
Citation: Chen, H.; Xu, J.; Xu, H.;

Luo, T.; Li, Y.; Jiang, K.; Shentu, Y.;

Tong, Z. New Insights into

Alzheimer’s Disease: Novel

Pathogenesis, Drug Target and

Delivery. Pharmaceutics 2023, 15, 1133.

https://doi.org/10.3390/

pharmaceutics15041133

Academic Editors: Elena Puris and

Sabrina Petralla

Received: 10 March 2023

Revised: 29 March 2023

Accepted: 31 March 2023

Published: 3 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

pharmaceutics

Review

New Insights into Alzheimer’s Disease: Novel Pathogenesis,
Drug Target and Delivery
Haishu Chen 1, Jinan Xu 2 , Hanyuan Xu 3, Tiancheng Luo 3, Yihao Li 3, Ke Jiang 2, Yangping Shentu 3,4,*
and Zhiqian Tong 1,3,*

1 Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging,
Key Laboratory of Alzheimer’s Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for
Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical
University, Wenzhou 325035, China

2 Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou 325035, China
3 Institute of Albert, Wenzhou Medical University, Wenzhou 325035, China
4 Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University,

Wenzhou 325035, China
* Correspondence: styp@wmu.edu.cn (Y.S.); tzqbeida@163.com (Z.T.)

Abstract: Alzheimer’s disease (AD), the most common type of dementia, is characterized by se-
nile plaques composed of amyloid β protein (Aβ) and neurofilament tangles derived from the
hyperphosphorylation of tau protein. However, the developed medicines targeting Aβ and tau
have not obtained ideal clinical efficacy, which raises a challenge to the hypothesis that AD is Aβ

cascade-induced. A critical problem of AD pathogenesis is which endogenous factor induces Aβ

aggregation and tau phosphorylation. Recently, age-associated endogenous formaldehyde has been
suggested to be a direct trigger for Aβ- and tau-related pathology. Another key issue is whether
or not AD drugs are successfully delivered to the damaged neurons. Both the blood–brain barrier
(BBB) and extracellular space (ECS) are the barriers for drug delivery. Unexpectedly, Aβ-related SP
deposition in ECS slows down or stops interstitial fluid drainage in AD, which is the direct reason
for drug delivery failure. Here, we propose a new pathogenesis and perspectives on the direction
of AD drug development and drug delivery: (1) aging-related formaldehyde is a direct trigger for
Aβ assembly and tau hyperphosphorylation, and the new target for AD therapy is formaldehyde;
(2) nano-packaging and physical therapy may be the promising strategy for increasing BBB perme-
ability and accelerating interstitial fluid drainage.

Keywords: Alzheimer’s disease; drug delivery; extracellular space; blood–brain barrier; formaldehyde;
interstitial fluid

1. Introduction

Alzheimer’s disease (AD) is the most common neurodegenerative disease associated
with progressive cognitive decline. AD is the major type of dementia in 60–70% of cases. By
2050, the number of new cases of dementia will be over 1 million per year worldwide [1].
Even though more than 600 billion dollars have been invested in drug developments for AD
treatment, the outcomes are insufficient [2]. The failures of research and drug development
for AD force us to reflect on two critical questions: (1) Which endogenous factor initiates
AD occurrence? (2) Do AD drugs successfully reach the damaged neurons?

The hypothesized causes of AD include amyloid cascade, presenilin, tau hyperphos-
phorylation, cholinergic, calcium imbalance, oxidative stress, etc. Two main factors have
been proposed as the critical triggers of AD: amyloid and tau [3]. These hypotheses suggest
that eliminating amyloid and hyperphosphorylated tau could improve cognition in AD
patients, while major drugs targeting amyloid and tau proteins could not improve cognitive
functions in clinical trials. Recently, calcium imbalance and oxidative stress were found to
play an important role in the development of AD [4,5].
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In fact, whether the medicines arrived at the targeted neurons in the brains is deter-
mined by at least two key structures, the blood–brain barrier (BBB) and brain extracellular
space (ECS) [2]. The BBB is a barrier formed by vascular endothelial cells and a variety of
glial cells. The BBB separates brain tissue from peripheral circulation and plays a major
role in maintaining the brain’s microenvironments by preventing the entry of exogenous
harmful substances into the brain [6] (Figure 1). Although the BBB is a great hurdle for
drug delivery into the brain [7], the integrity of the BBB has been found to be impaired
in AD [8]. Unexpectedly, the developed medicines for AD have still not met the clinical
expectations; hence, the BBB may be not the primary reason for drug treatment failure.
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Figure 1. (A) The structure of the blood–brain barrier. (B) Alzheimer’s drug delivery to the BBB
(Several ways to increase the AD drug delivery cross BBB. Focused ultrasound increases delivery
of aducanumab [9]. Transferrin (Tf) increases delivery of memantine [10] and fluoxetine [11]. Tf-
functionalized liposomes increase brain delivery of gallic acid [12]).

