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Abstract: Biopolymers have significant pharmaceutical applications, and their blending has favorable
characteristics for their pharmaceutical properties compared to the sole components. In this work,
sodium alginate (SA) as a marine biopolymer was blended with poly(vinyl) alcohol (PVA) to form
SA/PVA scaffolds through the freeze–thawing technique. Additionally, polyphenolic compounds
in Moringa oleifera leaves were extracted by different solvents, and it was found that extracts with
80% methanol had the highest antioxidant activity. Different concentrations (0.0–2.5%) of this extract
were successfully immobilized in SA/PVA scaffolds during preparation. The characterization of the
scaffolds was carried out via FT-IR, XRD, TG, and SEM. The pure and Moringa oleifera extract immo-
bilized SA/PVA scaffolds (MOE/SA/PVA) showed high biocompatibility with human fibroblasts.
Further, they showed excellent in vitro and in vivo wound healing capacity, with the best effect noted
for the scaffold with high extract content (2.5%).

Keywords: poly(vinyl)alcohol; sodium alginate; Moringa oleifera leaves; cytocompatibility; wound
healing; biopolymers; polyphenolic; fibroblasts

1. Introduction

Moringa oleifera is a fast-growing drought-resistant tree belonging to the Moringaceae
(mono-generic) genus. This plant is found in a wild form as well as a cultivated form in the
plains, and its height varies from 5 to 10 m [1]. It is known as the ‘Miracle Tree’, owing to its
medicinal and nutritional values. Seeds, flowers, fruits, leaves, roots, and immature pods
are nontoxic and contain minerals, nutrients, and various antioxidants that are consumed
as food in tropical countries, and also used in traditional medicine to treat multiple diseases
without side effects. The leaf extracts of Moringa and the gum exudates from its stem have
been studied for their wound-healing properties [1], and for their film-forming and gelling
abilities [2], respectively. Additionally, the phytochemical analysis of the seed shows all the
essential constituents necessary for efficient wound healing activity [3].

Moringa oleifera leaves have phenolic compounds such as gallic acid and flavonoids
such as kaempferol and quercetin associated with the antioxidant compounds responsible
for scavenging free radicals. Antioxidants protect tissues against cellular damage by
stabilizing free oxygen molecules [4]. Hossain et al. proved that the methanolic leaf extract
of Moringa oleifera inhibited human breast cancer (MCF-7) cell growth [5].

The utilization of natural polysaccharides in wound healing continues to be a sub-
ject of intense research owing to their biodegradability and biocompatibility [6]. One
of these biosourced materials is sodium alginate (SA), which presents interesting prop-
erties such as high protein absorption ability, fast biodegradability, high hydrophilicity,
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antibacterial activity, and satisfactory hemostatic and biological properties [7,8]. SA, as a
component of different mixtures, has been used to modify the wound dressing properties
of poly(vinyl)alcohol (PVA) hydrogels [9].

One of the few synthetic biodegradable polymers is PVA, which has satisfactory prop-
erties such as nontoxicity, biocompatibility, water solubility, and good film-forming ability;
besides these, it is a cost-effective, ductile, and flexible material. Moreover, PVA has good
mechanical properties that support cell adhesion, propagation, and migration, making it
suitable for biomedical applications, particularly wound dressing fabrication [10]. The
presence of hydroxyl groups on the PVA backbone facilitates the formation of hydrogen
bonds with different biopolymers. Therefore, increasing attention has been focused on de-
signing environmentally compatible PVA-based materials for wound dressing applications.
However, PVA is inertly bioactive and cannot be administrated as a bio-functional wound
dressing for complex healing wounds. Thus, for producing bioactive PVA-based wound
dressings, it is blended with other biomaterials and/or bioactive molecules to exhibit better
cellular interaction that, in turn, accelerates wound healing [11].

