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D. Filipović and Zoran Markovic

Received: 8 March 2023

Revised: 7 April 2023

Accepted: 14 April 2023

Published: 17 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

pharmaceutics

Review

Artificial Intelligence in Drug Metabolism and Excretion
Prediction: Recent Advances, Challenges, and Future Perspectives
Thi Tuyet Van Tran 1,2,3 , Hilal Tayara 4,* and Kil To Chong 5,*

1 Department of Electronics and Information Engineering, Jeonbuk National University,
Jeonju 54896, Republic of Korea; tttvan@jbnu.ac.kr

2 Faculty of Information Technology, An Giang University, Long Xuyen 880000, Vietnam
3 Vietnam National University—Ho Chi Minh City, Ho Chi Minh 700000, Vietnam
4 School of International Engineering and Science, Jeonbuk National University, Jeonju 54896, Republic of Korea
5 Advances Electronics and Information Research Center, Jeonbuk National University,

Jeonju 54896, Republic of Korea
* Correspondence: hilaltayara@jbnu.ac.kr (H.T.); kitchong@jbnu.ac.kr (K.T.C.)

Abstract: Drug metabolism and excretion play crucial roles in determining the efficacy and safety of
drug candidates, and predicting these processes is an essential part of drug discovery and develop-
ment. In recent years, artificial intelligence (AI) has emerged as a powerful tool for predicting drug
metabolism and excretion, offering the potential to speed up drug development and improve clinical
success rates. This review highlights recent advances in AI-based drug metabolism and excretion
prediction, including deep learning and machine learning algorithms. We provide a list of public
data sources and free prediction tools for the research community. We also discuss the challenges
associated with the development of AI models for drug metabolism and excretion prediction and
explore future perspectives in the field. We hope this will be a helpful resource for anyone who is
researching in silico drug metabolism, excretion, and pharmacokinetic properties.

Keywords: drug discovery; drug metabolism; drug excretion; artificial intelligence; machine learning;
deep learning; in silico method; web servers

1. Introduction

Metabolism and excretion are two important processes in pharmacokinetics. Figure 1
shows an overview of drug metabolism and excretion [1,2]. Metabolism is the biolog-
ical transformation by which most drugs undergo a change in their chemical structure
in the body to produce the expected therapeutic effects of a certain drug and be more
easily eliminated from the body [3]. Drug excretion refers to the elimination of drugs or
their metabolites from the body [4]. Drug metabolism can yield metabolites that differ
greatly from the original drug’s physical and pharmacological characteristics [5]. The rate
of metabolism dictates the length and strength of a drug’s pharmacologic effect. Drug
metabolism also plays a role in multidrug resistance in infectious illnesses and cancer
chemotherapy, and the effects of certain medications as inhibitors or substrates of enzymes
involved in xenobiotic metabolism are frequent causes of adverse drug interactions [6].
Drug metabolism affects drug efficacy and toxicity in humans and laboratory animals.
Metabolism is also responsible for the clearance of more than 70% of clinical medicines [5,7],
so it has been extensively researched as part of drug research and development (R&D)
efforts. Both metabolism and excretion are tightly regulated by the body to maintain
homeostasis and ensure that harmful substances are eliminated from the body. Disrup-
tions to these processes can lead to the accumulation of toxic substances, which can cause
many health problems, such as kidney and liver damage, metabolic disorders, and drug
toxicity [8]. Drug metabolism and excretion play critical roles in the pharmacokinetics of
drugs and have important implications for the R&D of new drugs, as well as for the safe
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and effective use of existing drugs. By understanding and predicting drug metabolism and
excretion, researchers can screen unwanted drug candidates and design new drugs with
improved pharmacokinetics, reduced toxicity, and increased efficacy.
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Predicting drug metabolism and excretion by in vitro and in vivo research is one strat-
egy. These experimental assessments of metabolism and excretion are typically time- and
money-consuming. For instance, testing a CYP inhibition from a non-good laboratory
practice costs about USD 1000 and takes one week [9]. Given the high expense of conven-
tional drug R&D, numerous computational algorithms for predicting the metabolism and
excretion of therapeutic candidates have been developed, allowing for the screening of a
large number of chemical compounds and subsequently finding a small number of viable
candidates [10]. Especially, in silico approaches are increasingly being used to predict drug
metabolism and excretion, and are widely regarded as the best “fail early and fail cheap
strategy”, allowing for lower costs, time savings, and thus lower attrition rates in the late
stages of drug development.

Artificial intelligence (AI) can now be employed across the entire process of devel-
oping new medicines [11]. AI methods are also increasingly being used in the field of
drug metabolism and excretion to predict the potential of drugs to be metabolized and
excreted by the body. The use of AI allows for the rapid screening of vast libraries of
compounds, yielding useful insights into the compounds’ potential metabolism and ex-
cretion. Predictions made using AI techniques may be more accurate than those made
using more conventional approaches since they can be trained using enormous amounts
of experimental data. Predicting the likelihood of metabolic and excretory interactions
between numerous drugs at once is a strength of AI systems that can aid in drug discovery.
AI techniques can provide useful information on the potential for metabolism and excre-
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tion, reducing the time and money needed to conduct in vitro and in vivo experiments.
Moreover, the use of AI techniques in drug R&D has the potential to increase both the safety
and effectiveness of drugs by creating new compounds with enhanced metabolism and
excretion. In this review, we have summarized the background of drug metabolism and
excretion and highlighted the key properties of these processes. We took a deep dive into
the most recent developments in the use of AI for medication metabolism and excretion
prediction. We also provide the research community with a directory of publicly available
resources for predicting metabolism and excretion. Research in this area has a number of
obstacles, yet there is also promising future growth. We hope this review will be of interest
to researchers working to enhance and develop several high-precision prediction models
for drug metabolism and excretion.

2. Evaluation Metrics

Evaluating the performance of AI methods is critical for measuring a method’s effec-
tiveness and fairly comparing the score of various models [12]. In this review, we present
the following evaluation metrics: coefficient of determination (R2), root mean squared error
(RMSE), specificity (SP), sensitivity (SE), Matthew’s correlation coefficient (MCC), preci-
sion, recall, F1 score, accuracy (ACC), Jaccard score, and area under the receiver operating
characteristic curve (AUC). The formulas are as follows:

R2 = 1 − ∑(yi − ŷ)2

∑
(

yi −
−
y
)2 Range [0, 1] (1)

RMSE =

√
1
N ∑N

i=1(yi − y )̂2 (2)

SE =
TP

TP + FN
Range [0, 1] (3)

SP =
TN

TN + FP
Range [0, 1] (4)

MCC =
(TP ∗ TN)− (FP ∗ FN)√

(TP + FN) ∗ (TP + FP) ∗ (TN + FN) ∗ (TN + FP)
Range [0, 1] (5)

ACC =
TP + TN

TP + TN + FP + FN
Range [0, 1] (6)

Jaccard =
TP

TP + FP + FN
Range [0, 1] (7)

Precision =
TP

TP + FP
Range [0, 1] (8)

Recall =
TP

TP + FN
Range [0, 1] (9)

F1 score =
2 × Precision × Recall

Precision + Recall
Range [0, 1] (10)

AUC = Area under the receiver operating characteristic curve Range [0, 1] (11)

In Equations (1) and (2), N, yi, ŷ, and y represent the total number of observations, the
actual value for the ith observation, the predicted value of y, and the average value of y,
respectively. In Equations (3)–(9), the numbers of true negatives (TN), false negatives (FN),
true positives (TP), and false positives (FP) are used as the inputs of metric.
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R2 is a statistical measure that represents the portion of the variance in the depen-
dent variable that is predictable from the independent variable(s). The value ranges
between 0 and 1, where 1 indicates that the model perfectly predicts the dependent vari-
able. RMSE is a measure of the average magnitude of the error between predicted values
and actual values. It is computed by obtaining the square root of the mean squared error.
R2 and RMSE are both commonly used to evaluate the performance of regression models.
They can be used to evaluate the performance of a model that predicts the metabolism and
excretion outcomes. High R2 and low RMSE values indicate that the model can accurately
predict the metabolism and excretion outcomes, while low R2 and high RMSE values
suggest that the model cannot accurately predict the metabolism and excretion outcomes.

SE is the ratio of true positive predictions among all actual positive cases. SP is the
proportion of true negative predictions among all actual negative cases. MCC is a measure
influenced by all values including TP, TN, FP, and FN; it is a measure of the balance between
true positives and true negatives. ACC is the proportion of correct predictions among all
predictions. It measures the overall performance of the model. The Jaccard score, which
is an intersection of union with respect to the minority class, is another obvious method
to cope with unbalanced data [13]. Precision is the proportion of true positive predictions
among all positive predictions. It measures the ability of the model to avoid false positive
predictions. Recall (also known as sensitivity) is the proportion of true positive predictions
among all actual positive cases. It measures the ability of the model to identify all the
positive cases. The F1 score is the harmonic means of precision and recall. It is a measure
that considers both precision and recall and it can be a better metric than precision and
recall alone. AUC is a metric of a model’s ability to differentiate between positive and
negative classes. AUC ranges from 0 to 1, where a value of 1 indicates that the model can
perfectly distinguish between positive and negative cases, while a value of 0.5 indicates
that the model is not able to distinguish between positive and negative cases. In AI-based
drug metabolism and excretion prediction, these metrics are commonly used as evaluation
metrics for classification problems.

There is no single metric that is superior in all cases. When evaluating and comparing
the performance of different AI-based models for drug metabolism and excretion prediction,
it is important to use appropriate evaluation metrics, use multiple evaluation metrics, make
sure when comparing the model that all of the metrics are the same, consider the variability
and uncertainty of the model’s performance, and consider the real-world implications of
the model performance.

3. Drug Metabolism Prediction

Drug metabolism refers to the biochemical processes by which the body modifies
and eliminates drugs and other foreign substances. The body metabolizes drugs to either
activate or inactivate them, and this can influence their therapeutic effects and potential for
toxicity. The process of drug metabolism reactions can be classified into two main phases
based on their chemical nature [3,6] (Figure 2). Phase I metabolism typically involves
the oxidation, reduction, or hydrolysis of the drug, which can produce metabolites that
are either inactive, active, or toxic. This process is primarily carried out by a family
of enzymes called cytochrome P450 (CYP) enzymes. Phase II metabolism involves the
conjugation of the modified drug with another molecule, such as glucuronic acid, sulfate,
or amino acids. This process increases the water solubility of the drug and makes it easier
to excrete. Phase II reactions are typically carried out by a variety of enzymes, including
UDP-glucuronosyltransferases (UGTs), sulfotransferases, and glutathione S-transferases
(GSTs). It is crucial to keep in mind that these reactions do not have to happen in order;
they could even occur in reverse, in phase II, then in phase I, or as a single reaction [14].
The rate and extent of drug metabolism can vary greatly depending on the specific drug
and individual factors such as genetics, sex, age, and disease status. Some drugs may be
metabolized very quickly, while others may be metabolized very slowly, leading to the
accumulation of potentially toxic levels of the drug in the body.
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The human CYP family has 57 isozymes [15]. CYPs are the primary enzymes involved
in the metabolism of drugs, accounting for approximately 75% of overall metabolism, with
about 95% of this activity being attributed to five isozymes, including 1A2, 2C9, 2C19,
2D6, and 3A4 [16]. The CYP-mediated metabolism of a novel chemical entity is of great
importance during drug development because it has the potential to significantly impact
the compound’s initial bioavailability, desired activity, and safety profile [17]. Quanti-
tatively, UGTs accounted for 14% of the total metabolites collected, second only to the
occurrence of CYP-catalyzed reactions [18]. Therefore, any study that leads to further in-
sight into the mechanical aspects of metabolism will significantly support drug candidates’
rational design.