The brain extracellular space (ECS) is a narrow gap between brain cells and neighbor-
ing cells, which account for approximately 20% of brain volume [13]. The ECS consists
of interstitial fluid (ISF), the extracellular matrix (ECM) and other secretory molecules.
Neurons and glial cells exchange substances and information in the ECS. The width of
the ECS is only 38–64 nm; thus, medicines need to be smaller than this width in diameter
in order to cross through the ECS [14]. The main function of ISF is to remove metabolic
waste, provide nutrients, and act as a crucial medium for drug delivery [15]. Owing to the
separation of dense myelinated fiber bundles, interstitial fluid drainage in the normal brain
is regional. It may be difficult for medicines to reach effective concentrations in certain
brain regions [16]. Studies have shown that formaldehyde induces Aβ misfolding and
oligomerization [17] and senile plaques in extracellular space [18]. Notably, Aβ-related SP
deposition in the extracellular space has been proven to slow down or stop ISF drainage in
AD, thus actually blocking delivery into the brain [18,19] (Figure 2).
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brain to the 3rd ventricle pouring into the cerebrospinal fluid (CSF). Finally, CSF flows into nasal
lymphatics (NL) where the substances are exchanged with blood [18]. Formaldehyde-induced Aβ

deposition in the ECS blocks the exchange between ISF and CSF.

2. Developed Drugs Targeting Aβ and Tau for AD Therapy

Despite the huge investments in drug development, currently, only seven drugs for
AD treatment have been approved for marketing by the Food and Drug Administration
(FDA) [20,21]. These drugs fall into three categories: cholinesterase inhibitors, NMDA re-
ceptor antagonists, and antiβ amyloid (Aβ) monoclonal antibodies. Five of these drugs are
used for symptomatic treatment, including donepezil, rivastigmine, galantamine, meman-
tine, and a combination of memantine and donepezil. Recently, the remaining two drugs,
Aducanumab and Lecanemab, were designed to be applied in the etiologic treatment of
AD [22,23]. Disappointingly, compounds, peptides, and antibodies developed to target Aβ

production, aggregation, and elimination as well as tau phosphorylation and aggregation
have not met clinical expectations [24].

2.1. Drugs Targeting Aβ

Recently, antiamyloid therapies are a key research focus in terms of the therapeutic
principle related to the Aβ cascade hypothesis. This hypothesis suggests that the deposition
of Aβ in the brain is the main reason for AD occurrence. The 37–43 amino acid of Aβ is
produced by its precursor, the β-amyloid precursor protein (APP). Three protease activities,
those of α-, β-, and γ-secretase, are involved in Aβ generation [25]. The nontoxic Aβ

monomer has several physiological functions [26]. For example, it is used in APP knockout
mice to reduce Aβ-induced weight loss, abnormal muscle and neuronal development, and
the number of neurotransmitters [27]. However, Aβ42 overloads are associated with the
imbalance between Aβ production and clearance [28]. Aβ42 aggregation contributes to
the formation of soluble Aβ oligomers (AβO) and insoluble Aβ protofibrils, the principal
component of senile plaques (SPs) [29]. Toxic soluble Aβ oligomers induce neuroinflamma-
tion, cause dendritic spines of neuronal injury and inhibit long-term potentiation [30,31].
Remarkably, Aβ plaques cause neuronal death and memory impairment by blocking the
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ECS and ISF flow [18]. Aβ deposition also induces cerebral amyloid angiopathy and further
exacerbates cognitive impairments [32,33]. In addition, Aβ induces tau phosphorylation
through the PAX6 signaling pathways [34]. At present, the most developed drugs for AD
treatment are antiamyloid drugs. For example, Aducanumab and Lecanemab have been
approved for clinical treatment for AD patients [22,23].