Three-dimensional hydrophilic networks, such as hydrogels containing >70% water,
promote successful rehydration. They have multiple advantages, such as supporting
immediate pain control, their easy replacement, absorbance capacity, preventing the loss of
body fluids, acting as a barrier to invading microbes, and permitting gaseous exchange.
Additionally, they provide a moist environment for the wound area [12]. Hydrogels based
on natural polysaccharides are suitable candidates for wound dressing applications due to
their biocompatibility, biodegradability, and fluid absorption properties, along with their
easy synthesis and processability [13]. Furthermore, adding polysaccharides to the polymer
matrix also improves the swelling of the hydrogel wound dressings to avoid a repeated
change of dressing [14,15]. Hydrogel wound dressings are the primary therapeutic strategy
for all types of wound treatment to restore homeostasis and manage skin repair. Various
hydrogels based on natural polysaccharides and synthetic polymers have recently been
reported for drug-controlled release and wound dressing applications [16,17].

Studies have used SA/PVA as a scaffold with and without synthetic material to en-
hance its activity [7,18,19]. PVA-loaded Moringa oleifera seed extract has been synthesized as
a wound dressing material to help heal chronic wounds [20]. In another work, PVA-loaded
Moringa oleifera leaf extract with graphene oxide hydrogel was developed as a wound
dressing by Ningrum et al. for wound dressing [21]. Additionally, SA/PVA/chitosan
hydrogel with Ag2O/SiO2 and Calendula officinalis flower extract have been fabricated as a
novel and green wound dressing [22].

Accordingly, this study aims to prepare a new hydrogel by immobilizing polyphenol
extracted from the Moringa oleifera leaves onto a scaffold based on SA and PVA prepared
by the freeze–thawing cycle technique. Firstly, the polyphenolic compounds of Moringa
oleifera leaves were extracted using different solvents. Then, the antioxidant activity was
assessed by the 2,2-Diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging assay for all
extracts. The extract with the highest scavenging activity was selected and immobilized
with different concentrations (0.0–2.5%) into the SA/PVA scaffolds. After, their cytotoxicity
and wound healing abilities were assessed.

2. Materials and Methods
2.1. Materials

Moringa oleifera leaves were collected from a farm in Ismalia, Egypt. The leaves were
rinsed with tap water, dried in a thermostatic drying oven at 70 ◦C, and then crushed
into a fine powder using a mortar and pestle. Sodium Alginate and poly(vinyl)alcohol
were purchased from Sigma Aldrich. Folin–Ciocalteu’s phenol reagent and 2,2-Diphenyl-1-
picrylhydrazyl (DPPH) were purchased from Sigma-Aldrich. MTT (4,5-dimethylthiazol-2-
yl)-2,5-diphenyltetrazolium bromide) was provided by ThermoFisher Scientific (Courtaboeuf,
France). All chemical reagents were used as received.
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2.2. Methods
2.2.1. Chemical Composition of Moringa oleifera leaves

Moisture, protein, oil, ash, and fiber were determined according to AOCS 2005 stan-
dard analysis methods, and the nitrogen-free extract was calculated.

2.2.2. Extraction of Phenolic and Flavonoid Compounds

One gram of powdered leaves was subjected to 50 mL of extraction solvent (0.1 N
potassium persulfate, 0.25 N NaOH, 0.25 N HCl, 80% Methanol, 80% Ethanol, 80% Ethy-
lacetate, or 80% Acetone) and set in an ultrasonic bath at about 50 ◦C for 1 h and then
centrifuged for 20 min at 3000 rpm, giving supernatant A. Next, the residue was macerated
in another quantity of solvent. Then, the first process was repeated three times to provide
supernatants B, C, and D. Collected supernatants were used to determine the total phenolic
and flavonoid contents and estimated their antioxidant capacity [23].

