natural Compound Lipid-Based Nanocarrier Composition Strategy Ref.

5-FU RSV
Ultradeformable

liposomes PL90G:SC Synergistic effect [52]

PEGylated liposomes EPC:DSPE-PEG2000 Synergistic effect [53]

DTX CUR SLNs Compritol® 888 ATO, GMS, Poloxamer 188Functionalization:
Folic acid

Synergistic effect [54]

DOX

BCL NLCs SA, SPC, Precirol® ATO5, Cremophor® ELP, DDAB Synergistic effect [55]

CUR

Liposomes PEG-RGDK-lipopeptide Synergistic effect [56]

NLCs Precirol® ATO 5, LabrafacTM lipophile WL 1349, Lipoid S75,
Cremophor® RH 40, Glycerin

Synergistic effect [39]

Liposomes DPPC:DSPE:CHOL:PEG2000 Synergistic effect [9]

DHA NLCs Tween® 80, Oleic acid, Triethanolamine, Compritol® 888
ATO, EDTA

Overcome MDR [57]

OA Liposomes HSPC:CHOL:DSPE:PEG2000 Synergistic effect [58]

PA Liposomes PC:CHOL Synergistic effect [59]

QUER
Liposomes BIO:DSPE:PEG2000 Overcome MDR [43]

Phytosomes Lecithin Synergistic effect [60]

TS SLNs Compritol® 888 ATO, TPGS, Triethanolamine Synergistic effect [61]

BJO LLCNs GMO:P407
Hexagonal phase inducer: Oleic acid Overcome MDR [62]

ETP CUR
NLCs GMS, SPC, Oleic acid, DDAB Decreasing the effective

chemotherapy dose [63]

Nanoemulsion SPC, Tween® 80 Additive effect [64]

GEM BCL NLCs SPC, Precirol® ATO-5, Olive oil, Tween® 80, DDAB Synergistic effect [65]

ITC CTL Liposomes DPPC:CHOL:DSPE-PEG2000-FA Synergistic effect [66]

MTX BCN Lipid–polymer hybrid
nanoparticle DSPE-PEG2000:SA:Gelucire® 50/13:PLA Synergistic effect [67]
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Table 1. Cont.

Chemotherapeutic Agent Natural Compound Lipid-Based Nanocarrier Composition Strategy Ref.

PTX

BCL Nanoemulsion MCT, Soybean oil, Soybean lecithin, Kolliphor® P188,
Glycerol

Overcome MDR [68]

BOR Lipid–albumin
nanoassemblies Egg yolk lecithin PL 100 M:BSA Potentiation effect [69]

CUR

SLNs GMS; TPGS, Tween® 80
Functionalization: Conjugated stearic acid and folate

Overcome MDR [36]

Micelles PEG2000-DSPE/Vit E Synergistic effect [70]

Nanoemulsion Flaxseed oil, Egg lecithin Overcome MDR [71]

CycA Micelles PEG2000-PE Overcome MDR [72]

PA Liposomes EPC:CHOL Potentiation effect [73]

PTN Micelles PEG2000-DSPE/Vit E Synergistic effect [74]

RSV Liposomes PC:DSPE-PEG2000 Synergistic effect [2]

RAP BER Layer-by-layer lipid
nanoparticles GMS, Tween® 80 Synergistic effect [75]

VNB Phosphatidylserine Liposomes SM:CHOL:DPPS:PEG2000-DSPE Synergistic effect [76]

PMX RSV LLCNs GMO:P407
Ion-pairing: CTAB Reducing side effects [37]