The majority of drug-related metabolism takes place in the liver, as the enzymes that
facilitate the reactions are concentrated there. Some drugs can be inhibitors or inducers of
metabolic enzymes. If one drug is an inhibitor of the metabolism of another drug, when
the two drugs are taken together in the body, the exposure of the other drug may be higher
than expected, leading to potential safety problems. If one drug is an inducer of an enzyme
that metabolizes another drug, when the two drugs are used concurrently, the effect of
the other drug may be lower than expected, leading to adverse potential pharmacological
effects in the body. This phenomenon is commonly known as a drug–drug interaction [19].
Metabolism can also create metabolites that are good for medicine and toxic metabolites [18].
Therefore, enzymatic metabolism studies are used to resolve metabolic stability, quantify,
and identify main metabolites, identify metabolic pathways, and assess the possibility of
drug–drug interactions throughout the preclinical stage and drug discovery [20].

In silico, AI applications in the field of metabolic prediction fall into three major cate-
gories: (1) the sites of metabolism (SOMs) prediction, (2) metabolite structures prediction,
and (3) metabolic pharmacokinetics prediction [10,21]. We provide recent developments of
AI models in each category in the sections that follow.
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3.1. SOMs and Metabolite Structure Predictions

The prediction of SOMs is critical for a xenobiotic since it gives critical information
for the derivation of potential metabolites [22]. Chemists can usually predict the structure
of a metabolite by knowing the atom position in the molecule where the metabolizing
reaction is most likely to occur [23]. In silico approaches for predicting the SOMs and
metabolite structures in CYP-mediated processes are commonly used as a starting point
for metabolic pathway research, which can also help with drug/lead optimization. Much
software to predict SOMs for phases I and II has been developed, such as FAME [24],
FAME 2 [25], FAME 3 [26], GLORY [23], GLORYx [27], BioTransformer [28], CypReact [13],
CyProduct [29], and PreMetabo [30], summarized in Table 1.

CypReact software uses machine learning (ML) to predict when a small chemical will
react with any of the nine critical CYP isozymes. It employs a random forest (RF) model for
each of the seven isozymes (1A2, 2A6, 2B6, 2C8, 2C19, 2E1, 3A4) and ensemble models (RF,
support vector machine (SVM), logistic regression, and decision tree) for the remaining two
isozymes (2C9, 2D6). Each model predicts substrate specificity based on a set of structural
features and physicochemical properties of a molecule. Authors used 679 compounds from
XenoSite [31] and manually gathered 1053 unreacted compounds to enhance the quality and
predictability of the dataset, including known medicines, pesticides, dietary components,
pollutants, endogenous metabolites, and a range of other substances. CypReact’s classifiers
produce extremely high performance, with AUC scores between 83 and 92%. Additionally,
CypReact is statistically superior to the baseline, according to a simple paired t test, with
p values < [4.17E–6, 2.60E–4, 2.36E–5, 1.46E–4, 4.41E–5, 5.01E–6, 3.23E–5, 6.44E–6, 3.25E–6]
for the nine CYPs. With p values < [4.90E–6, 5.25E–6, 1.54E–7], CypReact is statistically
superior to SMARTCyp [32] for all three of the studied isoforms.

Developed by the same author team, CyProduct is an in silico metabolism predictor
to accurately predict the byproducts of human CYP metabolism. It consists of three tools:
(1) CypReact predicts whether the query compound reacts with a specific CYP enzyme;
(2) CypBoM Predictor predicts the reaction’s “bond site”; and (3) MetaboGen produces
metabolic byproducts based on the bond-site prediction of CypBoM. It predicted the
metabolic biotransformation products of the nine most essential human CYP enzymes:
1A2, 2A6, 2B6, 2C8, 2C9, 2C19, 2D6, 2E1, and 3A4. CypBoM makes use of a novel notion
called “bond of metabolism” (BoM), which complements the classic “site of metabolism” by
identifying the collection of chemical bonds that are changed or created during a metabolic
reaction. A BoM dataset for 1845 CYP-mediated phase I reactions was created, and it was
used to train the CypBoM predictor to anticipate the reactive bond position on substrate
molecules. The cross-validated Jaccard score generated by CypBoM Predictor ranged
between 0.380 and 0.452 for reactive bond prediction for the nine CYP enzymes. CypBoM
Predictor’s Jaccard score is 0.13 better than that of FAME 2 and 0.12 better than that of
FAME 3 in terms of SOMs on the 86 compounds. Moreover, CyProduct surpassed the other
software tools, including ADMET Predictor, GLORY, and BioTransformer, in predicting
metabolites by an average of 200% across variants of a testing dataset of 68 CYP substrates
and 30 non-reactants concerning Jaccard scores. More specifically, for the BioTransformer
dataset, the performance of CyProduct is about 30% better than that of BioTransformer
and ADMET Predictor. Among the above software packages, CyProduct software is the
most recently published and has a relatively detailed and clear performance comparison
with others.
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Table 1. Public metabolism prediction tools.

Name Metabolism Prediction Methods Website * Ref.

CyProduct (CypReact,
CypBoM, MetaboGen)

Reactant, BoM for CYP,
metabolite structure ML https://bitbucket.org/wishartlab/

cyproduct/src/master/ [29]

GLORYx Metabolite structure ML https://nerdd.univie.ac.at/gloryx/ [27]

FAME 3 Phase 1 and 2 SOMs for
CYP ML https://nerdd.univie.ac.at/fame3/ [26]

BioTransformer 3.0 Metabolic transformation rule-based/
knowledge-baseb, ML http://biotransformer.ca/ [28]

PreMetabo Phase 1 and 2 SOMs for
CYP, UGT, and SULT

Arrhenius equation
and EaMEAD model https://premetabo.bmdrc.kr/ [30]

SMARTCyp 3.0 SOMs for CYP rule-based http://smartcyp.sund.ku.d/ [33]

HelixADMET CYP inhibitors and
substrates GNN https://paddlehelix.baidu.com/app/

drug/admet/train [34]

Interpretable-ADMET CYP inhibitors and
substrates GAT, GCNN http://cadd.pharmacy.nankai.edu.cn/

interpretableadmet/ [35]

FP-ADMET CYP inhibitors and
substrates RF https://gitlab.com/vishsoft/fpadmet [36]

ADMETlab 2.0 CYP inhibitors and
substrates GCNN https://admetmesh.scbdd.com/ [37]

AdmetSAR 2.0 CYP inhibitors and
substrates RF, k-NN, SVM http://lmmd.ecust.edu.cn/admetsar2/ [38]

SwissADME CYP inhibitors MLR, RNN, SVM http://www.swissadme.ch/ [39]

ICDrug ADMET CYP inhibitors and
substrates RF www.icdrug.com/ICDrug/ADMET [40]

Virtual Rat CYP inhibitors RF https://virtualrat.cmdm.tw/ [9]

DL-CYP CYP inhibitors DNN http://www.pkumdl.cn/deepcyp/
home.php [41]

CYPstrate CYP substrates RF, SVM https://nerdd.univie.ac.at/cypstrate/ [42]

CYPlebrity CYP inhibitors RF https://nerdd.univie.ac.at/cyplebrity/ [43]

SuperCYPsPred CYP inhibitors RF http://insilico-cyp.charite.de/
SuperCYPsPred/ [44]

* Websites were accessed on 15 October 2022. Abbreviations: k-NN: k-nearest neighbor, MLR: multiple linear
regression, RNN: recurrent neural network, DNN: deep neural network, GCNN: graph convolutional network,
GAT: graph attention network.

FAME, FAME 2, GLORY, FAME 3, and GLORYx are extensive series of legacy metabolic
prediction software, respectively. The latest version, GLORYx, has extended the approach
from GLORY, which combines SOMs prediction with a collection of reaction rules to predict
phase I and II metabolism. Researchers used the SOMs probabilities prediction by the FAME
3 ML model on the SOMs dataset containing 1748 parent molecules from MetXBioDB [28]
and the DrugBank database to achieve the predicted metabolites. FAME 3 uses extremely
randomized tree classifiers and circular descriptors, including 15 basic 2D CDK descriptors
and circular atom-type fingerprints. On a curated test dataset collecting phase I and phase
II metabolites, GLORYx achieved an AUC of 0.79 and a recall of 77%. This performance was
better than that of the GyGMa tool [45] on the same dataset but not better when regarding
only phase II metabolite prediction. Furthermore, the authors note that it is difficult to
give a firm definition of the area of application of GLORYx due to the scarcity of available
high-quality data on small-molecule metabolism.

3.2. CYP Inhibitor and Substrate Prediction

As mentioned above, the CYP enzyme family plays a crucial role in drug metabolism.
CYP inhibitors can affect the metabolism of drugs by reducing the activity of the CYP
enzymes involved in their metabolism, leading to changes in the pharmacokinetics and
pharmacodynamics of the drugs. On the other hand, the rate and extent of CYP substrate

https://bitbucket.org/wishartlab/cyproduct/src/master/
https://bitbucket.org/wishartlab/cyproduct/src/master/
https://nerdd.univie.ac.at/gloryx/
https://nerdd.univie.ac.at/fame3/
http://biotransformer.ca/
https://premetabo.bmdrc.kr/
http://smartcyp.sund.ku.d/
https://paddlehelix.baidu.com/app/drug/admet/train
https://paddlehelix.baidu.com/app/drug/admet/train
http://cadd.pharmacy.nankai.edu.cn/interpretableadmet/
http://cadd.pharmacy.nankai.edu.cn/interpretableadmet/
https://gitlab.com/vishsoft/fpadmet
https://admetmesh.scbdd.com/
http://lmmd.ecust.edu.cn/admetsar2/
http://www.swissadme.ch/
www.icdrug.com/ICDrug/ADMET
https://virtualrat.cmdm.tw/
http://www.pkumdl.cn/deepcyp/home.php
http://www.pkumdl.cn/deepcyp/home.php
https://nerdd.univie.ac.at/cypstrate/
https://nerdd.univie.ac.at/cyplebrity/
http://insilico-cyp.charite.de/SuperCYPsPred/
http://insilico-cyp.charite.de/SuperCYPsPred/
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metabolism can be influenced by the presence of CYP inhibitors or other factors. Predicting
the potential of a drug to be a CYP inhibitor or substrate is a complex process that involves
many factors and variables, including the individual’s genetic makeup, age, and overall
health. As such, predictions may not always be accurate and may need to be confirmed
through further testing and analysis.