2.2.3. Determination of Total Phenolic (TPC) and Flavonoids (TFC) Compounds

The content of phenolic and flavonoid compounds was determined according to the
method described in the literature [23,24]. First, 200 µL of the sample was made up to 3 mL
with distilled water, then 2 mL of 10% folin reagent was added and sample was shaken for
5 min. Next, 1 mL of 7.5% sodium carbonate was added and left for one hour in the dark.
Finally, the absorbance at 765 and 510 nm was measured using a spectrophotometer (T80
UV–Vis spectrophotometer) for the determination of TPC and TFC, respectively.

The sample analysis was achieved using liquid chromatography-electrospray ionization–
tandem mass spectrometry (LC-ESI-MS/MS) with an Exion LC AC system for separation
and a SCIEX Triple Quad 5500 + MS/MS system supplied with electrospray ionization (ESI)
for detection.

The separation was performed using a ZORBAX SB-C18 Column (4.6 × 100 mm,
1.8 µm). The mobile phases contained two eluents: A, 0.1% formic acid in water, and B;
acetonitrile (LC grade). The mobile phase was planned as follows: 2% B from 0 to 1 min,
2–60% B from 1 to 21 min, 60% B from 21 to 25 min, and 2% B from 25 to 28 min. The flow
rate was 0.8 mL/min, and the injection volume was 3 µL. For the MRM analysis of the
selected polyphenols, positive and negative ionization modes were applied in the same
run with the following parameters—curtain gas: 25 psi; IonSpray voltage: 4500 and 4500
for positive and negative modes, respectively; source temperature: 400 ◦C; ion source gas
1 and 2 were 55 psi with a decluttering potential: 50; collision energy: 25; and collision
energy spread: 10.

2.2.4. Antioxidant Activity

The DPPH scavenging assay, which is commonly known as an easy and rapid test for
assessing the presence of antioxidants and for its ability to scavenge the oxidative stress-
producing free radicals in a sample, was completed. The scavenging activity of DPPH free
radicals was measured according to the method described by Zhao and coworkers [25].

First, the DPPH solution was prepared by adding 4 mg of DPPH to 100 mL methanol
(it produced a violet color). Then, 4 mL of the solution and different volumes of Moringa
oleifera leaves extract (10, 20, 40, 80, and 100 µL) were mixed, shaken vigorously, and left in
the dark to stand at 30 ◦C for 30 min.

The decolorization of the methanolic DPPH solution was determined by measuring
the decrease in absorbance at 517 nm using a spectrophotometer model (UV VIS Spec-
trophotometer PG Instruments United Kingdom). Results were expressed as an inhibition
percentage of the DPPH using the following equation [26].

Inhibition % =
Absorbance Control − Absorbance Sample

Absorbance Control
× 100 (1)

The absorbance of control is the absorbance of the DPPH solution without extract.
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In addition, the concentration of IC50, the level at which 50% of radicals was scavenged
by test or standard sample, was measured from the calibration curve. All the experiments
were performed in triplicate.

The IC50 values can be calculated in the EXCEL program by plotting the curve of
inhibitions and corresponding concentrations.

2.2.5. Preparation of Scaffolds

A scaffold composed of sodium alginate (SA), Moringa oleifera extract (MOE), and
poly(vinyl)alcohol (PVA) was prepared by a freezing-thawing cycle (Scheme 1). Briefly, an
aqueous solution of PVA (2 g), SA (1 g) and different proportions of MOE (0, 1, 1.5, 2, and
2.5 mL) were mixed in 100 mL distilled water and sonicated in the water bath at 30 ◦C for
1 h. Then, the mixtures were poured into Petri dishes, followed by freezing for 6 h and
thawing for 6 h at 25 ◦C for six continuous cycles to provide acceptable hydrogels. Finally,
the attained scaffolds were lyophilized for further investigations and coded as S1, S2, S3,
S4, and S5, respectively.
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2.2.6. Scaffold Characterization Methods

FT-IR spectra were measured in the range of 400–4000 cm−1 on the FT-IR Spectropho-
tometer (Shimadzu 8400S).

