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Abstract: In this work, we synthesized doxorubicin-loaded fungal-carboxymethyl chitosan (FC)
functionalized polydopamine (Dox@FCPDA) nanoparticles for improved anticancer activity via
photothermal drug release. The photothermal properties revealed that the FCPDA nanoparticles with
a concentration of 400 µg/mL produced a temperature of about 61.1 ◦C at 2 W/cm2 laser illumination,
which is more beneficial for cancer cells. Due to the hydrophilic FC biopolymer, the Dox was
successfully encapsulated into FCPDA nanoparticles via electrostatic interactions and pi-pi stacking.
The maximum drug loading and encapsulation efficiency were calculated to be 19.3% and 80.2%,
respectively. The Dox@FCPDA nanoparticles exhibited improved anticancer activity on HePG2 cancer
cells when exposed to an NIR laser (800 nm, 2 W/cm2). Furthermore, the Dox@FCPDA nanoparticles
also improved cellular uptake with HepG2 cells. Therefore, functionalizing FC biopolymer with PDA
nanoparticles is more beneficial for drug and photothermal dual therapeutic properties for cancer
therapy.

Keywords: polydopamine; fungal-carboxymethyl chitosan; photothermal property; drug release;
cancer therapy

1. Introduction

Light stimulation therapy, which includes photothermal therapy (PTT) and photody-
namic therapy, is currently one of the most promising cancer treatments. In PTT, when
irradiated with light, nanoparticles can produce heat that can kill cancer cells [1]. The com-
bination of chemo and photothermal therapy is more advantageous when photothermal
nanoparticles are combined with chemotherapeutic agents that can destroy cancerous cells
via synergistic action (chemo and photothermal property) [2,3]. Recently, a wide range of
near-infrared (NIR) active nanoparticles have been utilized for photothermal therapy, such
as metal-based or metal sulfide and other carbon-based materials [2–4]. Among these, the
combination of photothermal agents decorated with polymers has been attractive for load-
ing chemotherapeutic agents and is more beneficial for combined chemo and photothermal
therapy for cancer [5].

Among various kinds of materials, polydopamine (PDA) is attractive in photothermal
and chemotherapy because of its structure, which is similar to melanin and has excellent
biocompatibility [6]. PDA can easily produce heat when irradiated with NIR light. It can be
used as an excellent photothermal therapeutic property. Although PDA-based nanoformu-
lations have been extensively developed for PTT for cancer therapy, the surviving cancer
cells could lead to metastases and a return of the disease due to the partial ablation of
tumor tissues. Due to the limited permeability of combined photothermal nanoagents in
tumor tissues, therapeutic agents are distributed unevenly throughout cancer tissues [6].
To address this issue, novel photothermal therapeutic nanoparticle design is required.
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Therefore, the polymer-modified PDA nanoparticles improve drugs’ retention ability and
the prolonged release of drugs [7,8]. These PDA NPs, however, displayed considerable
toxicity to healthy cells and tissues due to their non-specificity. Two efficient methods for
resolving the aforementioned issue include creating responsive PDA-based nanoformu-
lations and grafting some targeting units on the PDA-based nanoformulations [8]. With
regard to PTT with PDA, the recent literature has focused on functionalizing PDA-based
nanoparticles to enhance their drug delivery efficiency, targeting ability, and therapeutic
efficacy. One approach involves using ligands or antibodies to functionalize the surface
of polydopamine-based nanoparticles to improve their targeting ability. For example,
targeting ligands such as folic acid and aptamers have been conjugated to the surface
of PDA-based nanoparticles to selectively target cancer cells that overexpress specific re-
ceptors [9–12]. Another approach involves incorporating additional functional groups
or moieties onto the surface of PDA-based nanoparticles to enhance their drug loading
capacity or promote controlled drug release [13–15]. For example, thiol or amine groups can
be incorporated onto the surface of PDA-based nanoparticles to enhance their drug loading
capacity or enable conjugation of other therapeutic agents or targeting moieties [16–18]. In
addition to surface functionalization, recent studies have explored the use of PDA-based
nanoparticles in combination with other therapeutic modalities such as photothermal ther-
apy and gene therapy [13–15]. For example, PDA-based nanoparticles have been used
as carriers for both chemotherapy drugs and photothermal agents to enable synergistic
chemo-photothermal therapy. Overall, functionalized PDA-based nanoparticles show great
promise for improving cancer drug delivery and overcoming some of the limitations asso-
ciated with conventional drug delivery approaches. However, further research is needed to
optimize their design and evaluate their long-term safety and efficacy in clinical settings.