Moreover, especially in recent years, there have been a lot of studies focusing on the
prediction of specific metabolic CYP isoforms with remarkably good performance. Many
prominent studies have focused on predicting the 5 major CYP inhibitors (1A2, 2C19,
2C9, 2D6, and 3A4), DeepCYP [41], SuperCYPsPred [44], CYPlebrity [43], iCYP-MFE [46],
VirtualRat [9], and others [47,48]. Some studies focused on CYP substrate prediction, such
as [33,47,49]. Some studies have focused on predicting only one CYP, such as CYP1B1 [50],
CYP1A2 [51], CYP2C8 [52], CYP2C9 [53,54], and CYP3A4 [55,56]. Their performances are
summarized in detail in Table 2.

SuperCYPsPred [44] is a free, friendly, and publicly accessible web application that
employs well-established ML techniques to predict five key CYP inhibitors, including 1A2,
2C19, 2C9, 2D6, and 3A4. The model was constructed using RF and various types of data
sample methods on a dataset of 1170 pharmaceuticals with Morgan and MACCS circular
fingerprints from their in-house SuperCYP and PubChem databases. SuperCYPsPred is
extremely accurate, with an average cross-validation ACC of 93% and an average external
validation ACC of 88.2%. SuperCYPsPred is among the most effective free tools for CYP
prediction, making it a good preclinical drug discovery and development screening tool.

Table 2. Summary of AI methods to predict CYP subtypes from 2019 to 2022.

CYP Subtypes Methods Data Sources Dataset Size
(Compounds) Best Performance Ref.

1A2, 2C19, 2D6, 2C9 and
3A4 inhibitors RF PubChem, SuperCYP 18,313 ACC = 0.97, AUC = 0.98 [44]

1A2, 2C9, 2C19, 2D6 and
3A4 inhibitors RF ChEMBL, PubChem, ADME 134,844 AUC = 0.92, ACC = 0.83 [43]

1A2, 2D6, 2C9, 2C8, 2C19,
and 3A4 inhibitors RF [52,57] 17,652 ACC = 0.868, AUC = 0.741 [36]

CYPs 1A2, 2C9, 2C19, 2D6
and 3A4 inhibitors RF, SVM, k-NN PubChem 65,467 AUC =0.93 [46]

1A2, 2D6, 2C9, 2C19, and
3A4 inhibitors

2D6, 2C9,
and 3A4 substrate

RF, SVM, k-NN [57] 77,490
2018 ACC = 0.855, AUC = 0.84 [38]

1A2, 2D6, 2C9, 2C19,
and 3A4 inhibitors DT [58,59] 64,129 ACC = 0.93, Recall = 0.924 [9]

1A1, 1A2, 2A6, 2B6, 2C8,
2C9, 2C19, 2D6, 2E1,
and 3A4 substrates

Improved Bayesian method

SuperCYP [60],
PubChem, DrugBank,
CYP450 Engineering

Database [61,62], Meta-CYP

7114 AUC = 0.92, ACC = 0.90 [49]

1A2, 2C19, 2C9, 2D6, and
3A4 inhibitors

1A2, 2C19, 2C9, 2D6, and
3A4 substrates

MGAF ChEMBL, PubChem,
OCHEM, literature

62,771 (inhibitors)
3291 (substrates) ACC = 0.886, AUC = 0.948 [37]

1A2, 2C19, 2C9, 2D6, and
3A4 inhibitors2C9, 2D6,

and 3A4 substrates
GCNN, GAT ChEMBL, PubChem,

DrugBank, literature
63,921 (inhibitors)
2053 (substrates) ACC = 0.85, AUC = 0.93 [35]

1A2, 2C19, 2C9, 2D6, and
3A4 inhibitors

1A2, 2C19, 2C9, 2D6, and
3A4 substrates

GNN PubChem, CypReact [13],
SuperCYP [44]

64,801 (inhibitors)
9233 (substrates) AUC = 0.967 [34]

1A2, 2D6, 2C9,
and 2C19 inhibitors RF, GBDT, XGB, DNN, CNN [41] 53,179 ACC = 0.974, AUC = 0.991 [63]

1A2, 2C9, 2C19, 2D6
and 3A4 inhibitor MT-DNN PubChem 153,484 AUC = 0.937, ACC = 0.895 [48]

2C8 inhibitors RF, SVM, k-NN, LR, ANN PubChem and
literature [64,65] 514 AUC = 0.90, ACC = 0.89 [52]
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Table 2. Cont.

CYP Subtypes Methods Data Sources Dataset Size
(Compounds) Best Performance Ref.

2C9 inhibitors RF, SVM ChEMBL 8141 ACC = 0. 843, MCC = 0.695 [54]

2C9 inhibitors
BT, multilayer

feedforward of resilient
backpropagation network

PubChem >35,000 AUC = 0.85 [53]

3A4 inhibitors GCNN combined
with the MT-DNN

ChEMBL and [66]
3774 R2 = 0.692

[67]
89,619 R2 = 0.414

3A4 inhibitors SVM, XGB, and RF
In-house, public 30,768 ACC = 0.927, sensitivity = 0.788

[56]
In-house 26,138 ACC = 0.90, AUC = 0.908

1B1 inhibitors
RF, SVM, ANN ChEMBL, Pubchem,

and [68–70]

714 MCC = 0.95
[50]

1A1 inhibitors 658 MCC = 0.96

1A2 inhibitors CNN PubChem 21,721 ACC = 0.722, AUC = 0.819 [51]

Abbreviations: ANN: artificial neural networks, CNN: convolutional neural networks, GNN: graph neural
network, MT-: multitask-, DT: decision trees, GBDT: gradient boosting decision trees, LR: linear regression,
XGB: extreme gradient boosting, BT: boost tree, MGAF: a multi-task graph attention framework.

In addition, some large recently developed ADMET (absorption, distribution, metabolism,
excretion, and toxicity) prediction tools also integrate CYP prediction with high efficiency,
such as HelixADMET [34], Interpretable-ADMET [35], FP-ADMET [36], ADMETLab 2.0 [37],
and admetSAR 2.0 [38]. Many other prominent tools are summarized in Table 1. We also
summarize in detail in Table 2 the AI models developed since 2019 that focus on predicting
CYP subtypes. It is important to note that while these methods can provide useful informa-
tion, they are not always predictive of the effects seen in vivo, and further in vivo studies
are needed to fully understand the impact of CYP inhibition and substrate interactions on
drug metabolism and efficacy.

3.3. UGTs Prediction

Glucuronosyltransferases are responsible for the glucuronidation process, a primary
and most important part of phase II metabolism [71]. The UGT enzyme [15] catalyzes the
addition of a glucuronic acid moiety to xenobiotics, which is the primary method through
which the human body eliminates the most frequently prescribed medications. It is also
the primary route of chemical elimination for the majority of medications, dietary agents,
poisons, and endogenous compounds from the diet, environmental sources, and pharma-
ceutical industries. However, compared with phase I reactions, phase II metabolism is
much less noticeable, although it has an important impact on modulating pharmacological
effects [72]. Predicting the potential of a drug to be metabolized by UGTs is an important
aspect of drug development, as it can help to determine the risk of drug–drug interactions
and potential adverse effects. Table 3 summarizes several studies predicting UGTs in
recent years.

Mazzolari et al. built two models using molecular descriptors and RF algorithms to
predict UGT-mediated metabolism [73]. The first model predicts whether a molecule is
prone to conversion to glucuronide using 2192 molecules from the MetaQSAR database [74],
achieving an AUC of 0.94 and an MCC of 0.76 in the internal evaluation and an AUC of 0.90
and an MCC of 0.70 in external evaluation using 120 additional xenobiotics. The second
model differentiates between the two major forms of glucuronidation by determining whether
conjugation takes place on an oxygen or nitrogen atom (O- or N-glucuronidation) using
661 O-glucuronidation and 114 N-glucuronidation substrates, with a recall value of 0.78.
This result emphasizes the need to utilize well-curated datasets when developing new
methodologies for predicting phase II metabolism and demonstrates a practical application
of the MetaQSAR database.

The SOM prediction model was developed by Cai et al. [75] for four subtypes of
UGT-mediated reactions, including AlOH, ArOH, COOH, and nitrogen, using DT, RF,
and AdaBoost methods. They used 400 drugs metabolized by UGT from the Handbook of
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Metabolic Pathways of Xenobiotics [76] and two external test sets from previous studies [77–79].
Differently sized atom environment fingerprints were used to describe the SOMs. The best
performance of their optimal models yielded an ACC of 86.7% on the test set and 79.8% on
the external test sets. However, the use of small and undiversified datasets is one of their
limitations, which hinders the full exploitation of the possibilities of ML methods and the
performance is not appreciated.

PreMetabo [30] is an available web tool to predict phases I and II drug metabolism using
knowledge-based prediction models. For phase I drug metabolism prediction, Hwang et al.
used the EaMEAD model based on the Arrhenius equation for four CYP enzymes (1A2,
2C9, 2D6, 3A4) to predict the SOMs on the drug molecule. In phase II, they developed a con-
sensus classification model using SVM to predict the UGT and SULT substrate. PreMetabo
used 200 substrates of each CYP from Fujitsu ADME database for evaluation and com-
parison with the BioTransformer tool [28]. The predictability of the primary metabolite in
the top-3 was determined to be from 72.5 to 84.5% for four CYPs in the SOMs prediction
model. The PreMetabo recall value of all CYPs was higher than the BioTransformer recall
value on the same dataset and it was judged to be more practical than BioTransformer.
Besides, in phase II, they used UGT and SULT substrates from MDL metabolism and Fujitsu
ADME databases with 1024 ECFP4 fingerprints and 881 PubChem fingerprints. The highest
accuracy of their models was determined to be 93.9 and 80.7%, respectively, for internal
validation. Moreover, PreMetabo achieved a UGT substrate prediction ACC of 81% on the
external test dataset containing 11 FDA-approved drugs.

Table 3. Summary of AI methods to predict UGT property from 2019 to 2022.

Methods Data Sources Dataset Size (Compounds) Performance Ref.