Diano X-ray diffractometer using a CoKα radiation source energized at 45 kV and
a Philips X-ray diffractometer (PW 1930 generator, PW 1820 goniometer) with a CuK
radiation source (λ = 0.15418 nm), at a diffraction angle range of 2θ from 10 to 70◦ in
reflection mode, was used to investigate the XRD patterns of the samples.

Thermogravimetric analyses (TGA) were carried out using a TGA Perkin-Elmer
(STA6000), with a heating rate of 10 ◦C/min. The temperature ranged from room tempera-
ture up to 900 ◦C under air atmosphere.

The morphology of the hydrogels was studied by freeze-drying of hydrogels, and they
were gently cut to obtain a smooth surface. A Hitachi S-4800 scanning electron microscope
was used to visualize the surface morphology of the samples. Prior to the SEM examination,
the samples were coated with gold using a vacuum sputter coater.

2.2.7. Cell Line

Human dermal fibroblasts were purchased from Lifeline® Cell Technology (Fred-
erick, MD, USA) and maintained in Roswell Park Memorial Institute (RPMI) medium
supplemented with 10% fetal bovine serum (FBS) and 1% penicillin/streptomycin (P/S).

2.2.8. Cell Viability (MTT) Assay

Fibroblasts were seeded in a 96-well plate at a density of 5000 cells per well and left to
incubate for 24 h. Before treatments, pure extract and MOE/SA/PVA suspensions were
prepared in water containing P/S followed by sonication, and then cells were treated with
different concentrations of these suspensions, ranging from 0 to 400 µg mL−1. Control
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cells were treated with the vehicle. After an incubation of 3 days, we added the MTT
solution to cells at a final concentration of 0.5 mg mL−1 and cells were incubated for 4 h
at 37 ◦C. After the end of incubation, the medium was aspirated and the formed violet
crystals were dissolved in a mixture of ethanol and DMSO (1:1, v/v %), followed by 20 min
shaking. The absorbance was measured using multiskan Sky (ThermoFisher scientific) at
540 nm and the percentage (%) of viable cells was calculated from the following equation:
Abtest/Abcontrol × 100.

2.2.9. In Vitro Wound Healing Assay

Fibroblasts were plated at 100% confluency on 24-well plates. After washing with PBS,
a confluent area was then scratched with a pipette tip, and then cells were cultured in a
culture medium containing different concentrations of pure extract and MOE/SA/PVA.
The same volume of a complete medium was added as vehicle. The cell migration into the
gap was followed by microscopy imaging at 0 and 24 h after different treatments. At each
time point, images were acquired using an EVOS™ M5000 Imaging System (ThermoFisher
Scientific, Waltham, MA, USA) with a 4× objective.

2.2.10. In Vivo Wound Healing Assay

Casper zebrafish embryos were obtained from the lab’s facilities of molecular mech-
anisms in neurodegenerative dementia (MMDN), Inserm U1198, Montpellier University,
Montpellier. Embryos were maintained in Petri dishes with a sufficient amount of water
at 28 ◦C and a 14 h light/10 h dark cycle. At 72 h post fertilization (hpf), the caudal fin
was transected (or not) with a sterile scalpel, under anesthesia with 168 µg/mL of Tricaine
(ethyl 3-aminobenzoate, Sigma Aldrich, France) in zebrafish water, and imaged using EVOS
M5000 microscopy (T0). Embryos were kept in 24-well plates, one embryo per well, with
2 mL of water containing 0 or 1 mg/mL or 2 mg/mL of Moringa oleifera extract immobilized
SA/PVA scaffold suspensions (S5). Embryos were observed after 3 days of treatments
(T72). The area of the tail of each embryo was calculated using ImageJ software at T0 and
T72. The growth percentage in each embryo was calculated as T72/T0 × 100. Results are
presented as mean ± SEM. The number of embryos was 10 for each condition.