Table abbreviations: 5-FU-5-Fluorouracil; BCL-Baicalein; BCN-β-carotene; BER-Berberine; BIO-Biotin; BJO-Brucea javanica oil; BOR-Borneol; BSA-Bovine serum albumin; CHOL-
Cholesterol; CTAB-Cetyltrimethylammonium bromide; CTL-Celastrol; CUR-Curcumin; CycA-Cyclosporine A; DDAB-Dimethyl dioctadecyl ammonium bromide; DHA-Docosahexaenoic
acid; DOX-Doxorubicin; DPPC-Dipalmitoyl phosphatidylcholine; DPPS-Dipalmitoyl phosphatidylserine; DSPE-Distearoylphosphatidylethanolamine; DTX-Docetaxel; EDTA-
Ethylenediaminetetraacetic acid; EPC-Egg phosphatidylcholine; ETP-Etoposide; FA-Folic acid; GEM-Gemcitabine; GMO-Glyceryl monooleate (or monoolein); GMS-Glyceryl
monostearate; HSPC-Dehydrogenated soya phosphatidylcholine; ITC-Irinotecan; LLCNs-Lyotropic liquid crystalline nanoassemblies; MCT-Medium chain triglycerides; MDR-
Multidrug resistance; MTX-Methotrexate; NLC-Nanostructured lipid carrier; OA-Oleanolic acid; P407-Poloxamer 407 (or Pluronic® F-127 or Lutrol® F127); PA-Palmitoyl ascorbate;
PC-Phosphatidylcholine; PE-Phosphatidylethanolamine; PEG-Polyethylene glycol; PL90G-Phospholipon® 90G; PLA-Polylactic acid; PMX–Pemetrexed; PTN-Parthenolide; PTX-Paclitaxel;
QUER-Quercetin; RAP-Rapamycin; RSV-Resveratrol; SA-Stearic acid; SC-Sodium cholate; SLN-Solid lipid nanoparticles; SM-Sphingomyelin; SPC-Soybean phosphatidylcholine;
TPGS-α-Tocopherol polyethylene glycol-1000 succinate; TS-α-Tocopherol succinate; Vit E-Vitamin E; VNB-Vinorelbine.
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Co-delivery of natural compounds acting as chemosensitizers and chemotherapeutic
agents with different or comparable mechanisms of action has been identified as the
most promising strategy for overcoming undesirable toxicity and other side effects while
improving therapeutic effect [5]. However, this co-delivery is also being investigated as
a strategy to treat drug-resistant cancers, because of its ability to interfere with a number
of signaling pathways in cancer cells [77]. In this regard, the co-encapsulation of different
chemotherapeutic agents, particularly DOX, PTX, and 5-fluorouracil (5-FU), with diverse
natural compounds using different lipid-based nanocarriers has been reported (Table 1).

DOX, a potent anthracycline, exhibits a broad-spectrum of anticancer activity [61,78].
In brief, DOX’s anticancer mechanism involves two primary possible pathways: (i) pro-
ducing ROS that cause DNA damage [79,80] and (ii) intercalating into DNA strands and
inhibiting topoisomerase II [81,82]. Despite its high efficacy in cancer treatment, DOX’s
clinical application is hampered by severe side effects, the majority of which are caused by
non-selective DOX-induced apoptosis in tissues and organs [83–85], as well as the devel-
opment of MDR during chemotherapy [86,87]. One co-delivery approach focuses on the
combination of DOX with natural compounds, such as CUR [9,39,56], palmitoyl ascorbate
(PA) [59], and oleanolic acid (OA) [58], using different lipid-based nanocarriers in order
to obtain a synergistic effect. For example, Barui et al. [56] and Tefas et al. [9] developed
liposomes co-encapsulating CUR and DOX, and demonstrated their synergism in inhibiting
the proliferation, invasion, and migration of tumor cells [9,40]. Zhao et al. [39] studied the
cell proliferation inhibition effect of lipid nanoparticles co-loaded with DOX and CUR. The
results confirmed the synergistic effect on apoptosis, proliferation, and angiogenesis of
hepatocellular carcinoma (HCC), by the increase in Caspase-3 and Bax/Bcl-2 ratio and the
decrease in C-myc and VEGF. In addition to CUR, the co-encapsulation in liposomes of DOX
with PA, a lipophilic derivative of ascorbic acid, caused an anticancer synergistic effect [59].
Furthermore, the addition of PA not only improved DOX’s anticancer effects [80], but it
also demonstrated that this natural compound can mitigate the tissue toxicity of DOX re-
sulting from oxidation [59], as previously described by Shimpo et al. [88]. Sarfraz et al. [58]
explored the effect of a liposomal formulation that co-encapsulated DOX and OA, a natural
pentacyclic triterpenoid, in a HepG2 mouse model of HCC. This combination had an anti-
cancer synergistic effect, as well as an antagonistic oxidative effect at the cardiomyocytes
level, which reduced DOX cardiotoxicity [58]. Overcoming MDR with flavonoids, such as
quercetin (QUER) and baicalein (BCL), is the most widely discussed strategy for increasing
anticancer effect in several drug-resistant cell lines [55,89,90]. As an example of this strategy,
Liu et al. [55] developed hyaluronic acid (HA)-decorated nanostructured lipid carriers
(NLCs) to co-deliver DOX and BCL, and reported a synergistic cytotoxic effect in DOX-
resistant MCF-7 breast cancer cells. DOX-QUER co-loaded in a lipid-based nanocarrier was
also developed as a promising approach for active targeting with the goal of increasing
cellular uptake and toxicity against cancer cells [43,91]. Zhang et al. [43] confirmed that
QUER can avoid the MDR effect and that biotin (BIO) enhances P-gp inhibition synergisti-
cally, resulting in improved antitumor activity. Furthermore, to overcome MDR, the use of
DOX combined with other natural compounds, such as docosahexaenoic acid (DHA) [57],
α-tocopherol succinate (TS) [61], and Brucea javanica oil (BJO) [62], has been reported in the
literature. Mussi et al. [57] proposed NLCs co-loaded with DOX and DHA that increased
cytotoxicity activity and penetration of DOX, inferring a bypassing of P-gp bomb efflux.
The potential of solid lipid nanoparticles (SLNs) co-loaded with DOX and TS—a vitamin
E analogue—to overcome MDR and to increase DOX cytotoxicity have been confirmed
by two independent studies [61,92]. Li et al. [62] developed lyotropic liquid crystalline
nanoassemblies (LLCNs) co-loaded with DOX and BJO in human breast carcinoma cell
lines (MCF-7) that have shown an improved anti-tumor effect [62].