RF MetaQSAR 7962 MCC = 0.76, AUC = 0.94 [73]

DT, RF, AdaBoost Handbook of Metabolic Pathways of
Xenobiotics [76], KEGG [77–79] 586 ACC = 0.867, AUC = 0.928 [75]

LR, SVM Fujitsu ADME database and MDL
metabolism database 200 ACC = 0.81 [30]

4. Drug Excretion Prediction

Drug excretion is the process through which medications are excreted from the body,
as metabolites or as original drugs [4]. Excretion is a complicated process involving many
elimination routes. The kidneys are in charge of excreting the majority of chemicals that
are water-soluble. Additionally, the biliary system can excrete medications that are not
absorbed by the stomach tract. The number of drugs eliminated by the intestines, saliva,
sweat, breast milk, and lungs is usually insignificant. On the other hand, certain volatile
anesthetics are capable of being exhaled via the lungs. Additionally, even minute amounts
of the drug in a nursing woman’s breast milk can have an effect on her nursing infant.
During development, drug excretion properties contribute to the validation of toxicity
studies, aid in assessing safety before the first dose in humans, provide dosimetry data
in humans for the clinical, and indicate the possibility of drug–drug interactions. The
main pharmacokinetic parameters for drug excretion include clearance and half-life (t1/2).
In the next section, we present recent advances in predictive research clearance and t1/2
properties using AI.

4.1. Clearance Prediction

The volume of plasma cleared of a drug over a given time period is referred to as drug
clearance [80]. As a result, the unit of measurement for drug clearance is volume/time.
Another equation can be used to compute the discharge. Clearance is computed by di-
viding the rate of elimination of a drug from plasma (mg/min) by its concentration in
plasma (mg/mL). The entire ability of the body to eliminate the medication from plasma
is comprised of renal clearance, hepatic clearance, and clearance from all other tissues.
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Clearance may be affected by body weight and surface area, cardiac output, renal function,
liver function, plasma protein binding, concomitant medications, and changed expression
presence of drug-metabolizing enzymes [81]. Clearance is a critical pharmacokinetic param-
eter to consider in both drug discovery and clinical practice because clearance is a factor
of all other relevant pharmacokinetic parameters, including half-life, oral bioavailability,
and effective dose [82]. Many recent studies predicting clearance property in silico are
summarized in Table 4.

Recently, software has been developed to predict ADMET properties named FP-ADMET,
which integrates clearance prediction including human renal clearance, intrinsic clearance,
metabolic intrinsic clearance, and human liver microsomal clearance [36]. Researchers used
a fingerprint-based RF algorithm for the four-clearance prediction models. The data used
to evaluate the four models were 636 compounds, 244 compounds, 5278 compounds, and
5348 compounds, respectively, which were collected from many previous studies [66,83–85].
The human renal clearance prediction model of FP-ADMET gave better predictive results
than the study of Chen et al. [85] on the same dataset and algorithm with R2 of 0.27 and
RMSE of 0.53 (compared to R2 = 0.2 and RMSE = 1.8). However, the intrinsic clearance
prediction model of FP-ADMET showed no better predictive results than the study of
Hsiao et al. [84] on the same dataset with R2 of 0.29 (compared to R2 = 0.96). The accuracy
of the metabolic intrinsic clearance model by FP-ADMET was 74%, higher than the accuracy
of the RF model used by Esaki et al. [83] on the same dataset (72.3%), but the radial SVM
model used by Esaki et al. had a higher ACC of 77.1%. The performance of the human
liver microsomal clearance model by FP-ADMET was no better than that of the MT-DNN
model used by Wenzel et al. [66] on the same dataset, with an R2 of 0.56 (compared
to R2 = 0.624). The RF model developed by Wang et al. for the clearance prediction
also achieved higher performance than other models such as SVM, GBM, and XGB on
1352 compounds, with an R2 of 0.875 and an RMSE of 0.103 [86]. Furthermore, Kosugi
and Hosea once again proved that the total plasma clearance prediction model using the
RF algorithm is more efficient than many other algorithms, such as radial basis function
fitting (RBF), partial least squares (PLS), random forest regression (RFR), Gaussian process
models (GP) with two-dimensional search for parameters (GP2DS), fixed hyperparameters
(GPFixed), hyperparameters obtained by forward variable selection (GPFVS), rescaled
procedure (GPRFVS), and by conjugate gradient optimization (GPOPT) on the same dataset
of 1114 compounds with an RMSE of 0.4 using five-fold cross-validation [87]. The best
performing human renal clearance prediction model developed by Watanabe et al. is also a
model using the RF algorithm when compared with other algorithms such as SVM, PLS,
and ANN on 401 compounds, with an R2 of 0.92 and an RMSE of 0.12 [88]. With many
years of experience in ADMET prediction and a large internal dataset of 73,620 compounds,
AstraZeneca built a clearance prediction model using the SVM algorithm, with good results
with an RMSE of 0.377 [89].

In addition to ML algorithms, recently deep learning (DL) algorithms have also been
exploited and built predictive models of clearance with remarkable efficiency. Mamada et al.
successfully combined conventional ML using molecular descriptors with DeepSnap-DL
to build a new clearance prediction model [90]. They used rat clearance data containing
1545 in-house compounds to evaluate the prediction performance. With an AUC and an
ACC of 94.3 and 87.4%, respectively, their ensemble model did better than conventional
ML (AUC = 88.3% and ACC = 82.5%) or DeepSnap-DL (AUC = 90.5% and ACC = 83.2%).
Sohlenius-Sternbeck et al. developed an intrinsic clearance prediction model using an ANN
algorithm and 4794 compounds from Medivir in-house dataset [91]. This model was a
significant improvement over ADMET PredictorTM from Simulations Plus, with R2 of 0.717
(compared to R2 = 0.53). Using the same dataset of 5384 compounds, the combined model of
GCNN and MT-DNN model of Liu et al. [67] and the MT-DNN model of Wenzel et al. [66]
achieved approximately equal accuracy in clearance prediction (R2 = 0.62). Recently, DL
technical was also exploited in ADMETLab 2.0 using MGAF to predict clearance on 831
compounds, achieved an R2 of 0.629 [14].
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Table 4. Summary of AI methods to predict clearance property from 2019 to 2022.

Methods Data Sources Dataset Size (Compounds) Performance Ref.

RF

Human renal clearance [85] 636 R2 = 0.27, RMSE = 0.53

[36]
Intrinsic clearance [84] 244 R2 = 0.29, RMSE = 1.02

Metabolic intrinsic clearance [83] 5278 ACC = 0.74, AUC = 0.84

Human liver microsomal clearance [66] 5348 R2 = 0.56, RMSE = 1.05

RF, SVM, GBM, XGB [92] 1352 R2 = 0.875, RMSE = 0.103 [86]

RFR, RBF, PLS, GP2DS,
GPFixed, GPFVS,
GPRFVS, GPOPT

Takeda Pharmaceutical Company
(Fujisawa, Japan) 1114 R2 = 0.61, RMSE = 0.31 [87]

SVM AstraZeneca in-house data 73,620 R2 = 0.356, RMSE = 0.377 [89]

RF, NB, SVM, CT,
k-NN, MLR, ANN FDA drugs and [93–96] 636 R2 = 0.94, RMSE = 0.11 [85]

RF, AdaBoost, Radial
SVM, Linear SVM ChEMBL v.23, KEGG DRUG [97] 56,065 ACC = 0.77, Kappa = 0.588 [83]

RF, SVM, PLS, ANN ChEMBL and Varma et al. [98] 401 R2= 0.92, RMSE = 0.12 [88]

Combination conventional
ML and DeepSnap-DL in-house 1545 AUC = 0.943, ACC = 0.874 [90]

ANN Medivir in-house 4794 R2 = 0.717, RMSE = 0.327 [91]

GCNN ChEMBL, PubChem,
OCHEM, literature 831 R2 = 0.692 [37]

a molecular
GCNN combined
with the MT-DNN

[66] 5348 R2 = 0.62
[67]

Amgen’s internal datasets 86,470 R2 = 0.445

MT-DNN ChEMBL v.23 5384 R2 = 0.624 [66]

MT-CNN AstraZeneca 139,907 R2 = 0.59, RMSE = 0.35 [99]

Abbreviations: NB: Naïve Bayes, CT: classification tree, SVR: support vector regression.

4.2. Half-Life Prediction

The excretion half-life of the drug is the length of time needed for the amount of the
active component in the drug to decrease by half of its starting dose in the body [100]. This
is dependent on how the substance is metabolized and eliminated by the body. It can last
anywhere from a few hours to several days or even weeks. Understanding the concept of
half-life makes it possible to calculate the steady-state concentrations and excretion rates for
any given drug. A more frequent dosage may be necessary to maintain the proper level of
exposure and prevent unnecessary peak concentrations if a drug’s half-life is too short [101].
As a result, it could be more challenging to achieve the best efficacy, safety, and patient
compliance. A drug’s extremely lengthy half-life may increase the amount of time needed
for subsequent accumulation and elimination. This can complicate the management of
adverse events and the design of efficient clinical trials. An accurate estimate of the time
needed for medicine or substance to be excreted from the body is difficult to come by. Some
of the models developed since 2019 are summarized in Table 5.

Interpretable-ADMET, a new ADMET predictor, uses GCNN and GAT algorithms to
predict 59 ADMET properties, including half-life [35]. The GAT model gave a slightly better
half-life prediction result than the GCNN model, with an ACC of 77.6 and 77.3%, respectively,
on 665 compounds. In ADMETLab 2.0, a multi-task graph attention framework was used to
build the ADMET prediction models, including half-life prediction model [37]. The half-life
prediction model was evaluated on 1219 compounds and had a predictive ACC of 74% and
an AUC of 82%. Furthermore, the software that has been developed for predicting ADMET
properties named FP-ADMET also has integrated half-life prediction [36]. Researchers used
a fingerprint-based RF algorithm and 2127 compounds from MetStabOn [102] to predict
half-life. When using the same dataset and RF algorithm, FP-ADMET predicts half-life
more accurately than MetStabOn, with an ACC of 76 and 72.6%, respectively. In another
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study, Wang et al. built a predictive model of the half-life and three other properties using
ML methods, including RF, gradient boosting machines (GBM), SVM, and XGB [86]. They
used a dataset of 1352 compounds from Lombardo et al. [92] and 162 critical variables,
including 2D molecular, 3D molecular, and fingerprint descriptors. Assessed by 10-fold
cross-validation, the RF model produced more accurate prediction than other models,
with an R2 of 0.832 and an RMSE of 0.154. The actual half-life of the same drug can
differ considerably between individuals due to a variety of patient- and drug-specific
characteristics. Therefore, in silico studies predicting drug half-life are also very limited.
There is hardly a single recent half-life predictive study. Most half-life prediction models
are mainly integrated into large ADMET prediction programs or researched with many
other properties.

The excretion of a drug is a complicated process involving many elimination pathways,
including biliary excretion, renal excretion, and others, each of which includes many
different processes [22]. Till now, in silico excretion predictors have been difficult to
develop due to the complex drug excretion processes.

Table 5. Summary of AI methods to predict half-life property from 2019 to 2022.

Methods Data Sources Dataset Size (Compounds) Performance Ref.