2.2.11. Statistical Analysis

All experiments were performed in triplicate, and values were expressed as mean ± standard
deviation (SD). Significant statistical differences in the explored parameters were deter-
mined and analyzed using one-way analysis of variance (ANOVA PC-STAT, 1985 VERSION
IA copyright, University of Georgia). A confidence interval at the 95% level and a proba-
bility (p) value of less than 0.05 were considered statistically significant at the 5% level of
significance (p < 0.05).

3. Results and Discussion
3.1. Analysis and Activities of Moringa Oleifera Leaves Extract

Our study aimed to evaluate the antioxidant biocompatibility and wound healing
potential of Moringa oleifera-leaf-extract-immobilized SA/PVA scaffold. Moringa oleifera
leaves are considered to have high contents of nutrients in the plant, such as proteins,
essential amino acids, and minerals. Figure 1 represents the chemical composition of
Moringa oleifera leaves. It shows that the protein content was about 25.9%, the oil content
was about 3.8%, and they had high ash content. Previous studies have showed that Moringa
oleifera has intense antioxidant activity due to the presence of vitamins, phenolics, and
flavonoids [27,28].
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Figure 1. Composition of Moringa oleifera leaves.

Table 1 represents the TPC and TFC and the antioxidant capacity of Moringa oleifera
leaves extracts, obtained with different solvents. The highest TPC values were 334.3 ± 2 mg/g,
219.2 ± 1.6 mg/g, and 197.1 ± 1.5 mg/g for the extracts obtained with aqueous sodium
hydroxide (0.25 N), methanol, and acetone, respectively. The high content of phenolic
compounds of 0.25 N NaOH as an extraction solvent was attributed to a high content of
proteins, carbohydrates, polysaccharides, electrolytes, and other hydrophilic nutrients,
which are sufficiently soluble in basic media [29]. In contrast, the highest TFC values were
34.9 ± 0.6 mg/g, 19.9 ± 0.5 mg/g, and 13.7 ± 0.4 mg/g, obtained via extraction with
acetone, ethanol, and methanol, respectively. The lowest TPC and TFC were obtained in the
case of extraction by K2S2O8 and HCl. In general, the TPC was higher than TFC, which may
be attributed to the higher solubility of phenolic compounds in solvents than flavonoids.

Table 1. TPC, TFC, and antioxidant activities of extracted Moringa oleifera leaves with
different solvents.

Treatments TPC mg/g TFC mg/g IC50 DPPH mg/mL

0.1 N K2S2O8 70.8 ± 0.6 g 1.3 ± 0.1 f 3.12 ± 0.02
0.25 N NaOH 334.3 ± 2 a 6.6 ± 0.2 d 4.19 ± 0.03

0.25 N HCl 91.7 ± 0.8 f 5.3 ± 0.1 e 0.82 ± 0.01
80% Methanol 219.2 ± 1.6 b 13.7 ± 0.4 c 0.81 ± 0.01
80% Ethanol 182.8 ± 1.3 d 19.9 ± 0.5 b 1.01 ± 0.02

80% Ethylacetate 121.3 ± 1.2 e 6.1 ± 0.2 d 3.27 ± 0.04
80% Acetone 197.1 ± 1.5 c 34.9 ± 0.6 a 0.91 ± 0.01

5% LSD 2.2811 1.2193 —
Results are mean values of three replicates ± standard deviation. Different letter(s) in the same column indicates
significant differences at p < 0.05.

The IC50 of the scavenging activity was determined for all extracts by the DPPH
method, which is the minimum amount that allows 50% scavenging to the free radical
of DPPH. Methanol and hydrochloric acid 0.25 N extracts had the least IC50 among all
treatments; however, the methanol extracts exhibited a larger amount of TPC and TFC than
hydrochloric acid 0.25 N extracts.