2.1.1. Drugs Used to Reduce Aβ Production

According to the different sites of APP digestion, the drugs used to reduce Aβ produc-
tion fall in three categories: β-secretase inhibitors, γ-secretase inhibitors and modulators,
and α-secretase activators.

β-secretase (BACE1) is one of the key enzymes for Aβ production. However, the
development of β-secretase inhibitors often does not meet clinical expectations (Table 1).
Verubecestat, a BACE1 inhibitor, was once considered a promising AD drug as it was found
to reduce Aβ levels in the cerebrospinal fluid of rats, monkeys and AD patients in a prelim-
inary study [35]. However, two Phase III clinical studies (NCT01739348 and NCT01953601)
were terminated due to their inability to achieve the expected results. These AD patients
experienced multiple treatment-related adverse effects, including rashes, falls and injuries,
sleep disturbances, suicidal ideation, weight loss, and hair discoloration [36,37]. In addi-
tion, studies showed that Verubecestat may lead to accelerated volume reduction in the
hippocampus (and other brain regions) in AD patients [38]. β-secretase inhibitors, such as
Lanabecestat, Elenbecestat, Umibecestat, and Atabecestat, were discontinued due to a lack of
clinical efficacy. Although these drugs inhibited BACE1 successfully, they did not improve
cognitive functions in AD patient because BACE1 cleaves substrates for various func-
tions, especially in neuron cell excitability regulation and axonal myelination [39]. Hence,
the inhibition of BACE1 leads to many adverse effects and even exacerbates cognitive
function deterioration.

γ-secretase inhibitors (GSIs) face a similar dilemma to that faced by β-secretase in-
hibitors (Table 1). Poor effectiveness and harmful side effects are the main reasons why
these medications have been discontinued. For example, the γ-secretase enzyme cleaves
more than 140 substrates, including APLP1 and APLP2, Notch, ErbB4, and p75 [40]. Reduc-
ing the hydrolysis of these substrates leads to a variety of adverse reactions. For example,
Semagacestat leads to a deterioration in cognitive function, skin cancer, an increased risk of
infection, and gastrointestinal bleeding by reducing Notch signaling [41]. Avagacestat, an-
other γ-secretase inhibitor, also causes multiple adverse reactions, including nonmelanoma
skin cancer and gastrointestinal symptoms [42]. As γ-secretase inhibitors increase the risk
of cancer and cause cognitive decline, they may be an inappropriate target for the clinical
treatment of AD [43]. The γ-secretase modulator (GSM) can selectively inhibit Aβ42 produc-
tion without affecting the total amount of Aβ produced and Notch signaling. Tarenflurbil,
a GSM, showed success in Phase II RCTs [44]. However, further RCTs on it ended due
to its lack of efficacy and adverse effects including dizziness, anemia and infection after
treatment [45].

α-secretase inducers increase APP hydrolysis to produce nonamyloid proteins. sAPPα,
the cleavage fragments of APP, are involved in neurotrophic and neuroprotective func-
tions [46]. Drugs may act through different signaling cascades to activate ADAM10 (α-
secretase A Disintegrin and Metalloprotease 10, and α-secretase in neurons) and stimulate
the cleavage of nonamyloid proteins [47]. Disulfiram induces the expression of ADAM10,
reduces levels of Aβ plaques in the dentate gyri of AD mice and improves behavioral
deficits [48]. Bryostatin1, a macrolide antitumor agent, reduces Aβ40 and Aβ42 in AD
mice brain effectively and increases sAPPα secretion in AD patients [49]. Two Phase II
RCTs of it finished. Cognitive enhancement was observed in advancing AD patients not
receiving Memantine [50]. Acitretin, a synthetic retinoid, stimulates ADAM10 promoter
activity and increases CSF sAPPα levels in patients with mild to moderate AD [51]. Epigal-
locatechin gallate (EGCG), a natural polyphenolic flavonoid, increases α-secretase cleavage
activity and improves the cognitive function of APP/PS1 mice [52–54]. Additionally, EGCG
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leads to a reduction in neuroinflammation [52] and plays a crucial role in neuroprotec-
tion and prevention of Alzheimer’s disease [55]. A Phase 2/3 clinical trial of EGCG was
recently completed, but no results have been published. There are a variety of natural
compounds, including Cryptotanshinone [56,57], Ligustilide [58], Bilobalide [59,60] and
Curcumin [61,62], that facilitate the activation of ADAM10 with potential neuroprotection
in vivo.