RF [102] 2127 ACC = 0.76, AUC = 0.88 [36]

SVM, RF, GBM, XGB [92] 1352 R2 = 0.832, RMSE = 0.154 [86]

MGAF ChEMBL, PubChem,
OCHEM, literature 1219 AUC = 0.822, ACC = 0.744 [37]

GCNN, GAT ChEMBL, PubChem,
DrugBank, literature 665 ACC = 0.773, AUC = 0.766 [35]

Although researchers have proposed many AI-based models to predict drug metabolism
and elimination, evaluating and comparing them on an objective basis can be quite chal-
lenging. A lack of consensus datasets and evaluation metrics can be a major limitation in
comparing predictive models in the field of biology and biomedicine. In Tables 2–5, we
summarize recently developed AI-based methods for drug metabolism and elimination
prediction. We only provide comparative information when the authors used the same
dataset and metrics to evaluate their models in the content.

5. Data Sources for Research Community

The selection of an appropriate database is a critical step in the development of
accurate and reliable AI-based predictive models for metabolism and excretion. Careful
consideration should be given to the quality, completeness, and relevance of the data in
order to ensure the best possible results. Some commonly used databases to predict drug
metabolism and excretion are briefly described as follows:

• HMDB 5.0 (https://hmdb.ca/ accessed on 22 January 2023): An extensive database of
small molecule metabolites discovered in the human body, including information on
their chemical and physical properties, metabolic pathways, and clinical biomarkers.
Information on more than 220,000 metabolites and 8500 protein sequences can be
found in HMDB. [103].

• METLIN (https://metlin.scripps.edu/ accessed on 22 January 2023): a metabolite
database that contains information on more than 960,000 compounds [104]. It includes
information on the chemical structure, molecular formula, and biological activities of
metabolites. METLIN offers MS/MS data on various collision energy values in both
positive and negative ionization modes. Additionally, it makes use of the elemental
makeup, precise mass measurements, and the known structure of the metabolite
to estimate the fragmented structure. The metabolomics-specific mobile interface
METLIN Mobile allows you to see metabolite information from any cellular device.

https://hmdb.ca/
https://metlin.scripps.edu/
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• MetaCyc (https://metacyc.org/ accessed on 23 January 2023): A curated database of
metabolic pathways and enzymes for a range of organisms. It includes information on
3085 pathways, 18,785 metabolites, and 18,391 reactions involved in metabolite bio-
transformation and can be used to construct metabolic models for specific organisms.

• MetaQSAR: A database for metabolites including information on the relationship be-
tween the chemical structure of a metabolite, its biological activity, the physicochemical
properties of chemicals, as well as their predicted metabolic pathways and associated
enzymes. It is a plug-in embedded in the VEGA ZZ programs (http://www.vegazz.net/
accessed on 23 January 2023) and contains 1890 substrates [74].

• MetXBioDB (https://bitbucket.org/djoumbou/biotransformerjar/src/master/ ac-
cessed on 23 January 2023): A database of metabolic pathways and enzymes for a
range of organisms, including bacteria, archaea, and eukaryotes. MetXBioDB con-
tains data on more than 2000 biotransformation including information on the structure
and function of enzymes, as well as the reactions and pathways involved in metabolite
biotransformation [28].

• Metabolights (https://www.ebi.ac.uk/metabolights/ accessed on 24 January 2023): A
database of metabolomic data, which includes information on metabolites, metabolic
pathways, and metabolic networks of more than 27,500 compounds. Metabolights
also includes tools for data analysis and visualization, as well as resources for sharing
and reusing metabolomic data [105].

• KEGG Pathway (https://www.genome.jp/kegg/pathway.html accessed on 24 January
2023): A database of metabolic pathways, including maps and diagrams of metabolic
networks, as well as information on enzymes and metabolites. It includes information
on more than 17,000 metabolic pathways and over 22,000 enzymes [106].

• HumanCyc (https://humancyc.org/ accessed on 24 January 2023): A curated database of
metabolic pathways, enzymes for human metabolism, and the human genome. HumanCyc
includes information on the reactions and pathways involved in metabolite biotransfor-
mation, as well as the enzymes and genes involved in these processes. Information on
28,783 genes, their products, and the metabolic processes and pathways they catalyze is
contained in the pathway/genome database that was created as a consequence [107].

• BiGG (http://bigg.ucsd.edu/ accessed on 24 January 2023): In order to simulate sys-
tems biology and predict metabolic flux balance, the BiGG database reconstructs hu-
man metabolism metabolically. The 1496 ORFs, 2004 protein complexes, 2766 metabo-
lites, and 3311 metabolic and transport processes are all included in this thorough
literature-based genome-scale metabolic reconstruction. It was put together from
building 35 of the human genome [108].

• DrugBank (http://www.drugbank.ca/ accessed on 24 January 2023): A comprehen-
sive database of drug and drug target information including information on drug
metabolism and pharmacokinetics, as well as the enzymes involved in drug biotrans-
formation. It contains information on more than 500,000 drugs and their associated
targets, pathways, and metabolic pathways [109].

• ChEMBL (www.ebi.ac.uk/chembl/ accessed on 24 January 2023): A database of
bioactive molecules, including drugs and drug candidates, with information on their
activities, targets, and metabolic pathways. It contains data on more than 2.3 million
compounds and their associated activities and targets [110].

• ChemSpider (http://www.chemspider.com/ accessed on 24 January 2023): A chemical
structure database that includes information on more than 115 million compounds
including information on chemical structures, properties, and associated metadata,
such as chemical identifiers and references [111].

• PubChem (https://pubchem.ncbi.nlm.nih.gov/ accessed on 25 January 2023): A pub-
lic database of chemical structures and their associated biological activities including
information on more than 114 million compounds, as well as tools for data analysis
and visualization [112].

https://metacyc.org/
http://www.vegazz.net/
https://bitbucket.org/djoumbou/biotransformerjar/src/master/
https://www.ebi.ac.uk/metabolights/
https://www.genome.jp/kegg/pathway.html
https://humancyc.org/
http://bigg.ucsd.edu/
http://www.drugbank.ca/
www.ebi.ac.uk/chembl/
http://www.chemspider.com/
https://pubchem.ncbi.nlm.nih.gov/
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• ZINC20 (https://zinc20.docking.org/ accessed on 25 January 2023): A database of com-
mercially available compounds for drug discovery including information on more than
750 million purchasable compounds, as well as tools for searching and filtering compounds
based on various criteria, such as molecular weight, bioavailability, and toxicity [113].

• OCHEM (https://ochem.eu/home/show.do accessed on 25 January 2023): A platform
for the development and validation of predictive models for chemical and biological
data. OCHEM includes tools for data preprocessing, feature selection, and model
training, as well as a library of pre-trained models. OCHEM contains more than
3.7 million records for 689 properties [114].

• Therapeutics Data Commons (TDC) (https://tdcommons.ai/ accessed on 25 January
2023): A database of clinical trial data for FDA-approved drugs including information
on drug pharmacokinetics, pharmacodynamics, and adverse events, as well as data
on drug metabolism and excretion. TDC contains data on more than 4.2 million
compounds, 34,000 genes, and approximately 2 million reactions [115].

• openFDA (https://open.fda.gov/ accessed on 25 January 2023): A database of FDA-
approved drugs, including information on drug labeling, adverse events, and clinical
trial data. OpenFDA includes tools for data analysis and visualization, as well as an
API for accessing FDA data [116].

These databases and datasets are publicly available, so they can be valuable resources
for researchers working on metabolism and excretion prediction, pharmacokinetic property
prediction, drug discovery, and related areas.

6. Challenges in Drug Metabolism and Excretion Prediction Based on AI

AI-based drug metabolism and excretion prediction presents the possibility of revo-
lutionizing drug R&D, but there are still several issues that must be resolved to raise the
accuracy and reliability of predictive models.

Metabolism and excretion are complicated biological processes involving multiple
enzymes, transporters, biochemical pathways, multiple organs, and other molecular com-
ponents. The interaction of these various components can be difficult to accurately model,
resulting in inaccurate predictions. Predicting a drug’s metabolism necessitates an under-
standing of the relevant pathways and enzymes. Human metabolism and excretion are
very diverse and are influenced by a variety of factors, including age, gender, heredity,
illness status, interacting drugs, dose, and the route of administration [117]. Accurately
predicting properties for all individuals is difficult. Genetic variations in these enzymes
can lead to differences in drug metabolism and elimination between individuals, which
can make it difficult to predict how a drug will be metabolized and excreted in different
populations. Many drugs have complex metabolic processes that involve multiple enzymes
and pathways. These pathways are frequently interrelated, and predicting the activity
of a single enzyme or pathway may not be sufficient to predict overall metabolism and
excretion of a drug. Because of the existence of metabolic intermediates that would allow
for intramolecular rearrangement, it is uncertain that the basic mechanism and regulations
of drug metabolism can be characterized only based on the drug structures [15]. Nonlineari-
ties in the input rate (for example, formation) and the output rate (for example, elimination)
can all have an impact on the distribution of metabolites [118]. The mechanisms underlying
drug metabolism and excretion are not fully understood, particularly for some drug classes,
which can hinder the development of accurate prediction models.

The lack of high-quality data is a significant challenge in developing accurate
metabolism and excretion prediction models as well as AI-based drug discovery mod-
els in general [119]. Poor or incomplete data as well as erroneous data collection and
analysis methods will lead to inaccurate predictions as the quality of the output is con-
trolled by the quality of the input. AI algorithms require large amounts of comprehensive
and high-quality experimental data to train and validate prediction models. However,
generating comprehensive experimental data that accurately reflects these complex pro-
cesses can be difficult. Experiments to measure drug metabolism and excretion can be

https://zinc20.docking.org/
https://ochem.eu/home/show.do
https://tdcommons.ai/
https://open.fda.gov/


Pharmaceutics 2023, 15, 1260 16 of 21

time-consuming and costly, requiring specialized equipment and expertise [5]. As a result,
there may be insufficient resources to generate the required data for all drugs of interest.
In experimental studies, a lack of standardization and quality control measures can lead
to variability and errors in the data, affecting the accuracy of AI models. The chemical
diversity of compounds can make it challenging to develop universal prediction models
that can accurately predict metabolism and excretion properties for a broad range of com-
pounds. Data on drug metabolism and excretion can be collected from a variety of sources,
including in vitro and in vivo experiments, clinical trials, and literature sources. These data
sources may use different experimental methods, formats, and standards, and may have
varying levels of quality, which can make it challenging to combine and analyze the data.
Additionally, if the training data is limited or unrepresentative of the broader population,
overfitting can occur, resulting in poor generalization of new data, and posing a challenge
to the development of AI models for predicting drug metabolism and excretion.