Free radicals are produced by the phagocytes when an inflammation-causing wound
occurs. One of the beneficial therapeutic strategies in wound healing could be their inhibi-
tion by the process of scavenging free radicals, since an increase in free radical production
delays the healing process.
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Moringa oleifera leaves contain phytochemical compounds such as tannins, saponins,
flavonoids, carbohydrates, and polyphenolic compounds [30]. Considering the results
of DPPH IC50, 80% methanol was selected as an extraction solvent in the next stage for
further immobilization onto the SA/PVA scaffold. The polyphenolic compounds of the
methanol extract were determined using liquid chromatography-electrospray ionization–
tandem mass spectrometry (LC-ESI-MS/MS). In this way, chlorogenic acid, coumaric,
caffeic, naringenin, 3,4-Dihydroxybenzoic acid, Cinnamic acid, and other components
could be identified (Table 2).

Table 2. Polyphenolic compounds identified in the methanol extract of Moringa oleifera leaves.

Compounds Conc. (µg/g)

Chlorogenic acid 22.5
Gallic acid 1.8
Caffeic acid 4.4

Rutin 0.6
Coumaric acid 150.4

Vanillin 4.5
Naringenin 269.8
Querectin 0.8

3,4-Dihydroxybenzoic acid 33.0
Cinnamic acid 22.0

Kaempferol 1.6
Ferulic acid 20.4

Syringic acid 1.9
Ellagic acid, Daidzein, Hesperetin, Myricetin,

Methyl gallate, Apigenin, Catechin and
Luteolin

ND

3.2. Characterization of Scaffolds
3.2.1. FT-IR Spectra

The FT-IR examined all scaffolds to identify their cross-linkers throughout their func-
tional groups [31]. Figure 2 shows the FTIR spectra of MOE/SA/PVA. The broad absorption
bands between 3000 and 3700 cm−1 were linked to the stretching vibration of the O–H
bond from inter- to intra-molecular hydrogen bonding in PVA and SA [32]. A reduction
in the intensity of this absorption of these O–H bands in the scaffolds was observed by in-
creasing the Moringa oleifera leaves extract, probably due to the interaction of the extracted
constituent with the pendant hydroxyl groups of the polymer chains. These findings
confirm the interaction of the extract components with the SA/PVA matrix. The sharp
peak with weak intensity observed between 2800 and 3000 cm−1 can be attributed to the
stretching vibration of C–H from alkyl groups. The scaffold’s peak at 1735 cm−1 was due
to C=O from residual acetate groups in PVA and ester linkage [33,34]. This confirmed the
extract functional groups’ interaction with the SA/PVA matrix. Further, a peak at about
1665 cm−1 corresponded to the hydroxyl bending mode [35]. This band was weakened,
indicating the involvement of hydroxyl groups in scaffold formation and supporting the
interactions between functional groups. The CH2 scissoring vibrations characteristic of
PVA could be seen at 1458 cm−1 [36,37]. The bands at approximately 1033 cm−1 could be
attributed to a strong C–O stretching region as a complex band resulting from C-O and
C-O-C stretching vibrations. The peak that appeared for a scaffold without extract (S1) at
841 cm−1 corresponding to C−H bending had almost weakened, which provides evidence
of the cross-linking between hydroxyl groups of extracted and SA/PVA matrix [38].



Pharmaceutics 2023, 15, 1270 8 of 15

Pharmaceutics 2023, 15, x FOR PEER REVIEW 8 of 16 
 

 

duction in the intensity of this absorption of these O–H bands in the scaffolds was ob-

served by increasing the Moringa oleifera leaves extract, probably due to the interaction of 

the extracted constituent with the pendant hydroxyl groups of the polymer chains. These 

findings confirm the interaction of the extract components with the SA/PVA matrix. The 

sharp peak with weak intensity observed between 2800 and 3000 cm−1 can be attributed to 

the stretching vibration of C–H from alkyl groups. The scaffold’s peak at 1735 cm−1 was 

due to C=O from residual acetate groups in PVA and ester linkage [33,34]. This confirmed 

the extract functional groups’ interaction with the SA/PVA matrix. Further, a peak at 

about 1665 cm−1 corresponded to the hydroxyl bending mode [35]. This band was weak-

ened, indicating the involvement of hydroxyl groups in scaffold formation and support-

ing the interactions between functional groups. The CH2 scissoring vibrations character-

istic of PVA could be seen at 1458 cm−1 [36,37]. The bands at approximately 1033 cm−1 

could be attributed to a strong C–O stretching region as a complex band resulting from 