PTX is an antimicrotubule chemotherapeutic agent widely used in cancer treatment [70,74].
In cancer cells, PTX induces apoptosis and, as a mitotic inhibitor of cell replication, inter-
feres with microtubule breakdown, which leads to cell cycle arrest [72]. Nevertheless, due
to the development of MDR, the potential application of PTX in several cancers is severely
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limited [36,93]. PTX is a substrate for MDR1 (i.e., for the P-gp channel) [94], and thus the
primary strategy for reversing MDR using combined therapy is the co-delivery of PTX with
potential P-gp modulators. Several studies were developed in order to reverse MDR, using
different natural compounds, such as borneol (BOR) [54], CUR [55,56], cyclosporine A
(CycA) [57] and parthenolide (PTN) [74]. Abouzeid et al. [55] and Ganta et al. [56] demon-
strated a synergistic effect in MDR cells of CUR and PTX co-loaded in PEG-PE/vitamin E
micelles [55] and nanoemulsions [56]. Indeed, CUR enhanced PTX cytotoxicity by down-
regulation of the NF-kB and Akt pathways [55,56] (Figure 4). Tang et al. [69] studied
lipid–albumin nanoassemblies (LANs) co-loaded with BOR and PTX to achieve greater
cellular uptake and improved anti-tumor efficacy. BOR/PTX LANs significantly increased
cytotoxicity and drug accumulation in cancer cells, corroborating its potential to enhance the
efficacy of chemotherapy. Sarisozen et al. [72] developed actively targeted PEG-PE-based
micelles co-encapsulating PTX and CycA, a first-generation P-gp inhibitor, to reverse PTX
resistance in P-gp-expressing cells. The authors concluded that the formulation showed a
significant increase in cytotoxicity, specifically in drug-resistant cells [72]. Gill et al. [74]
studied PTX and PTN co-loaded in micelles that significantly improved anticancer activity
against PTX-resistant cell lines. Moreover, the anti-proliferative and pro-apoptotic activity
of RSV against MDR tumor cells has been reported [95]. Meng et al. [2] demonstrated
that co-encapsulating RSV and PTX in PEGylated liposomes had the potential to reverse
PTX-resistance of MCF-7/Adr tumors and improve the efficacy of RSV and PTX, implying
their promising use in the treatment of drug-resistant malignancies. The BCL oxidative
stress-inducing potential was also considered by Meng et al. [68], who proposed co-loading
PTX and BCL in nanoemulsions to enhance antitumor effect and suppress MDR in breast
cancer. The antioxidant activity of PA has also improved PTX anticancer activity when they
were co-encapsulated in liposomes [73].