Transparency and interpretability of AI models to predict drug metabolism and ex-
cretion are important factors in ensuring the safety and efficacy of these models and their
usefulness in clinical applications. However, achieving transparency and interpretability in
AI models for drug metabolism and excretion prediction can be challenging, particularly
given the complexity of the underlying biological processes. Interpretable AI applications
should have desirable features such as transparency, justification, informativeness, and
uncertainty estimation [120]. However, many AI models, particularly DL models, are con-
sidered “black box” models and are often difficult for human experts to interpret [120,121]
because they are highly complex, with multiple layers and nonlinear interactions between
different components. Model interpretability is dependent on the chemical representation
and AI strategy of choice [122]. Full comprehension of DL models in the context of drug
R&D may be challenging to attain, but the supplied predictions might still be helpful to
the researcher.

7. Conclusions and Future Direction

The development of AI models for drug metabolism and excretion prediction holds
great promise for improving drug R&D. Researchers are working hard to explore new ways
to create and integrate experimental data, such as relying on metadata to improve data
quality [123]. In addition, efforts are underway to improve the quality of experimental data
through standardization of experimental protocols, and the use of quality control measures
and rigorous validation procedures. The integration of multi-omics data [124], such as
genomics, transcription, proteomics, and metabolism, and integration with pharmacoki-
netic and toxicological modeling will allow for more comprehensive predictions of drug
metabolism and excretion. This will allow for a better understanding of the molecular
mechanisms underlying ADMET processes and the development of more accurate predic-
tive models. The creation of common data standards and protocols, as well as networks
and platforms for sharing data, makes it easier for different institutions and organizations
to work together and share data. Collaboration and data sharing among researchers, phar-
maceutical companies, and regulatory agencies can aid in the improvement of data quality
and availability for AI model development. Model sharing can also help with the validation
and testing of AI models in various contexts. AI models for drug metabolism and excretion
prediction may be integrated with electronic health records to allow for more personalized
medicine by considering individual patient characteristics such as genetic information,
age, sex, and medical history. In the context of complex big data, DL methods are likely to
prevail soon as they are easier to adapt to a wider range of chemical entities and modeling
tasks and enable more efficient data mining. In addition to using existing explanatory
AI methods such as feature attribution, instance-based, graph-convolution-based, and
self-explanatory methods [123], efforts are being made to develop new methods to ensure
transparency, safety, efficacy, and reliability in clinical settings, and maintain public trust in
AI technology. In-depth knowledge of drug metabolism and excretion and AI techniques is
very important to give a reasonable and useful explanation.
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Overall, we provided a comprehensive overview of recent AI-based drug metabolism
and excretion prediction research, along with key challenges and future directions. A
collaboration effort between AI experts, data scientists, chemists, biologists, and other
related field experts and the integration of emerging technologies will be essential to
realizing the full potential of this field.
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intelligence on in silico drug discovery: Methods, tools and databases. Brief. Bioinform. 2019, 20, 1878–1912. [CrossRef]
13. Tian, S.; Djoumbou-Feunang, Y.; Greiner, R.; Wishart, D.S. Cypreact: A Software Tool for in Silico Reactant Prediction for Human

Cytochrome P450 Enzymes. J. Chem. Inf. Model. 2018, 58, 1282–1291. [CrossRef]
14. Phang-Lyn, S.; Llerena, V.A. Biochemistry, biotransformation. In Statpearls [Internet]; StatPearls Publishing:

Treasure Island, FL, USA, 2022.
15. Li, Y.; Meng, Q.; Yang, M.; Liu, D.; Hou, X.; Tang, L.; Wang, X.; Lyu, Y.; Chen, X.; Liu, K. Current trends in drug metabolism and

pharmacokinetics. Acta Pharm. Sin. B 2019, 9, 1113–1144. [CrossRef]
16. Guengerich, F.P. Cytochrome P450 and chemical toxicology. Chem. Res. Toxicol. 2008, 21, 70–83. [CrossRef]
17. Zheng, M.; Luo, X.; Shen, Q.; Wang, Y.; Du, Y.; Zhu, W.; Jiang, H. Site of metabolism prediction for six biotransformations

mediated by cytochromes P450. Bioinformatics 2009, 25, 1251–1258. [CrossRef] [PubMed]
18. Testa, B.; Pedretti, A.; Vistoli, G. Reactions and enzymes in the metabolism of drugs and other xenobiotics. Drug Discov. Today

2012, 17, 549–560. [CrossRef] [PubMed]
19. Zhang, Z.; Tang, W. Drug metabolism in drug discovery and development. Acta Pharm. Sin. B 2018, 8, 721–732. [CrossRef]

[PubMed]
20. Mann, B.; Melton, R.; Thompson, D. Drug metabolism in drug discovery and preclinical development. In Drug Metabolism;

IntechOpen: London, UK, 2021.
21. Litsa, E.E.; Das, P.; Kavraki, L.E. Machine learning models in the prediction of drug metabolism: Challenges and future

perspectives. Expert Opin. Drug Met. 2021, 17, 1245–1247. [CrossRef]

https://doi.org/10.1038/nrd4581
https://www.ncbi.nlm.nih.gov/pubmed/25907346
https://doi.org/10.1016/j.phrs.2016.12.008
https://doi.org/10.1016/j.apsb.2022.03.009
https://www.ncbi.nlm.nih.gov/pubmed/35755285
https://doi.org/10.1093/bib/bbaa160
https://www.ncbi.nlm.nih.gov/pubmed/32770190
https://doi.org/10.1016/j.compbiomed.2019.01.008
https://www.ncbi.nlm.nih.gov/pubmed/30682640
https://doi.org/10.1007/978-1-0716-1787-8_22
https://doi.org/10.1093/bib/bby061
https://doi.org/10.1021/acs.jcim.8b00035
https://doi.org/10.1016/j.apsb.2019.10.001
https://doi.org/10.1021/tx700079z
https://doi.org/10.1093/bioinformatics/btp140
https://www.ncbi.nlm.nih.gov/pubmed/19286831
https://doi.org/10.1016/j.drudis.2012.01.017
https://www.ncbi.nlm.nih.gov/pubmed/22305937
https://doi.org/10.1016/j.apsb.2018.04.003
https://www.ncbi.nlm.nih.gov/pubmed/30245961
https://doi.org/10.1080/17425255.2021.1998454


Pharmaceutics 2023, 15, 1260 18 of 21

22. Yang, X.; Wang, Y.; Byrne, R.; Schneider, G.; Yang, S. Concepts of Artificial Intelligence for Computer-Assisted Drug Discovery.
Chem. Rev. 2019, 119, 10520–10594. [CrossRef] [PubMed]

23. de Bruyn Kops, C.; Stork, C.; Sicho, M.; Kochev, N.; Svozil, D.; Jeliazkova, N.; Kirchmair, J. GLORY: Generator of the Structures of
Likely Cytochrome P450 Metabolites Based on Predicted Sites of Metabolism. Front Chem. 2019, 7, 402. [CrossRef] [PubMed]

24. Kirchmair, J.; Williamson, M.J.; Afzal, A.M.; Tyzack, J.D.; Choy, A.P.; Howlett, A.; Rydberg, P.; Glen, R.C. FAst MEtabolizer
(FAME): A rapid and accurate predictor of sites of metabolism in multiple species by endogenous enzymes. J. Chem. Inf. Model.
2013, 53, 2896–2907. [CrossRef]

25. Sicho, M.; de Bruyn Kops, C.; Stork, C.; Svozil, D.; Kirchmair, J. FAME 2: Simple and effective machine learning model of
cytochrome P450 regioselectivity. J. Chem. Inf. Model. 2017, 57, 1832–1846. [CrossRef]

26. Sicho, M.; Stork, C.; Mazzolari, A.; Kops, C.D.; Pedretti, A.; Testa, B.; Vistoli, G.; Svozil, D.; Kirchmair, J. FAME 3: Predicting the Sites
of Metabolism in Synthetic Compounds and Natural Products for Phase 1 and Phase 2 Metabolic Enzymes. J. Chem. Inf. Model. 2019,
59, 3400–3412. [CrossRef]

27. de Bruyn Kops, C.; Sicho, M.; Mazzolari, A.; Kirchmair, J. GLORYx: Prediction of the Metabolites Resulting from Phase 1 and
Phase 2 Biotransformations of Xenobiotics. Chem. Res. Toxicol. 2021, 34, 286–299. [CrossRef]

28. Djoumbou-Feunang, Y.; Fiamoncini, J.; Gil-de-la-Fuente, A.; Greiner, R.; Manach, C.; Wishart, D.S. Biotransformer: A compre-
hensive computational tool for small molecule metabolism prediction and metabolite identification. J. Cheminform. 2019, 11, 2.
[CrossRef] [PubMed]

29. Tian, S.; Cao, X.; Greiner, R.; Li, C.; Guo, A.; Wishart, D.S. Cyproduct: A Software Tool for Accurately Predicting the Byproducts
of Human Cytochrome P450 Metabolism. J. Chem. Inf. Model. 2021, 61, 3128–3140. [CrossRef] [PubMed]

30. Hwang, S.; Shin, H.K.; Shin, S.E.; Seo, M.; Jeon, H.N.; Yim, D.E.; Kim, D.H.; No, K.T. PreMetabo: An in silico phase I and II drug
metabolism prediction platform. Drug Metab. Pharm. 2020, 35, 361–367. [CrossRef]

31. Zaretzki, J.; Matlock, M.; Swamidass, S.J. XenoSite: Accurately predicting CYP-mediated sites of metabolism with neural networks.
J. Chem. Inf. Model. 2013, 53, 3373–3383. [CrossRef] [PubMed]

32. Rydberg, P.; Gloriam, D.E.; Zaretzki, J.; Breneman, C.; Olsen, L. SMARTCyp: A 2D Method for Prediction of Cytochrome
P450-Mediated Drug Metabolism. ACS Med. Chem. Lett. 2010, 1, 96–100. [CrossRef] [PubMed]

33. Olsen, L.; Montefiori, M.; Tran, K.P.; Jorgensen, F.S. SMARTCyp 3.0: Enhanced cytochrome P450 site-of-metabolism prediction
server. Bioinformatics 2019, 35, 3174–3175. [CrossRef] [PubMed]

34. Zhang, S.; Yan, Z.; Huang, Y.; Liu, L.; He, D.; Wang, W.; Fang, X.; Zhang, X.; Wang, F.; Wu, H.; et al. HelixADMET: A robust
and endpoint extensible ADMET system incorporating self-supervised knowledge transfer. Bioinformatics 2022, 38, 3444–3453.
[CrossRef]

35. Wei, Y.; Li, S.; Li, Z.; Wan, Z.; Lin, J. Interpretable-ADMET: A Web Service for ADMET Prediction and Optimization based on
Deep Neural Representation. Bioinformatics 2022, 38, 2863–2871. [CrossRef]