Natural polymers such as chitosan, sodium alginate, starch, and pectin have been
utilized for DDSs to improve the bioavailability of many potential drugs [19]. Among these,
chitosan (CS) is one of the most promising for DDSs [20]. It has mucoadhesive, permeation-
enhancing, in situ gelling, and efflux pump inhibitory effects because of its cationic nature.
Additionally, a controlled medication release can be accomplished via ionic interactions,
and nanoparticulate delivery systems for siRNA and pharmaceuticals based on DNA can
be created [21]. Carboxymethyl chitosan (CMCS) is a modified CS that also attracted
drug delivery in cancer therapy. It has carboxylic and cationic amino groups, which are
responsible for the loading of drugs via the formation of H-bonding and complexation and
which can deliver the drug molecules easily in the tumor microenvironment [22]. As of
late, it has been shown that CMCS derived from non-animal sources of fungal mushrooms
(FC) has outstanding physiological and biological characteristics, including increased water
solubility in a wide range of pH solutions, biodegradability, and excellent biocompatibility.
Therefore, FC has been utilized for the preparation of nanocomposites, films, and hydrogels
for biomedical applications [23–25].

By considering the excellent properties of FC and the PTT ability of PDA, herein
we developed FCPDA nanoparticles for loading Dox as a chemotherapeutic agent. The
presence of amino functional groups on FC biopolymer can easily be covalently bonded to
the DOPA structure during the formation of PDA, thereby stabilizing the FCPDA nanopar-
ticles. By considering the excellent properties of FC, the FCPDA nanoparticles are easily
allowed to encapsulate with Dox drug via the formation of multiple bonds such as H-bond,
complexation, and pi-pi stacking. The resulting Dox@FCPDA nanoparticle was studied for
its combined chemo and photothermal properties for cancer therapy.

2. Materials and Methods
2.1. Materials

The Endovision Company (Daegu, Republic of Korea) kindly provided FC (originated
from Agaricus Bisporous Mushroom) with MW = 200–2000 KDa (viscosity 20–1000 cps with
deacetylation 80–98%). DA was purchased from Sigma Aldrich Company, Seoul, Republic
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of Korea. Ammonia (25–28%) solution was purchased from Dae-Jung chemical metal Co.,
Ltd., Siheung-si, Gyeonggi-Do, Republic of Korea.

2.2. Synthesis of FCPDA Nanoparticles

First, 350 µL of aqueous ammonia solution (25–28%) was combined with 3.2 mL of
ethanol and 7.2 mL of double distilled water (DDW). Then, the solution of FC (20 mg)
and DA (40 mg) in one milliliter of DDW was prepared. Finally, the FC and DA solution
mixture was slowly added to the aforementioned solution. The solution was stirred at
600 rpm for 20 min at open-air conditions, and the reaction continued for 24 h. Finally, the
solution was centrifuged at 4000 rpm for 10 min, subsequently washed with DDW, and
centrifugation was repeated 3 times at room temperature. Finally, the FCPDA nanoparticles
were freeze-dried for 24 h.

2.3. Preparation of Dox@FCPDA Nanoparticles and Encapsulation Efficiency

Dox@FCPDA nanoparticles were prepared by immersing FCPDA nanoparticles in
Dox solutions. A total of 10 mg of nanoparticles (FCPDA nanoparticles) were dispersed
in 2 mg of Dox in 5 mL of DDW. The dispersion was stirred for 24 h and then centrifuged
at 10,000 rpm for 10 min at room temperature under dark conditions. The recovered
nanoparticles were washed with DDW and further centrifuged at 10,000 rpm for 10 min at
room temperature. The supernatant solution was analyzed for UV. The drug loading and
encapsulation was calculated as follows.