5-FU, an antimetabolite, is commonly used to treat colorectal, breast, head, and neck
cancers. The anticancer effect of 5-FU is due to the inhibition of thymidylate synthase
and the incorporation of its metabolites into DNA and RNA, thereby inhibiting their
production [96]. Previous research has shown that RSV synergistically promotes 5-FU-
mediated cancer cell apoptosis [52,53]. Mohan et al. [53] investigated the influence of RSV
and 5-FU co-loaded in PEGylated liposomes on a head and neck squamous cancer cell
line, reporting differential combination effects on gene expression that resulted in cancer
cell apoptosis. Furthermore, Cosco et al. [52] evaluated the efficacy of ultradeformable
liposomes co-loaded with both agents against squamous cell carcinoma-related lesions.
The authors reported that liposomes improved RSV and 5-FU permeation into deeper skin
strata, where antioxidant and antiproliferative effects of RSV are essential [52].

3.2. Co-Delivery of Natural Compounds and Nucleic Acids

Currently, the efforts to overcome the drawbacks of traditional cancer treatment are
mostly focused on strategies that can block the efflux pump effects generated by long-term
pharmacological therapy [97]. The combination of natural compounds with nucleic acids is
another promising option for a co-delivery system [17]. Furthermore, this is a desirable
method for cancer treatment able to overcome MDR and generate synergistic apoptotic
effects while reducing toxicity and other side effects [98]. Given their multifunctionality
and ability to encapsulate drugs, nanocarriers are the most widely used drug delivery
systems [99]. However, many of these delivery systems suffer from non-degradability,
complexity, and insufficient biological activity [100]. Lipid-based nanocarriers developed
for the co-delivery of nucleic acids and natural compounds (Table 2) are promising due to
their low toxicity, biocompatibility, and ease of scaling up [101].
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Table 2. Examples of lipid-based nanocarriers co-encapsulating a nucleic acid and a natural compound for cancer treatment.

Nanocarrier Composition Nucleic Acid
Natural

Compound

Physical-Chemical Characterization

Cancer Cell Lines Remarks Ref.Size (nm) and
PDI ζ-Potential (mV) EE (%) and DL

(%)

Lipoplexes CHEMS, CHOL,
PE, PEI VEGF siRNA GNA Size: 200

PDI: <0.3 −30 EE: 81.8 ± 2.04% HepG2
Downregulation of VEGF expression.
GNA loaded lipoplexes have stronger

pro-apoptotic effects.
[102]

Lipoplexes CD014, DOPE p53 pDNA RSV Size: 65.9 to 220.7 +81.4 to +109.8 EE: >90% MCF-7 and HeLa RSV and p53 pDNA showed synergistic
effect on cells growth inhibition. [103]

Lipoplexes
DOTAP, DOPE,
Sodium cholate,

C6 ceramide
STAT3 siRNA CUR Size: 157.0 ± 11.0

PDI: 0.46 ± 0.003 +70.5 ± 7.0
EE: 87.5 ± 4.0%
(10:1 lipid:CUR

ratio)
A431

Downregulation of STAT3 expression.
CUR and STAT3 siRNA demonstrated

synergistic effect in cancer cell inhibition.
[104]

Lipoplexes
DOTAP, DOPE,
Sodium cholate,

C6 ceramide
STAT3 siRNA CUR Size: 192.6 ± 9.0

PDI: 0.326 ± 0.004 +56.4 ± 8.0 EE: 86.8 ± 6.0% B16F10

CUR and STAT3 siRNA had a synergistic
effect on cancer cell inhibition.

The lipoplexes enabled a non-invasive
topical iontophoretic application.

[105]

Micelleplexes
Chitosan,

Cholesterol
chloroformate

siRNA CUR Size: 165 ± 2.6
PDI: 0.16 ± 0.02 +24.8 ± 2.2 - A549

CUR and siRNA were delivered in a
time-dependent manner via

clathrin-dependent endocytosis
mechanism.

[106]

Nioplexes
CHOL, Tween
80, Tween 60,

DOTAP
miR-34a CUR Size: 60 ± 0.05

PDI: 0.15 ± 0.74 +27 ± 0.30 EE: 100% A270cp-1,
PC3, MCF-7

Co-delivery induced higher cytotoxicity
than co-administration. [38]

Lipopolyplexes DSPE-mPEG,
PEI-PDLLA CCAT1 siRNA CUR Size: 151

+12.37 to −10.48
(depending on
CNP:siCCAT1

ratios)

EE: 85.85 ± 3.37%
DL: 14.36 ± 1.28% HT-29

Co-delivery of CUR and siCCAT1
increases HT-29 cell sensitivity to

anticancer efficiency of CUR and the
silencing effect of CCAT1.