Table 1. Alzheimer drugs targeting β-secretase, γ-secretase and α-secretase.

Drug Name Drug
Target Phase Effect in Clinical Trials Status Refs.

Umibecestat
(CNP520) β-secretase

Phase 2/3
(NCT03131453;
NCT02565511)

Cognitive function decreased slightly, brain
atrophy increased, weight loss Discontinued [63,64]

CTS-21166 β-secretase Phase 1
(NCT00621010)

Reduced Aβ in plasma with long-lasting and
well-tolerated effects Discontinued [65,66]

LY2811376 β-secretase Phase 1
(NCT00838084)

Reduced Aβ in CSF *; adverse effects: retinal
toxicity Discontinued [67]

LY2886721 β-secretase
Phase 1
Phase 2

(NCT01561430)

Reduced Aβ in plasma and CSF *; adverse
effects: abnormal elevation of liver enzymes Discontinued [68]

AZD3839 β-secretase Phase 1
(NCT01348737)

Slightly reduced Aβ in plasma at doses that
did not disrupt cardiac activity Completed [69]

Verubecestat
(MK-8931) β-secretase Phase 3

(NCT01953601) Well-tolerated; reduced Aβ40 levels in CSF * Discontinued [70]

Lanabecestat β-secretase
Phase 3

(NCT02972658;
NCT02783573)

Reduced Aβ40 and Aβ42 levels in plasma
and CSF * Discontinued [71]

Elenbecestat
(E2609) β-secretase Phase 3

(NCT02956486)

Well-tolerated; reduced Aβ levels in plasma
and CSF*; reduced BACE1 enzyme activity

in CSF *; did not alter BACE1 levels
Discontinued [72,73]

Atabecestat
(JNJ-54861911) β-secretase

Phase 2
Phase 3

(NCT02569398)

Reduced Aβ levels in CSF * and plasma;
adverse effects: cognitive deterioration, and

elevated liver enzymes
Discontinued [74–78]

LY3202626 β-secretase
Phase 2

(NCT02791191;
NCT03367403)

Resulted in high blood–brain barrier
permeability; reduced Aβ1-42 in CSF *; no
reduction in cognitive impairment and tau

load

Discontinued [79,80]

Semagacestat
(LY450139) γ-secretase

Phase 3
(NCT01035138;
NCT00762411;
NCT00594568)

Reduced the production of Aβ in patients;
no reduction in cognitive impairment;

adverse reactions: increased risk of skin
cancer and infection

Discontinued [41,81]

Avagacestat
(BMS-708,163) γ-secretase

Phase 2
(NCT00890890;
NCT00810147)

Slightly reduced Aβ levels in CSF *; adverse
reactions: gastrointestinal symptoms, skin
diseases, and non-melanoma skin cancer

Discontinued [82,83]

Tarenflurbil (R-
flurbiprofen) γ-secretase

Phase 3
(NCT00380276;
NCT00380276;
NCT00105547)

No reduction in cognitive impairment;
adverse effects: dizziness, anemia and

infection
Discontinued [44,45]

PF-06648671
(Pfizer) γ-secretase

Phase 1
(NCT02407353;
NCT02440100)

Well-tolerated in healthy subjects; reduced
plasma Aβ40 and Aβ42 and increased Aβ37

and Aβ38

Discontinued [84]

CHF5074 γ-secretase Phase 2
(NCT01303744)

Reduced inflammatory factor CD40 and
TNF-α concentrations in CSF; improved

executive function in ApoE4 gene carriers
Inactive [85]

Bryostatin1 α-secretase
Phase 2

(NCT02431468;
NCT04538066)

Reduced Aβ40 and Aβ42 and cognitive
impairment

Active, not
recruiting [50]
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Table 1. Cont.

Drug Name Drug
Target Phase Effect in Clinical Trials Status Refs.

Isotretinoin α-secretase
Phase 1
Phase 2

(NCT01560585)
Adverse events in 2/3 participants Terminated [47]

EHT0202 α-secretase Phase 2
(NCT00880412) No significant effect Completed [86]

Acitretin α-secretase Phase 2
(NCT01078168)

Significantly increased CSF * APPs-α; safe
and well-tolerated Completed [51]

Curcumin α-secretase

Phase 2
(NCT00164749;
NCT00099710;
NCT01811381)

No effects on cognitive function and CFS *
and plasma Aβ levels Unknown [47]

* Abbreviations: CSF, cerebrospinal fluid.