DL (%) =
Weight of Dox in the FC − PDA nanoaprticles
Weight of FC − PDA recovered nanoaprticles

× 100

EE (%) =
Weight of Dox in the FC − PDA nanoaprticles
Weight of FC − PDA recovered nanoaprticles

× 100

The Dox release from FCPDA nanoparticles was analyzed in PBS solutions (pH 7.4
and 5.0) at 37 ◦C. A total of 1 mg of Dox@FCPDA nanoparticles were dispersed in a vial
with 2 mL of releasing media and incubated in an orbital shaker with 100 rpm at 37 ◦C. At
a predetermined time, the vial was centrifuged for 2 min at 5000 rpm. A similar volume of
fresh medium was added once the supernatant solution was withdrawn. Using UV-Vis
absorption spectrophotometry, the released Dox was examined at 487 nm. Additionally,
the Dox release from FCPDA nanoparticles was carried out for 10 min of exposure to NIR
laser (800 nm) operating at 2 W/cm2.

2.4. Characterization

FTIR spectra of FCPDA, Dox, and Dox@FCPDA nanoparticles were analyzed by
using a Perkin Elmer instrument (FTIR-410, Shelton, WA, USA) under transmittance mode
between 500 and 4000 cm−1. Using field-emission transmission electron microscopy, the
morphology of the FCPDA nanoparticles was examined (FE-TEM, Tecnai G2 F20, Hillsboro,
OR, USA). The hydrodynamic diameter of the products was measured using dynamic
light scattering (DLS, Malvern Zetasizer Nano-ZS, Worcestershire, UK). The UV-Vis-NIR
absorption spectra of FCPDA nanoparticles with various concentrations were analyzed
using a Shimadzu-2600 instrument (Kyoto, Japan) and scanned between 250 and 1000 nm.
Using a thermal camera (Peak-Tech-3450, Bangkok, Thailand), infrared thermal images
were captured and evaluated. The drug release profile of the Dox@FCPDA nanoparticles
was determined via UV-Vis absorption spectrophotometry (Shimadzu-2600, (Kyoto, Japan))
scanned between 350 and 600 nm.

2.5. Photothermal Properties

The photothermal effect of the FCPDA nanoparticles under NIR laser illumination
was performed using a PSU-H-LED NIR laser instrument (MDL-N-808-10W; Changchun,
China). The temperature produced from nanoparticles was recorded using the PeakTech



Pharmaceutics 2023, 15, 1281 4 of 14

3450 thermal imager instrument (Bangkok, Thailand). For this experiment, different con-
centrations of FCPDA were mixed with DDW and exposed for 10 min to 2 W/cm2 of laser
light at an 808 nm wavelength. Every 20 s, the temperature was measured and plotted. The
photothermal profile of 400 µg/mL at 0.5, 1, 1.5, and 2 W/cm2 laser power densities was
also captured and shown. Furthermore, five ON/OFF laser cycles with a 10 min exposure
time each were used to test the materials’ photothermal stability.

2.6. In Vitro Cytotoxicity and Cell Uptake Studies

HepG2 (hepatocellular carcinoma) was purchased from the American Type Culture
Collection (Rockville, MD, USA). The HepG2 cells were cultured using Dulbecco’s Modified
Eagle Medium (DMEM). All cell media were phenol-free, contained 10% fetal bovine serum,
and 100 IU/mL penicillin at 100 mg/mL. Cells were maintained in a humidified incubator
at 37 ◦C under 5% CO2 atmosphere.