[107]

Lipoplexes
Stearylamine,
CHOL, Phos-

phatidylcholine
P-gp siRNA GED

Size:
236.01 ± 44.80

PDI: 0.35 ± 0.15
+41.30 ± 4.48 - MDA-MB 231

Lipoplexes were able to inhibit cell
proliferation.

Downregulation of P-gp, cyclin D1, p53,
Bax, and survivin expression.

[108]

Table abbreviations: A270cp-1-Human ovarian cancer cells; A431-Human skin carcinoma cells; A549-Human lung adenocarcinoma cells; B16F10-Murine melanoma cells; CCAT1-
Colon cancer-associated transcript-1; CD014-Peptide-cationic lipid; CHEMS-Cholesteryl hemisuccinate; CHOL-Cholesterol; CUR-Curcumin; D.L.-Drug loading; DOPE-Dioleoyl
phosphatidylethanolamine; DOTAP-1,2-dioleoyl-3-trimethylammonium propane; DSPE-mPEG-1,2-distearoyl-snglycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol);
E.E.-Entrapment efficiency; GNA-Gambogenic acid; GED–Gedunin; HeLA-Cervical carcinoma cells; HepG2-Human hepatoma cells; HT-29-Human colon carcinoma cells; MCF-7-
Human breast adenocarcinoma (ER-positive) cells; MDA-MB 231-Human breast adenocarcinoma cells with low monocarboxylic acid transporter expression; miR-34a-microRNA-34a;
PC3-Human prostate cancer cells; PDLLA-poly (d, l-lactide); pDNA-Plasmid DNA; PE-Phosphatidyl ethanolamine; PEI-Polyethyleneimine; P-gp-P-glycoprotein; RSV-Resveratrol;
siRNA-Small interfering RNA; STAT3-Signal transducer and activator of transcription 3; VEGF-Vascular endothelial growth factor.
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Co-delivery of natural compounds and pDNA [103], siRNA [102,104], or miRNA [38],
has been reported and the expression of specific genes can be restored, upregulated, down-
regulated, or even silenced depending on the type of nucleic acid used [109].

pDNA are small DNA molecules that can carry a gene that will be transcribed into a
specific protein of interest, thus improve or restore its function and consequently, different
cellular pathways [110]. For example, Xu et al. [103] studied the potential of lipoplexes (i.e.,
nucleic acids condensed by liposomes) for the co-delivery of p53 pDNA and RSV. The de-
veloped formulations were able to up-regulate p53, and the combination of two therapeutic
agents demonstrated an anticancer synergistic effect by cell growth inhibition [103].

In comparison to pDNA, miRNA and siRNA act via RNA interference mechanisms.
miRNA can direct and regulate the expression of multiple genes encoding proteins

involved in different cellular pathways, both at the transcriptional and translational lev-
els [111]. Thus, Abtahi et al. [38] studied nioplexes (i.e., nucleic acids condensed by
niosomes) for co-delivery of CUR and miR-34a, one of the p53 network members. The
results showed that combining miR-34a and CUR enabled a synergistic effect, allowing for
a reduction in NF-kB expression (Figure 4) and a consequent increase in p53 expression [38].