36. Venkatraman, V. FP-ADMET: A compendium of fingerprint-based ADMET prediction models. J. Cheminform. 2021, 13. [CrossRef]
37. Xiong, G.; Wu, Z.; Yi, J.; Fu, L.; Yang, Z.; Hsieh, C.; Yin, M.; Zeng, X.; Wu, C.; Lu, A.; et al. ADMETlab 2.0: An integrated online

platform for accurate and comprehensive predictions of ADMET properties. Nucleic Acids Res. 2021, 49, W5–W14. [CrossRef]
38. Yang, H.; Lou, C.; Sun, L.; Li, J.; Cai, Y.; Wang, Z.; Li, W.; Liu, G.; Tang, Y. admetSAR 2.0: Web-service for prediction and

optimization of chemical ADMET properties. Bioinformatics 2019, 35, 1067–1069. [CrossRef] [PubMed]
39. Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal

chemistry friendliness of small molecules. Sci. Rep. 2017, 7, 42717. [CrossRef] [PubMed]
40. Wei, M.; Zhang, X.; Pan, X.; Wang, B.; Ji, C.; Qi, Y.; Zhang, J.Z. HobPre: Accurate prediction of human oral bioavailability for

small molecules. J. Cheminform. 2022, 14, 1–10. [CrossRef] [PubMed]
41. Li, X.; Xu, Y.J.; Lai, L.H.; Pei, J.F. Prediction of human cytochrome P450 inhibition using a multitask deep autoencoder neural

network. Mol. Pharm. 2018, 15, 4336–4345. [CrossRef]
42. Stork, C.; Embruch, G.; Šícho, M.; de Bruyn Kops, C.; Chen, Y.; Svozil, D.; Kirchmair, J. NERDD: A web portal providing access to

in silico tools for drug discovery. Bioinformatics 2020, 36, 1291–1292. [CrossRef]
43. Plonka, W.; Stork, C.; Sicho, M.; Kirchmair, J. CYPlebrity: Machine learning models for the prediction of inhibitors of cytochrome

P450 enzymes. Bioorg. Med. Chem. 2021, 46, 116388. [CrossRef]
44. Banerjee, P.; Dunkel, M.; Kemmler, E.; Preissner, R. SuperCYPsPred-a web server for the prediction of cytochrome activity.

Nucleic Acids Res. 2020, 48, W580–W585. [CrossRef]
45. Ridder, L.; Wagener, M. SyGMa: Combining expert knowledge and empirical scoring in the prediction of metabolites.

ChemMedChem Chem. Enabling Drug Discov. 2008, 3, 821–832. [CrossRef]
46. Nguyen-Vo, T.-H.; Trinh, Q.H.; Nguyen, L.; Nguyen-Hoang, P.-U.; Nguyen, T.-N.; Nguyen, D.T.; Nguyen, B.P.; Le, L. iCYP-MFE:

Identifying human cytochrome P450 inhibitors using multitask learning and molecular fingerprint-embedded encoding. J. Chem.
Inf. Model. 2021, 62, 5059–5068. [CrossRef]

47. Shan, X.; Wang, X.; Li, C.-D.; Chu, Y.; Zhang, Y.; Xiong, Y.; Wei, D.-Q. Prediction of CYP450 enzyme–substrate selectivity based on
the network-based label space division method. J. Chem. Inf. Model. 2019, 59, 4577–4586. [CrossRef]

48. Park, H.; Brahma, R.; Shin, J.M.; Cho, K.H. Prediction of human cytochrome P450 inhibition using bio-selectivity induced deep
neural network. Bulletin Korean Chem. Soc. 2022, 43, 261–269. [CrossRef]

https://doi.org/10.1021/acs.chemrev.8b00728
https://www.ncbi.nlm.nih.gov/pubmed/31294972
https://doi.org/10.3389/fchem.2019.00402
https://www.ncbi.nlm.nih.gov/pubmed/31249827
https://doi.org/10.1021/ci400503s
https://doi.org/10.1021/acs.jcim.7b00250
https://doi.org/10.1021/acs.jcim.9b00376
https://doi.org/10.1021/acs.chemrestox.0c00224
https://doi.org/10.1186/s13321-018-0324-5
https://www.ncbi.nlm.nih.gov/pubmed/30612223
https://doi.org/10.1021/acs.jcim.1c00144
https://www.ncbi.nlm.nih.gov/pubmed/34038112
https://doi.org/10.1016/j.dmpk.2020.05.007
https://doi.org/10.1021/ci400518g
https://www.ncbi.nlm.nih.gov/pubmed/24224933
https://doi.org/10.1021/ml100016x
https://www.ncbi.nlm.nih.gov/pubmed/24936230
https://doi.org/10.1093/bioinformatics/btz037
https://www.ncbi.nlm.nih.gov/pubmed/30657882
https://doi.org/10.1093/bioinformatics/btac342
https://doi.org/10.1093/bioinformatics/btac192
https://doi.org/10.1186/s13321-021-00557-5
https://doi.org/10.1093/nar/gkab255
https://doi.org/10.1093/bioinformatics/bty707
https://www.ncbi.nlm.nih.gov/pubmed/30165565
https://doi.org/10.1038/srep42717
https://www.ncbi.nlm.nih.gov/pubmed/28256516
https://doi.org/10.1186/s13321-021-00580-6
https://www.ncbi.nlm.nih.gov/pubmed/34991690
https://doi.org/10.1021/acs.molpharmaceut.8b00110
https://doi.org/10.1093/bioinformatics/btz695
https://doi.org/10.1016/j.bmc.2021.116388
https://doi.org/10.1093/nar/gkaa166
https://doi.org/10.1002/cmdc.200700312
https://doi.org/10.1021/acs.jcim.1c00628
https://doi.org/10.1021/acs.jcim.9b00749
https://doi.org/10.1002/bkcs.12445


Pharmaceutics 2023, 15, 1260 19 of 21

49. Dai, H.; Zheng, Y.-X.; Shan, X.-Q.; Chu, Y.-Y.; Wang, W.; Xiong, Y.; Wei, D.-Q. Computational prediction of the isoform specificity
of cytochrome P450 substrates by an improved bayesian method. Res. Sq. 2019. [CrossRef]

50. Raju, B.; Verma, H.; Narendra, G.; Sapra, B.; Silakari, O. Multiple machine learning, molecular docking, and ADMET screening
approach for identification of selective inhibitors of CYP1B1. J. Biomol. Struct. Dyn. 2021, 1–16. [CrossRef] [PubMed]

51. Shi, T.T.; Yang, Y.W.; Huang, S.H.; Chen, L.X.; Kuang, Z.Y.; Heng, Y.; Mei, H. Molecular image-based convolutional neural
network for the prediction of ADMET properties. Chemom. Intell. Lab. Syst. 2019, 194, 103853. [CrossRef]

52. Zhang, X.X.; Zhao, P.A.; Wang, Z.Y.; Xu, X.; Liu, G.X.; Tang, Y.; Li, W.H. In silico prediction of CYP2C8 inhibition with
machine-learning methods. Chem. Res. Toxicol. 2021, 34, 1850–1859. [CrossRef]

53. Racz, A.; Keseru, G.M. Large-scale evaluation of cytochrome P450 2C9 mediated drug interaction potential with machine
learning-based consensus modeling. J. Comput.—Aided. Mol. Des. 2020, 34, 831–839. [CrossRef]

54. Goldwaser, E.; Laurent, C.; Lagarde, N.; Fabrega, S.; Nay, L.; Villoutreix, B.O.; Jelsch, C.; Nicot, A.B.; Loriot, M.A.; Miteva,
M.A. Machine learning-driven identification of drugs inhibiting cytochrome P450 2C9. PLoS Comput. Biol. 2022, 18, e1009820.
[CrossRef]

55. Zhao, J.; Liu, Y. Classification and prediction model of compound pharmacokinetic properties based on ensemble learning
method. In Proceedings of the 2nd International Symposium on Artificial Intelligence for Medicine Sciences, Zhengzhou, China,
29–31 October 2021; pp. 526–531.

56. Sasahara, K.; Shibata, M.; Sasabe, H.; Suzuki, T.; Takeuchi, K.; Umehara, K.; Kashiyama, E. Predicting drug metabolism and
pharmacokinetics features of in-house compounds by a hybrid machine-learning model. Drug Metab. Pharmacokinet. 2021, 39.
[CrossRef]

57. Veith, H.; Southall, N.; Huang, R.; James, T.; Fayne, D.; Artemenko, N.; Shen, M.; Inglese, J.; Austin, C.P.; Lloyd, D.G. Compre-
hensive characterization of cytochrome P450 isozyme selectivity across chemical libraries. Nat. Biotechnol. 2009, 27, 1050–1055.
[CrossRef]

58. Shao, C.-Y.; Su, B.-H.; Tu, Y.-S.; Lin, C.; Lin, O.A.; Tseng, Y.J. Cyprules: A rule-based P450 inhibition prediction server. Bioinformatics
2015, 31, 1869–1871. [CrossRef]

59. Su, B.-H.; Tu, Y.-S.; Lin, C.; Shao, C.-Y.; Lin, O.A.; Tseng, Y.J. Rule-based prediction models of cytochrome P450 inhibition. J. Chem.
Inf. Model. 2015, 55, 1426–1434. [CrossRef] [PubMed]

60. Preissner, S.; Kroll, K.; Dunkel, M.; Senger, C.; Goldsobel, G.; Kuzman, D.; Guenther, S.; Winnenburg, R.; Schroeder, M.; Preissner,
R. SuperCYP: A comprehensive database on cytochrome P450 enzymes including a tool for analysis of CYP-drug interactions.
Nucleic Acids Res. 2010, 38, D237–D243. [CrossRef] [PubMed]

61. Fischer, M.; Knoll, M.; Sirim, D.; Wagner, F.; Funke, S.; Pleiss, J. The cytochrome P450 engineering database: A navigation and
prediction tool for the cytochrome P450 protein family. Bioinformatics 2007, 23, 2015–2017. [CrossRef] [PubMed]

62. Sirim, D.; Wagner, F.; Lisitsa, A.; Pleiss, J. The cytochrome P450 engineering database: Integration of biochemical properties.
BMC Biochem. 2009, 10, 1–4. [CrossRef]

63. Wu, Z.X.; Lei, T.L.; Shen, C.; Wang, Z.; Cao, D.S.; Hou, T.J. Admet evaluation in drug discovery. 19. Reliable prediction of human
cytochrome P450 inhibition using artificial intelligence approaches. J. Chem. Inf. Model. 2019, 59, 4587–4601. [CrossRef]

64. Backman, J.T.; Filppula, A.M.; Niemi, M.; Neuvonen, P.J. Role of cytochrome P450 2C8 in drug metabolism and interactions.
Pharmacol. Rev. 2016, 68, 168–241. [CrossRef]

65. Walsky, R.L.; Gaman, E.A.; Obach, R.S. Examination of 209 drugs for inhibition of cytochrome P450 2C8. J. Clin. Pharmacol. 2005,
45, 68–78. [CrossRef]

66. Wenzel, J.; Matter, H.; Schmidt, F. Predictive multitask deep neural network models for adme-tox properties: Learning from large
data sets. J. Chem. Inf. Model. 2019, 59, 1253–1268. [CrossRef]