Using a hemocytometer, cells were trypsinized and manually counted. At a density of
1 × 104, the cells were seeded into 96-well tissue culture plates and given 24 h to adhere
using the proper cell culture media (100 µL). For Dox concentration, dependent toxicity
was studied by treating various concentrations of Dox for both Dox alone and Dox loaded
nanoparticles. The FCPDA and Dox@FCPDA nanoparticles with varying concentrations
were added to 96-well plates. For photothermal cancer therapy, the nanoparticles with cells
were treated under NIR laser for 10 min at 808 nm with 2 W/cm2. Using the Prestoblue®

cell viability Assay, the toxicities were assessed after a 24 h incubation period. Each well’s
absorbance was assessed using wavelengths of 570 and 600 nm.

HepG2 cells were seeded onto German cover glass slips at a density of 5000 cells/cm2

and cultured for 24 h. Cells were then exposed to 20 µg/mL of Dox@FCPDA nanoparticles
and incubated for 3 and 6 h. Each well was then filled with 500 µL of 4% formaldehyde
solutions, which were then incubated for 10 min. For 10 min, the cells were counterstained
with DAPI (nucleus) dye. The glass coverslips were then carefully removed from each well
and mounted onto glass slides using a Vector shield after the wells had been cleaned with
PBS. With the aid of fluorescence microscopy (Nikon Eclipse Ti, Genova, Italy), the uptake
was verified.

3. Results and Discussion
3.1. Synthesis and Characterization of FCPDA Nanoparticles

In general, PDA nanoparticles are easily prepared under basic conditions. The use
of ammonia solution with ethanol can control the formation of the spherical size of PDA
nanoparticles, as described by previously published work [26]. In this work, FC biopolymer
can be used for the preparation of functionalized PDA nanoparticles. Owing to the presence
of amino functional groups, FC can easily be bonded with DOPA structures during the
formation of PDA. Scheme 1 represents the schematic reaction between the FC and PDA
of FCPDA nanoparticles. The FC has abundant amino (-NH2) and carboxylic (-COOH)
functional groups. It is well-known that amine functional groups can easily interact with
PDA via coupling reactions. Similarly, the amino functional groups on FC can also be
reacted with the DOPA structure of PDA via coupling reactions, thereby stabilizing the
FCPDA nanoparticles. Furthermore, the carboxylic groups on FC also involved electrostatic
and H-bonding with PDA. Therefore, the multiple bonding interactions between FC and
PDA can improve the stability of FCPDA nanoparticles.

The resulting FCPDA nanoparticles were characterized by FTIR spectra to know the
functional group existence and its bonding. As seen in Figure 1a, bare PDA nanoparticles
showed major peaks at 1505 and 1621 cm−1 that were attributed to C-N bending and
C-C stretching vibrations of indole aromatic rings. FCPDA nanoparticles showed a broad
peak between 3000 and 3400 cm−1 that is attributed to -OH and -NH stretching of FC
and PDA structures. Peaks at 1578 and 1515 cm−1 are attributed to H-bonded carboxylate
(-COOH) and stretching and bending vibrations of the NH and C=C indole structure
of PDA, respectively [27]. Furthermore, there was a broad peak at 1641 cm−1 with the
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combination of 1578 cm−1 due to Schiff base bonds between amino groups of FC and
the carbonyl group of PDA. Moreover, a small peak at 1261 cm−1 corresponded to the
stretching vibration of catechol hydroxyl C-O and/or C-N. In addition to In addition, there
was a characteristic peak at 1065 cm−1 due to the C-O peak of the C-OH groups of FC,
suggesting successful conjugation of FC on PDA structure [15]. The typical TEM image
of FCPDA nanoparticles is shown in Figure 1c. The spherical morphology of FCPDA
nanoparticles was demonstrated. The size of nanoparticles from TEM images is about
112 nm. The size distributions of the FCPDA nanoparticles were further characterized by
DLS studies (Figure 1b). It can be observed that the FCPDA nanoparticles are spherical,
with an average diameter of 115 nm. The size of FCPDA nanoparticles obtained from the
DLS study agrees with TEM results.
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Figure 1. (a) FTIR spectra, (b) DLS average hydrodynamic size of FCPDA nanoparticles, and (c) TEM
images of FCPDA nanoparticles.