C-O and C-O-C stretching vibrations. The peak that appeared for a scaffold without ex-

tract (S1) at 841 cm−1 corresponding to C−H bending had almost weakened, which pro-

vides evidence of the cross-linking between hydroxyl groups of extracted and SA/PVA 

matrix [38]. 

 

Figure 2. FTIR spectra of the MOE/SA/PVA. 

3.2.2. X-ray Diffraction 

The X-ray diffraction (XRD) patterns of the pure SA/ PVA scaffold and 

MOE/SA/PVA are given in Figure 3. The pure SA/PVA scaffold and MOE/SA/PVA dis-

played an intense diffraction ray at 2θ~19.5° due to the strong hydrogen-bonding inter-

actions [38,39]. These confirmed the homophonous dispersion of MOE during gelling. 

Moreover, weak XRD peaks at 2θ~40° proved a strong interaction between SA/PVA and 

MOE [40]. 

Figure 2. FTIR spectra of the MOE/SA/PVA.

3.2.2. X-ray Diffraction

The X-ray diffraction (XRD) patterns of the pure SA/PVA scaffold and MOE/SA/PVA
are given in Figure 3. The pure SA/PVA scaffold and MOE/SA/PVA displayed an intense
diffraction ray at 2θ~19.5◦ due to the strong hydrogen-bonding interactions [38,39]. These
confirmed the homophonous dispersion of MOE during gelling. Moreover, weak XRD
peaks at 2θ~40◦ proved a strong interaction between SA/PVA and MOE [40].
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3.2.3. Thermogravimetric Analysis

The thermal properties of the SA/PVA/Moringa oleifera leaves extracts were investi-
gated by thermogravimetry. Figure 4 shows TG curves of the pure and extracts-immobilized
scaffolds. As seen in the TG curves of the scaffolds, they were thermally broken down into
three degradation stages. The first stage (approximately 10% weight loss) was observed
between 25 and 100 ◦C due to the removal of physically bound water from the hydrogels.
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The second stage was detected at 100–280 ◦C (approximately 65% weight loss). This degra-
dation step could be attributed to chain scission, a degradation of the main polymer chain,
and the removal of water molecules.
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These two steps were comparable for all samples, which referred to the thermal
stability of the extracts in the scaffold up to 380 ◦C and confirmed the interaction between
the extracts and the SA/PVA matrix through hydrogen bond formation. The last step
was observed at 750, 600, 380, 450 and 460 ◦C for samples 1, 2, 3, 4 and 5, respectively
(around 20% weight loss) because of carbonization [41]. The pure SA/PVA scaffold S1
exhibited a higher thermal stability compared to the scaffolds S2–S5, containing MOE. In
more detail, for this step scaffold S1 showed 75% and 90% weight loss at 697 ◦C and 747 ◦C,
respectively. The scaffolds S2, S3, and S4 forfeited 75% of their weight at 542, 506, and
404 ◦C and reached 10% residual weight at 593, 530, and 462 ◦C, respectively, while S5
forfeited 90% of its weight at 450 ◦C and the residual weight was 10% up to 900 ◦C. During
this stage, weight loss occurred due to the decomposition, degradation, and vaporization
of the stable polymer chain that remained.