67. Liu, K.; Sun, X.; Jia, L.; Ma, J.; Xing, H.; Wu, J.; Gao, H.; Sun, Y.; Boulnois, F.; Fan, J. Chemi-net: A molecular graph convolutional
network for accurate drug property prediction. Int. J. Mol. Sci. 2019, 20, 3389. [CrossRef]

68. Dong, J.; Wang, Z.; Cui, J.; Meng, Q.; Li, S. Synthesis and structure-activity relationship studies of α-naphthoflavone derivatives
as CYP1b1 inhibitors. Eur. J. Med. Chem. 2020, 187, 111938. [CrossRef]

69. Kubo, M.; Yamamoto, K.; Itoh, T. Design and synthesis of selective CYP1B1 inhibitor via dearomatization of α-naphthoflavone.
Bioorganic Med. Chemistry. 2019, 27, 285–304. [CrossRef] [PubMed]

70. Meng, Q.; Wang, Z.; Cui, J.; Cui, Q.; Dong, J.; Zhang, Q.; Li, S. Design, synthesis, and biological evaluation of cytochrome P450
1b1 targeted molecular imaging probes for colorectal tumor detection. J. Med. Chem. 2018, 61, 10901–10909. [CrossRef] [PubMed]

71. Czechtizky, W.; Su, W.; Ripa, L.; Schiesser, S.; Höijer, A.; Cox, R.J. Advances in the design of new types of inhaled medicines. Prog.
Med. Chem. 2022, 61, 93–162. [PubMed]

72. Smith, P.; Sorich, M.; Low, L.; McKinnon, R.; Miners, J. Towards integrated ADME prediction: Past, present and future directions
for modelling metabolism by UDP-glucuronosyltransferases. J. Mol. Graph. Model. 2004, 22, 507–517. [CrossRef]

73. Mazzolari, A.; Afzal, A.M.; Pedretti, A.; Testa, B.; Vistoli, G.; Bender, A. Prediction of UGT-mediated metabolism using the
manually curated metaqsar database. ACS Med. Chem. Lett. 2019, 10, 633–638. [CrossRef]

74. Pedretti, A.; Mazzolari, A.; Vistoli, G.; Testa, B. Metaqsar: An integrated database engine to manage and analyze metabolic data.
J. Med. Chem. 2018, 61, 1019–1030. [CrossRef]

75. Cai, Y.; Yang, H.; Li, W.; Liu, G.; Lee, P.W.; Tang, Y. Computational prediction of site of metabolism for UGT-catalyzed reactions.
J. Chem. Inf. Model. 2019, 59, 1085–1095. [CrossRef]

https://doi.org/10.21203/rs.2.9738/v1
https://doi.org/10.1080/07391102.2021.1905552
https://www.ncbi.nlm.nih.gov/pubmed/33769194
https://doi.org/10.1016/j.chemolab.2019.103853
https://doi.org/10.1021/acs.chemrestox.1c00078
https://doi.org/10.1007/s10822-020-00308-y
https://doi.org/10.1371/journal.pcbi.1009820
https://doi.org/10.1016/j.dmpk.2021.100395
https://doi.org/10.1038/nbt.1581
https://doi.org/10.1093/bioinformatics/btv043
https://doi.org/10.1021/acs.jcim.5b00130
https://www.ncbi.nlm.nih.gov/pubmed/26108525
https://doi.org/10.1093/nar/gkp970
https://www.ncbi.nlm.nih.gov/pubmed/19934256
https://doi.org/10.1093/bioinformatics/btm268
https://www.ncbi.nlm.nih.gov/pubmed/17510166
https://doi.org/10.1186/1471-2091-10-27
https://doi.org/10.1021/acs.jcim.9b00801
https://doi.org/10.1124/pr.115.011411
https://doi.org/10.1177/0091270004270642
https://doi.org/10.1021/acs.jcim.8b00785
https://doi.org/10.3390/ijms20143389
https://doi.org/10.1016/j.ejmech.2019.111938
https://doi.org/10.1016/j.bmc.2018.11.045
https://www.ncbi.nlm.nih.gov/pubmed/30553624
https://doi.org/10.1021/acs.jmedchem.8b01633
https://www.ncbi.nlm.nih.gov/pubmed/30422652
https://www.ncbi.nlm.nih.gov/pubmed/35753716
https://doi.org/10.1016/j.jmgm.2004.03.011
https://doi.org/10.1021/acsmedchemlett.8b00603
https://doi.org/10.1021/acs.jmedchem.7b01473
https://doi.org/10.1021/acs.jcim.8b00851


Pharmaceutics 2023, 15, 1260 20 of 21

76. Lee, P.W.; Aizawa, H.; Gan, L.; Prakash, C.; Zhong, D. Handbook of Metabolic Pathways of Xenobiotics; Wiley Online Library:
Hoboken, NJ, USA, 2014.

77. Peng, J.; Lu, J.; Shen, Q.; Zheng, M.; Luo, X.; Zhu, W.; Jiang, H.; Chen, K. In silico site of metabolism prediction for human
UGT-catalyzed reactions. Bioinformatics 2014, 30, 398–405. [CrossRef]

78. Rudik, A.; Dmitriev, A.; Lagunin, A.; Filimonov, D.; Poroikov, V. SOMP: Web server for in silico prediction of sites of metabolism
for drug-like compounds. Bioinformatics 2015, 31, 2046–2048. [CrossRef]

79. Kanehisa, M.; Furumichi, M.; Tanabe, M.; Sato, Y.; Morishima, K. KEGG: New perspectives on genomes, pathways, diseases and
drugs. Nucleic Acids Res. 2017, 45, D353–D361. [CrossRef]

80. Horde, G.W.; Gupta, V. Drug clearance. In Statpearls; Treasure Island: FL, USA, 2022.
81. Wade, K.C. Pharmacokinetics in neonatal medicine. In Fanaroff and Martin’s Neonatal-Perinatal Medicine; Elsevier:

Philadelphia, PA, USA, 2020; pp. 722–734.
82. Smith, D.A.; Beaumont, K.; Maurer, T.S.; Di, L. Clearance in drug design. J. Med. Chem. 2019, 62, 2245–2255. [CrossRef] [PubMed]
83. Esaki, T.; Watanabe, R.; Kawashima, H.; Ohashi, R.; Natsume-Kitatani, Y.; Nagao, C.; Mizuguchi, K. Data curation can improve

the prediction accuracy of metabolic intrinsic clearance. Mol. Inform. 2019, 38, 1800086. [CrossRef] [PubMed]
84. Hsiao, Y.W.; Fagerholm, U.; Norinder, U. In silico categorization of in vivo intrinsic clearance using machine learning. Mol. Pharm.

2013, 10, 1318–1321. [CrossRef]
85. Chen, J.H.; Yang, H.B.; Zhu, L.; Wu, Z.R.; Li, W.H.; Tang, Y.; Liu, G.X. In silico prediction of human renal clearance of compounds

using quantitative structure-pharmacokinetic relationship models. Chem. Res. Toxicol. 2020, 33, 640–650. [CrossRef] [PubMed]
86. Wang, Y.C.; Liu, H.C.; Fan, Y.R.; Chen, X.Y.; Yang, Y.; Zhu, L.; Zhao, J.N.; Chen, Y.D.; Zhang, Y.M. In silico prediction of human

intravenous pharmacokinetic parameters with improved accuracy. J. Chem. Inf. Model. 2019, 59, 3968–3980. [CrossRef]
87. Kosugi, Y.; Hosea, N. Direct comparison of total clearance prediction: Computational machine learning model versus bottom-up

approach using in vitro assay. Mol. Pharm. 2020, 17, 2299–2309. [CrossRef]
88. Watanabe, R.; Ohashi, R.; Esaki, T.; Kawashima, H.; Natsume-Kitatani, Y.; Nagao, C.; Mizuguchi, K. Development of an in silico

prediction system of human renal excretion and clearance from chemical structure information incorporating fraction unbound in
plasma as a descriptor. Sci. Rep. 2019, 9, 18782. [CrossRef] [PubMed]

89. Oprisiu, I.; Winiwarter, S. Silico ADME Modeling; Academic Press: Cambridge, MA, USA, 2021; pp. 208–222.
90. Mamada, H.; Nomura, Y.; Uesawa, Y. Prediction model of clearance by a novel quantitative structure-activity relationship

approach, combination deepsnap-deep learning and conventional machine learning. ACS Omega 2021, 6, 23570–23577. [CrossRef]
91. Sohlenius-Sternbeck, A.-K.; Terelius, Y. Evaluation of ADMET predictor in early discovery drug metabolism and pharmacokinetics

project work. Drug Metab. Dispos. 2022, 50, 95–104. [CrossRef]
92. Lombardo, F.; Berellini, G.; Obach, R.S. Trend analysis of a database of intravenous pharmacokinetic parameters in humans for

1352 drug compounds. Drug Metab. Dispos. 2018, 46, 1466–1477. [CrossRef]
93. Paine, S.W.; Barton, P.; Bird, J.; Denton, R.; Menochet, K.; Smith, A.; Tomkinson, N.P.; Chohan, K.K. A rapid computational filter

for predicting the rate of human renal clearance. J. Mol. Graph. Model. 2010, 29, 529–537. [CrossRef] [PubMed]
94. Varma, M.V.; Feng, B.; Obach, R.S.; Troutman, M.D.; Chupka, J.; Miller, H.R.; El-Kattan, A. Physicochemical determinants of

human renal clearance. J. Med. Chem. 2009, 52, 4844–4852. [CrossRef]
95. Lombardo, F.; Obach, R.S.; Varma, M.V.; Stringer, R.; Berellini, G. Clearance mechanism assignment and total clearance prediction

in human based upon in silico models. J. Med. Chem. 2014, 57, 4397–4405. [CrossRef] [PubMed]
96. Scotcher, D.; Jones, C.; Rostami-Hodjegan, A.; Galetin, A. Novel minimal physiologically-based model for the prediction of

passive tubular reabsorption and renal excretion clearance. Eur. J. Pharm. Sci. 2016, 94, 59–71. [CrossRef]
97. Kanehisa, M.; Goto, S.; Hattori, M.; Aoki-Kinoshita, K.F.; Itoh, M.; Kawashima, S.; Katayama, T.; Araki, M.; Hirakawa, M. From

genomics to chemical genomics: New developments in KEGG. Nucleic Acids Res. 2006, 34, D354–D357. [CrossRef] [PubMed]
98. Varma, M.V.; Obach, R.S.; Rotter, C.; Miller, H.R.; Chang, G.; Steyn, S.J.; El-Kattan, A.; Troutman, M.D. Physicochemical space for

optimum oral bioavailability: Contribution of human intestinal absorption and first-pass elimination. J. Med. Chem. 2010, 53,
1098–1108. [CrossRef] [PubMed]
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