3.2. UV-Vis-NIR Absorption Spectra

Further, to explore the possible photo-thermal material, it was referred to as an optimal
biological window due to its deeper tissue penetration depth and should exhibit a strong
capacity for absorption in the NIR light range. As a result, the UV-Vis-NIR absorption
curves of FCPDA NPs aqueous solutions at varied concentrations were examined. Figure 2a
shows that the absorbance at 808 nm (NIR window) of the FCPDA nanoparticles increased
along with their concentration, which suggests that the FC functionalization with PDA did
not influence photothermal capacity. Therefore, it is conceivable that when concentration
rose, the photo-thermal capacity would rise as well. Figure 2b is a graph that shows
the linear correlation between wavelength at 808 nm and FCPDA concentrations, further
demonstrating that concentration increased with the increase in absorbance value at a
wavelength of 808 nm.
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3.3. Photothermal Properties of FCPDA Nanoparticles

By measuring the temperature after being exposed to 808 nm laser irradiations at a
power density of 2.0 W/cm2, the effectiveness of the various concentrations of FCPDA
nanoparticles for in vitro photothermal conversion was assessed. As seen in Figure 3a,
after being exposed to 808 nm laser irradiations for 5 min, the temperature of the DDW did
not considerably change. The presence of nanoparticles influences the temperature. The
temperature rose from 34 to 67 ◦C and the concentration from 100 to 1000 µg/mL in under
5 min of irradiation at constant power density (2 W/cm2). When exposed to laser radiation,
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the PDA-based biomaterials exhibit noteworthy photothermal conversion properties. The
temperature of the FCPDA nanoparticles in an aqueous solution increased to 47 ◦C when
the laser power density was set to 2.0 W/cm2, which is sufficient to kill cancer cells.
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As can be shown in Figure 3b, the FCPDA nanoparticles were further studied for
their photo-thermal conversion across a range of power densities (0.5 to 2.5 W/cm2) at
a constant concentration of 400 µg/mL. When the FCPDA nanoparticles in an aqueous
solution reached a temperature of 60.1 ◦C, the power density of the laser increased to
2.5 W/cm2, which was sufficient to destroy the tumor cells. Five heating/cooling cy-
cles of the FCPDA nanoparticles were carried out to examine the photo-thermal stability,
as shown in Figure 3c. Within ten minutes of laser illumination at a power density of
2 W/cm2, the maximum temperature for 400 µg/mL FCPDA nanoparticle concentrations
was around 60.1 ◦C. When the laser was turned off, the temperature was significantly re-
duced to room temperature. More proof of the FCPDA nanoparticles’ strong photothermal
properties include the following. After five cycles, there was no discernible temperature
drop, further demonstrating the FCPDA nanoparticles’ excellent photothermal stability
and their suitability for application as long-term releasing heat in photothermal cancer
therapy. In a recent study, Zhang et al. developed multi-responsive PDA-functionalized
MXene nanoparticles for drug delivery and antibacterial activity [28]. They found that
a temperature of 52.9 ◦C was produced by applying a power density of 2.0 W/cm2 for
10 min. Similarly, Xing et al. reported the development of mesoporous PDA nanoparticles
for chemophotothermal therapy. Under laser irradiation of 2 W/cm2 at 808 nm for 20 min,
a temperature of 62 ◦C was produced in a dispersion of 1000 µg/mL nanoparticles [29].
Li et al. also developed NIR-active PDA-based nanobombs for on-demand drug release to
treat tumor therapy, and observed a temperature of 52.6 ◦C at a concentration of 0.1 mg/mL
nanoparticles and 5 W/cm2 for 5 min of incubation [9]. The amount of heat generated
by PDA nanoparticles depends on the concentration of nanoparticles, irradiation time,
and laser intensity. In our study, we found that a maximum temperature of 60.1 ◦C was
achieved within ten minutes of laser illumination with a power density of 2 W/cm2, using
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a nanoparticle concentration of 400 µg/mL. These results suggest that our findings could
be more beneficial for photothermal cancer therapy.