siRNA has been widely used to selectively down-regulate abnormal protein expression
in tumor cells, which is a promising strategy for preventing disease progression [102,106].
The combination of siRNA with different natural compounds, such as gambogenic acid
(GNA) [102], CUR [38,104–107], and gedunin (GED) [108], using lipid-based nanosys-
tems has also been reported. GNA, isolated from Gamboge, is considered a potential
anticancer compound as it regulates the expression of cyclin D1 and COX-2 [112–114].
Yu et al. [102] studied lipoplexes for co-delivery of VEGF-siRNA and GNA to improve
anticancer efficiency in HepG2 cells. According to this study, VEGF-siRNA seemed to
mediate VEGF silencing, and the combination with GNA enhanced cell sensitivity and
promoted apoptosis [102]. GED, a tetranortriterpenoid isolated from the Indian neem tree,
is a Hsp90 inhibitor that demonstrated anti-proliferative effects in several cancers [115,116].
Rana et al. [108] developed lipoplexes for the co-delivery of GED and P-gp siRNA, to en-
hance the inhibition of breast cancer stem cell proliferation by modulating P-gp and cyclin
D1 as well as apoptosis-related genes [108]. CUR has received considerable attention in can-
cer treatment as the bioactive compound most co-loaded with siRNA. Anup et al. [104,105]
developed lipoplexes co-loaded with CUR and STAT3 siRNA. The authors demonstrated
that the lipoplexes administrated iontophoretically showed similar efficiency in inhibiting
tumor progression and STAT3 protein suppression as intratumorally administration. The
authors also reported a synergistic effect of CUR and STAT3 siRNA in cancer cell inhibi-
tion [104,105]. Muddineti et al. [106] studied micelleplexes (i.e., nucleic acids condensed by
micelles) for co-delivery of CUR and siRNA in a time-dependent manner via a clathrin-
dependent endocytosis mechanism [106]. Jia et al. [107] developed CUR and siCCAT1
co-delivered in lipopolyplexes (i.e., nucleic acids condensed by liposomes containing poly-
mers) for colorectal cancer therapy. The results confirmed the ability of the lipopolyplexes
to perform endosomal/lysosomal escape efficiently due to the proton sponge effect of the
polymer component. Furthermore, the co-delivery of CUR and siCCAT1 could effectively
silence CCAT1 and achieve a synergistic effect, thereby enhancing B-cell limphoma-2-
mediated apoptosis in human colon cancer cells [107].

3.3. Challenges and Opportunities of Co-Delivery Strategies

Although co-delivery of natural compounds and other therapeutic agents in a sin-
gle nanocarrier is a promising strategy for cancer treatment, its clinical achievement is
restricted due to challenges occurring at different stages of the nanocarrier’s develop-
ment including loading capacity, stability, pharmacokinetics, tumor targeting efficiency,
pharmacodynamics, and toxicity [32,117–121]. The first challenge is to choose an appropri-
ate nanocarrier composition capable of simultaneously loading natural compounds and
other therapeutics with different physicochemical properties and able to establish distinct
chemical interactions. In particular, the co-delivered therapeutics’ association with the
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nanocarrier should be strong enough to ensure their in vivo stability, avoiding interaction
with serum proteins and, as a result, an early release and poor tissue distribution. In
this regard, the most striking finding is that LLCNs have not been chosen more often for
combination therapy in cancer and co-delivery purposes of therapeutic agents and natural
compounds. Indeed, LLCNs merit further investigation and represent a future opportunity
for combination cancer therapy purposes, as evidenced by previous studies [37,62,122],
because their periodic lipid membranes and networks of aqueous channels present in the
inner liquid crystalline organization provide benefits for the entrapment, solubilization,
and protection of one or more therapeutics. The internal structure of these nanocarriers,
which is formed of liquid crystalline lipid bilayers stacked in precise lattice layouts to form
complicated three-dimensional networks of aqueous channels, is what makes LLCNs topol-
ogy unique. Therefore, LLCNs exhibit a substantially greater surface area when compared
to other lipid-based nanocarriers and can encapsulate higher quantities of hydrophobic
and hydrophilic therapeutics at sizes equivalent to those of other lipid-based nanocarriers.

Another critical challenge is combining distinct pharmacokinetic behaviors of indi-
vidual therapeutics, which can result in inconsistent in vivo biodistribution after their
co-delivery. As a result, a strict modulation of the nanocarrier is required for precise
control of the dose and chronological sequence of each co-delivered therapeutic release.
Furthermore, one of the primary goals of co-delivery is to increase the therapeutics’ potency
through synergistic or additive effects. However, this goal can be jeopardized by suboptimal
therapeutic doses at tumor tissues, so active targeting strategies are required but difficult to
implement in order to simultaneously fulfill the different targeting sites of the combined
therapeutics. At a pharmacodynamic level it is also challenging to define concentration-
dependent effects of natural compounds, and their co-delivery with other therapeutic
agents may also produce antagonistic effects. Finally, a major challenge to therapeutic
efficacy and clinical translation is that co-delivered therapeutics may cause synergistic
systemic toxicity and, as a result, unexpected adverse effects when combined. Therefore,
hypersensitivity reactions, long-term toxicity evaluation, and biosafety of nanocarriers
and their cargo need to be considered, and only after these issues are fully addressed will
co-delivery therapy be widely available in the clinic.