2.1.2. Drugs Used to Prevent Aβ Aggregation

Since non-toxic Aβ monomers aggregate to form neurotoxic AβO and SPs [87], some
drugs have been established to prevent Aβ aggregation (Table 2). Tramiprosate is an orally
active natural amino acid with good BBB permeability. By stabilizing the multiligand encap-
sulation of the Aβ42 monomer, it inhibits Aβ oligomers and SP formation in AD mice [88].
Although it did not improve cognition in a treatment group, the results of magnetic res-
onance imaging (MRI) revealed that it reduces hippocampus atrophy in patients [89].
Tramiprosate and its precursor, ALZ-801, share a common metabolite, 3-sulfoniopropionic
acid (3-SPA), which is associated with anti-Aβ oligomeric activity, good oral bioavailability
and brain permeability [90]. ALZ-801 produces positive biomarker results and improves
cognitive functions in AD patients. ALZ-801 treatment is still being carried out in a Phase
III RCT currently. The peptide sequence KLVFF retards Aβ aggregation and partially dis-
solves the Aβ oligomer [91]. Some studies have shown that several natural compounds
could act as aggregation inhibitors [92], such as Brazilin [93], gx-50 [94], Curcumin [95],
Epigallocatechin gallate [96,97], and Ginnalin A [98].

Table 2. Alzheimer drugs used to prevent Aβ aggregation.

Drug Name Principle Phase Effect in Clinical Trials Status Ref.

PBT2 Reduction in Aβ aggregation Phase 2
(NCT01590888)

The higher dose reportedly
reduced Aβ42 levels in CSF * Completed [99,100]

Resveratrol
Anti-oxidant capacity;
prevention of amyloid

deposition

Phase 3
(NCT01504854)

Reduce cognitive impairment and
Aβ42 in CSF *; increased Aβ40

levels in CSF * and plasma;
increased brain volume loss

Withdraw [101,102]

Alzhemed™
(Tramiprosate)

Inhibit the interaction of Aβ

with endogenous
glycosaminoglycans

Phase 3
(NCT00314912)

Slowed cognitive decline in
ApoE4 homozygotes Unknown [89,103]

Epigallocatechin
Gallate

Remodel toxic amyloid-beta
fibrils

Phase 2/3
(NCT00951834) No public information Completed [47]

* Abbreviations: CSF, cerebrospinal fluid.

2.1.3. Drugs Used to Promote Aβ Clearance

Another treatment strategy for AD patient is Aβ clearance through active and passive
immunization (Table 3). After the administration of Aβ42 to PDAPP transgenic mice, SP
formation was reduced through active immunization [104]. In contrast, passive immu-
nization is achieved through Aβ antibody injection that directly reduces Aβ oligomers
and senile plaques (SP). Although Aβ antibodies exhibit SP clearance, they also trigger a
local inflammatory response and enhance vascular permeability [105]. Varying degrees of
amyloid-related imaging abnormalities (ARIA) including cerebral edema (ARIA-E) and
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cerebral hemorrhage (ARIA-H) are developed after Aβ antibody therapy, which may
aggravate cognitive impairments in AD patients.

Table 3. Alzheimer drugs to promote Aβ clearance.

Drug Name Principle Phase Effect in Clinical Trials Status Refs.

Aducanumab
(BIIB037)

Passive
immunity

Phase 3
(NCT02484547;
NCT02477800;
NCT01677572)

Bound to soluble monomeric Aβ and
reduce brain Aβ; reduced cognitive
impairment only at the highest dose;

adverse reactions: ARIA *

Approved [106–108]

Lecanemab
(BAN2401)

Passive
immunity

Phase 3
(NCT04468659;
NCT03887455)

Reduced markers of amyloid in early
AD * Alleviated cognitive and

functional decline; adverse reactions:
ARIA *, infusion-related reactions

Approved [20,109,110]

Remternetug
(LY3372993)

Passive
immunity

Phase 3
(NCT05463731) No public information Recruiting

https://www.
clinicaltrials.gov/
(accessed on 28

March 2023)

Gantenerumab
(RO4909832)