Further, to support temperature produced from FCPDA nanoparticles, thermal imag-
ing photographs of the FCPDA nanoparticles were taken using a thermal imaging camera
when the FCPDA nanoparticles (400 µg/mL) were illuminated by an IR laser using 808 nm
laser light at 2.0 W/cm2. Figure 3d shows how the temperature of the FCPDA nanopar-
ticles rose from 23.6 ◦C to 61.1 ◦C as the length of the laser irradiation increased (up to
10 min). Importantly, after 10 min of radiation, the temperature could increase to up to
61.1 ◦C, which is strong enough to destroy the tumor cells completely. According to PDA,
donor-acceptor molecular pair configurations may reduce the energy bandgap and enhance
the electron delocalization of aromatic catechol rings on PDA structure, thereby improving
light absorption [30]. As a result, the functionalization of FC biopolymer had no impact on
the photothermal property of PDA nanoparticles, confirming past findings and bolstering
the idea that PDA can boost the biostability of a drug delivery system.

3.4. Dox Loading and Release

The drug loading and encapsulation efficiency mainly depended on the functional
groups in nanoparticles and drugs. As from Figure 4b, the Dox loading and encapsulation
efficiencies were calculated for bare PDA nanoparticles. The %DL and %EE for Dox-loaded
bare PDA nanoparticles were about 13% and 68%. Due to the presence of catechol phenolic
groups and amino groups in the PDA nanoparticles, the dox could easily be encapsulated
into PDA nanoparticles via the formation of pi-pi stacking, H-bonding, and electrostatic
interactions between Dox and PDA since Dox have the amino, phenolic, and hydroxyl
functional groups. In general, mesoporous silica nanoparticles can enhance the drug
loading of Dox because of their larger surface area and abundant functionalities. The
PDA-based nanoparticles have shown similar drug loading because they could involve
electrostatic, pi-pi stacking, and H-bonding interactions with drugs. Busa et al., developed
Dox-loaded PDA-coated Copper-substituted MSNs for dual cancer therapy [31]. The
nanoparticles allowed encapsulation of the Dox to be 8%. The surface functionalization can
enhance the Dox loading to the nanoparticles. Wei et al. developed Dox loaded mesoporous
silica nanoparticles decorated with PDA for cancer therapy [32]. The %DL achieved was as
much as 16.25%. The ionic liquid-based PDA nanoparticles showed maximum Dox to be
10.79%. In another report, polyzwitterion and PDA-coated MSNs showed a maximum DL
(%) of 8.8% [33]. Most of the reports showed that lower drug loading was achieved for the
PDA-based nanoparticles [31–33]. Considering the abundant carboxylic functional groups
on FC biopolymer, more Dox was encapsulated into FCPDA nanoparticles. In general,
carboxylic functionalized nanoparticles could enhance the loading of Dox via the formation
of electrolyte complexation between carboxylic groups (nanoparticles) and amino groups of
Dox [34]. Similarly, the FC also contains abundant carboxylic groups, which have negative
zeta potential at neutral pH conditions. We expect the FC functionalization with PDA
nanoparticles to enhance the Dox loading. In this study, the FCPDA nanoparticles show that
the maximum %DL and %EE were calculated as 19.3% and 80.2%, respectively [Figure 1c].
As seen in Figure 1a, the Dox was easily encapsulated with FCPDA nanoparticles via
the formation of electrostatic (-COO− groups of FCPDA and amino groups of Dox), pi-
pi stacking (between phenyl groups from FCPDA and Dox), and H-bonding (amino,
hydroxyl, and carboxylic groups from FCPDA and hydroxyl, amino, carbonyl, and carbonyl
groups from Dox) interactions. Therefore, the FC functionalization on PDA nanoparticles
also significantly improved its %DL and %EE as compared with bare PDA nanoparticles
and other reported works [31–33]. Further, to confirm the Dox interactions with FCPDA
nanoparticles, the Dox@FCPDA nanoparticles were characterized by FTIR spectra. As seen
in Figure 1a, the DOX bands were observed at 2929 (C-H), 1720 (C=O), 1621 and 1572 (N-H),