Despite all the above challenges, most co-delivery-based nanotherapeutics have been
developed empirically by trial-and-error strategies instead of rational development pro-
grams and quality-by-design approaches [120,123]. Few research studies have attempted
to comprehensively examine co-delivery combinations using proper characterization and
analytical techniques throughout the development process. The characterization of co-
delivery-based nanotherapeutics is required from a physicochemical point of view to
comprehend its corresponding biological behavior (e.g., knowing how nanocarrier size
and shape can be tailored for improved hemodynamics or how to modulate the innate
immunity to reduce nanocarrier clearance), and to provide guidance for the process control
and safety assessment. In terms of the quantity of parameters necessary for an accurate
and thorough characterization, this categorization does not meet consensus. The adoption
of reference nanomaterials and internationally recognized procedures is suggested as the
solution to unifying the many viewpoints on this subject [117,118]. A characterization of
co-delivery-based nanotherapeutics should ideally take place at several points, from the
design stage to the assessment of its in vitro and in vivo performance. Timing, chemothera-
peutic and/or natural compound metabolic processes, and biological interaction patterns
explored in preclinical models will all have an impact on the final clinical outcome of
combined treatments. Therefore, a robust biocompatibility testing program, which typically
consists of in vivo studies reinforced with chosen in vitro assays to assure safety, is required
for the pre-clinical evaluation of co-delivery based nanotherapeutics.

Another issue in the translation of co-delivery-based nanotherapeutics to market and
clinical practice is controlling the production process by identifying the critical factors and
technology required for a reproducible and economically viable scale-up. The impact of
siRNA nanotechnology on pandemic prevention has been demonstrated by COVID-19
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vaccines [124]. However, the clinical applications of gene therapy for cancer treatment
are currently limited due to the growing stage of the technology, potential unknown
risks, higher costs, and selectivity in treating certain types of cancer [97]. Therefore,
if this technology is not mature enough in a single delivery context, it is even further
away from clinical translation when nucleic acid and natural compound co-delivery is
considered. Moreover, based on current understanding, there is an academic interest in
co-delivery of natural compounds with chemotherapeutics and/or nucleic acids for cancer
treatment that does not mirror the lack of ongoing clinical trials pertaining to the subject
matter. This may be attributed to the emergence of new challenges as well as the expenses
involved in the design and development of such intricate formulations. The bench-to-
market translation of co-delivery-based nanotherapeutics is also severely constrained by
the regulatory framework surrounding clinical application. Therefore, it is imperative to
address the regulatory and scientific gaps to facilitate the advancement of nanomedicine as
a driving force for future biomedical innovation.

4. Conclusions

Conventional cancer therapies are still unable to achieve the desired outcomes due to
current limitations related with inefficiency and selectivity. As a result, the development
of novel therapeutic strategies to overcome these limitations has become critical. Combi-
nation therapy has been extensively explored in this context, since co-delivery of natural
compounds and chemotherapeutic agents or nucleic acids can achieve stronger anticancer
effects through synergistic/additive/potentiation mechanisms, or by improving selectivity,
and overcoming MDR either by inhibition of ABC membrane transporters or interaction
with MDR genes.

However, while this strategy provides new therapeutic results, it also introduces
several new challenges, such as the need to clearly identify the mechanism behind the
enhanced anticancer activity by comparing the co-delivery effect with co-administration
effect. It is also required to better define the concentration-dependent effect of natural
compounds, as well as to evaluate the improvement of their pharmacokinetic parameters
when delivered by lipid-based nanocarriers. Moreover, despite lipid-based nanocarriers
being considered biocompatible, the safety of the loaded cargo has also to be addressed,
namely by long-term toxicity assessment and by studying the immunogenicity issues that
may arise from the nucleic acid conjugation. Furthermore, as far as we know, no clinical
trials with nanocarriers co-delivering natural compounds or other therapeutic agents have
been conducted, which may be due to these challenges as well as the costs of designing
and developing such complex formulations.

Despite the critical points that remain unresolved, the co-delivery strategy of natural
compounds and chemotherapeutic agents/nucleic acids is undeniably very promising, es-
pecially by further exploring versatile nanocarriers such as LLCNs. We strongly believe that
this approach, allied with thorough characterization, rational development, and pre-clinical
studies, will fulfill the translation of lipid-based nanocarriers into clinical applications.
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