3.2.4. Morphological Study

Finally, the morphology of the materials was investigated via scanning electron mi-
croscopy (SEM). The SEM images of the materials S1–S5 are given in Figure 5. All materials
showed lamellar architectures with interconnected porosity on the micrometric level. All
materials showed homogeneous morphologies, suggesting that the components were ho-
mogeneous on the micrometric level. The lamellar morphology probably resulted from
the freeze-drying process. Similar morphologies have already been observed for related
PVA/cellulose composites [42]. It has to be pointed out that no incidence related to the
increasing content of the MOE could be detected. The increasing MOE content therefore
had no impact on the morphology of the samples.
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3.3. Cytotoxicity Study

The results presented in Figure 6 show the low toxicity of pure and extract-immobilized
SA/PVA scaffolds on human living fibroblasts. At 400 µg/mL, the cell viability values
were above 90% for S2, S3, S4 and S5. However, for S1, the pure SA/PVA scaffold, the value
was 82 ± 2%. The increase in cell viability can be explained by the beneficial properties
of Moringa extract, which was present in increasing amounts in the formulations. These
cytotoxicity results indicate the biocompatibility of MOE/SA/PVA.
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Figure 6. Cytotoxicity study of pure extract and MOE/SA/PVA on living human fibroblasts treated
with different concentrations for 72 h. Results are presented as mean ± SEM (n = 3).

3.4. In Vitro Wound Healing Studies

In the present study, we performed cell scratch assays to observe the healing effect of
the pure extract and MOE/SA/PVA on human fibroblasts treated with different concen-
trations (0, 0.25 and 0.4 mg/mL) for 0 and 24 h. As illustrated in Figure 7a, the scaffolds
showed outstanding scratch closure capacity by migrating inwardly and covering bigger ar-
eas of the scratch than the control. The results demonstrated that the scaffolds enhanced the
closure of cell scratches in a concentration-dependent manner, as represented in Figure 7b.
Further, it is worth mentioning that the best healing activity was recorded for S5, which
contained high MOE content, followed by S4 and then S3 scaffolds.
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3.5. In Vivo Wound Healing Studies

The results presented in Figure 8 showed no change in the growth percentage for the
uncut embryos after 3 days (T72); the value was 109 ± 14%. For the transected embryos, the
growth percentage increased to 182 ± 51%. With the Moringa oleifera-extract-immobilized
SA/PVA scaffolds (S5) treatment, increasing the concentration from 1 mg/mL to 2 mg/mL
was associated with an increase in the growth percentage from 216 ± 42% to 246 ± 69%,
respectively. These results showed the high capacity of Moringa oleifera-extract-immobilized
SA/PVA scaffolds (S5) on wound healing in vivo.
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Figure 8. In vivo wound healing in zebrafish embryos. At 3 days post fertilization (dpf), zebrafish
caudal tail fins were transected (or not), treated (or not) with 1 and 2 mg/mL of MOE/SA/PVA
scaffold suspension (S5) and then images were taken at 0 to 72 h of regeneration after treatment using
EVOS M5000 microscopy (a). Representative graph of the tail regeneration length capacity of the S5
scaffold when compared with the control (b).

4. Conclusions

In this work, natural polyphenolic flavonoids of Moringa oleifera leaves were extracted
and immobilized into an SA/PVA matrix. The hydroalcoholic extract of MOE showed an-
tioxidant activity and significant scavenging of free radicals. The scaffolds were successfully
prepared using the freeze–thawing technique, and were characterized via FT-IR, XRD, SEM,
and TG techniques. The FTIR spectra confirmed the hydrogen bond interaction between
MOE and the SA/PVA matrix. Additionally, the immobilization of the Moringa oleifera
leaves extracts decreased the thermal stability of the modified SA/PVA scaffolds. However,
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the incorporation of the extract had no impact on the morphology of the materials, as
shown via scanning electron microscopy. The pure extract and MOE/SA/PVA showed
higher biocompatibility to human fibroblasts up to 0.4 mg/mL concentrations. Further, the
SA/PVA scaffolds containing a high content of MOE (S5) showed excellent wound healing
capacity after 24 h of treatment at 0.4 mg/mL concentration. The S5 scaffold exhibited a
good effectiveness for regenerating the caudal tail of zebrafish after transection.
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