1410 (C-C), and 1064 (C-O) cm−1. These peaks were also present in the spectrum of
Dox@FCPDA nanoparticles, suggesting the successful encapsulation of Dox into FCPDA
nanoparticles.
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Although there are various potential drug delivery systems for chemotherapy for
cancer, PDA nanoparticles are advantageous for cancer therapy due to their PTT proper-
ties [35,36]. Considering the photothermal property of PDA and sensitive behavior of FC
functionalization, we expect its dual trigger release properties. The PDA-based nanopar-
ticles have shown dual responsive characteristics for the release of the drug. The PDA
nanoparticles show not only photothermal properties but also pH-sensitive properties,
since the nanoparticles stabilized through pi-pi stacking and abundant amino functional
groups, which are easily destabilized under tumor acidic pH conditions, thereby allowing
drug release to be triggered. In another study, the functionalization of PEG also showed
pH-sensitive drug release for cancer therapy [37–39]. In this work, the functionalization
of FC with PDA enhanced the Dox release under tumor acidic pH conditions because of
the dissociation of electrostatic bonds between Dox and FCPDA. In order to confirm the
pH-sensitive property of nanoparticles, the in vitro release of Dox was performed in both
tumor and normal physiological pH conditions (pH 7.4 and pH 5.0). A phosphate-buffered
saline (PBS) with pH 7.4 was chosen to mimic the typical physiological milieu of the human
body. A PBS with a pH of 5.0 was used to represent the tumor microenvironment. For this,
in vitro Dox release from FCPDA nanoparticles was evaluated in both pH 7.4 and pH 5.0
with and without NIR treatment at 808 nm with 2 W/cm2 (Figure 5). PDA-based nonthera-
peutic formulations show maximum drug release occurred in the tumor microenvironment
(pH 5.0) due to partially destroyed pi-pi interactions in PDA. In this study, a slow release
profile was observed. Only 13% of the Dox was released in 24 h in a physiological milieu
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of the human body (pH 7.4), whereas 22% Dox was released in the presence of NIR laser
illumination (808 nm), which suggests the FCPDA nanocarriers had no side effects on
normal tissue (Figure 6). A fast Dox release occurred in the tumor microenvironment
(pH 5.0), i.e., 79% within 24 h. This can be explained based on the dissociation of FCPDA
nanostructures in an acidic environment due to the protonation of amino groups and the
dissociation of pi-pi stacking bonds. When NIR illumination was at 808 nm, 94% of Dox
was released due to its pH and photothermal effects (Figure 6).
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Figure 5. % Dox release at pH 7.4 and pH 5.0 with and without NIR irradiation for 10 min at 808 nm,
2 W/cm2 (n = 3).
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Figure 6. Schematic representation of stimuli-responsive (pH and NIR active) Dox release from
FCPDA nanoparticles, and its influence on the cancer cell apoptosis with effect to the synergetic
action (Dox and heat) when irradiated at 808 nm for 10 min (2 W/cm2) (The image was created in Bio
render).
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3.5. In Vitro Cytotoxicity and Cellular Uptake Study

Initially, the PrestoBlue assay was utilized to evaluate the in vitro cytotoxicity of Dox
alone and Dox-loaded FCPDA nanoparticles without NIR laser. The cytotoxic effects of
both free Dox and Dox@FCPDA on HepG2 cells were assessed, revealing concentration-
dependent cytotoxicity for Dox and Dox@FCPDA nanoparticles (Figure 7). The half maxi-
mal inhibitory concentration (IC50) values were determined for both Dox and Dox@FCPDA,
with IC50 values of 0.84 ± 0.016 and 7.321 ± 1.284 µM, respectively.
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Figure 7. In vitro cytotoxicity of HepG2 cancer cells treated with various concentrations of Dox alone
and Dox-loaded FCPDA nanoparticles.

Further, the cytotoxicity of FCPDA and Dox@FCPDA nanoparticles (400–0 µg/mL)
with and without NIR laser treatment was examined against HepG2 cancer cells using
Prestoblue assay. The outcomes demonstrated a concentration-dependent trend in the
relative cell viability of HepG2 cells after 24 h incubation with FCPDA and Dox@FCPDA
nanoparticles. As seen in Figure 8, the HepG2 cells treated with FCPDA nanoparticles
(400–0 µg/mL) without NIR laser treatment showed 100% cell viability. In contrast, the
HepG2 cells treated with FCPDA nanoparticles with NIR laser treatment at 808 nm for
10 min showed cytotoxicity (~36% viability). The Dox@FCPDA nanoparticles treated with
HepG2 cells showed cytotoxicity with 39% cell viability. In contrast, cells treated with
Dox@FCPDA nanoparticles irradiated with NIR laser at 808 nm for 10 min indicated more
significant cytotoxicity (~8% cell viability) due to synergetic therapeutic benefits such as
Dox drug and heat, which can quickly kill the HepG2 cancer cells (Figure 6). This result
implies that the Dox@FCPDA nanoparticles could induce the photothermal effect with
different NIR laser sources.

Fluorescence microscopy analysis was used to track the Dox@FCPDA nanoparticles’
intracellular uptake activity. HepG2 cells were treated with Dox@FCPDA nanoparticles
(20 µg/mL) and then incubated for 3 and 6 h, respectively, to assess endocytosis and
subcellular localization. Fluorescence microscopy was used to detect the presence of
internalized nanoparticles in the treated cells after incubation. As seen in Figure 9, the
Dox molecules’ distinct red fluorescence signal was visible inside and around the nucleus,
indicating that the Dox@FCPDA nanoparticles were successfully absorbed by the HepG2
cancer cells. The red fluorescence signal intensities can be seen in the merged images to be
larger in the cells incubated for 6 h (Figure 9b) compared with the cells incubated for 3 h
(Figure 9a), suggesting that the Dox release was significantly increased after 6 h incubation.
The Dox@FCPDA nanoparticles, however, demonstrated improved cell uptake ability and
could be quickly absorbed by HepG2 cells in an incubation period. They could also release
the loaded Dox from the FCPDA nanoparticles under intracellular cancer cells due to their
acidic pH levels.
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Figure 9. Florescence microscopy images of HepG2 cancer cells treated with Dox@FCPDA nanopar-
ticles (a) 3 h and (b) 6 h incubation (blue color indicates the cells stained with DAPI and red color
indicates Dox).

4. Conclusions

In conclusion, we have developed Dox@FCPDA nanoparticles for combined chemo
and photothermal therapy applications. Our results demonstrate that FCPDA nanoparticles
exhibit maximum Dox loading with %DL and %EE values of 19.3% and 80.2%, respectively.
These nanoparticles also exhibit pH-responsive drug release properties. Moreover, our
FCPDA nanoparticles exhibit high photothermal conversion efficiency under NIR laser
irradiation at 808 nm with a concentration of 400 µg/mL and power density of 2 W/cm2.
In vitro cell studies further revealed that Dox@FCPDA nanoparticles enhance cytotoxicity
towards HepG2 cancer cells due to their synergistic performance in chemo-photothermal
therapy. Additionally, Dox@FCPDA nanoparticles were readily internalized by HepG2
cells, demonstrating their potential for use in synergistic chemo-photothermal combina-



Pharmaceutics 2023, 15, 1281 13 of 14

tion therapies in the field of novel cancer treatments. Despite this, our proof-of-concept
study has revealed that our newly developed carrier has the potential to function as a
photothermal chemotherapy vehicle for Dox to treat cancer. Additional in vivo studies are
required to significantly improve the delivery effectiveness of synergistic performance of
Dox@FCPDA nanoparticles for cancer therapy.
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