Passive
immunity

Phase 3
(NCT04339413;
NCT04339413;
NCT02051608)

No reduction in cognitive impairment;
adverse reactions: ARIA * Terminated [111,112]

Solanezumab
(LY2062430)

Passive
immunity

Phase 3
(NCT02760602;
NCT01900665;
NCT01127633)

Did not significantly affect
cognitive decline Terminated [112,113]

Crenezumab
(MABT5102A)

Passive
immunity

Phase 3
(NCT03491150;
NCT03114657;
NCT03114657)

Did not reduce cognitive decline in
participants with early AD * Terminated [114,115]

Donanemab
(LY30028123)

Passive
immunity

Phase 2
(NCT03367403)

Improved cognition and daily living
ability in early AD patients; reduce
amyloid plaque levels and overall

tau load

Recruiting [116–120]

ABvac40 Active
immunity

Phase 1
(NCT03113812)

Good safety and tolerance; triggered a
consistent and specific

immune response
Unknown [121]

ACI-24 Active
immunity

Phase 2
(2018-000445-39)

Produced a low IgG antibody response,
increased CSF * Aβ40 and Aβ42 levels
but caused no change in amyloid-PET.

Completed

https://www.
clinicaltrialsregister.
eu/ (accessed on
28 March 2023)

Amilomotide
(CAD106)

Active
immunity

Phase 2
Phase 3

(NCT00795418)

Unexpected changes in cognitive
function, brain volume loss, and body

weight loss
Terminated [122]

UB-311 Active
immunity

Phase 2
(NCT03531710;
NCT03531710)

A slower rate of increase in ADAS-Cog
in mild AD * patients; 100%

responder rate
Completed [123]

* Abbreviations: AD, Alzheimer’s disease; CSF, cerebrospinal fluid; ARIA, amyloid-related imaging abnormalities.

Aducanumab is a fully human IgG1 monoclonal antibody with high affinity for the Aβ

conformational epitope. It received accelerated approval from the FDA in June 2021 [124].
In transgenic mouse models of AD, Aducanumab enters into the brain and reduces soluble
and insoluble Aβ levels. It also decreases brain Aβ deposition in patients with prodromal
or mild AD [106]. Previous studies showed that it produced the most favorable effects
among all Aβ monoclonal antibodies according to Phase III RCT results [107]. However,
41.3% of trial participants experienced ARIA during the trial period. A total of 1% to 2% of
patients required hospitalization or experienced long-term side effects [108].

Lecanemab is a human IgG1 monoclonal antibody targeting protofibrils of soluble Aβ

aggregates. In January 2023, the FDA granted accelerated approval for it. Preclinical trials

https://www.clinicaltrials.gov/
https://www.clinicaltrials.gov/
https://www.clinicaltrialsregister.eu/
https://www.clinicaltrialsregister.eu/
https://www.clinicaltrialsregister.eu/
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have shown that it may protect neurons and decrease the amount of Aβ protofibrils in
CSF [125,126]. In treatment groups, the treatment group has a 29.7% slower decline in
Alzheimer’s disease composite scores (ADCOMS) at 18 months compared to the placebo
group. However, approximately 12.6% developed cerebral edema and 26.4% of participants
experienced infusion-related reactions [109,110]. A recent Phase III clinical trial showed
that 18 months of treatment with it slowed the CDR-SB decline rate by approximately 27%
and lessened the accumulation of tangles in the medial temporal lobe. Two-thirds of the
treatment group became PET-Aβ-negative at 18 months [20].

Although these two Aβ antibodies have been approved, the developed drugs for
the Aβ antibody encounter failure. The first generation antiAβ antibodies Bapineuzumab
and Solanezumab did not improve clinical outcomes in mild to moderate AD. RCTs of
Crenezumab and Gantenerumab ended for similar reasons. Donanemab is a humanized IgG1
monoclonal antibody that recognizes Aβ (p3-42), the N-terminal pyroglutamate of Aβ in
amyloid plaques [117]. It decreases SPs rapidly and continuously in phase 1b [118]. In a
Phase II RCT, it showed improvement in cognitive performances and daily activities in
early AD patients [119].

2.2. Drugs Targeting Tau Protein

Tau proteins are the most abundant microtubule-associated proteins which are mainly
distributed in neuronal axons and the cytoplasm [127]. In the normal brain, tau proteins
help to form neurons, stabilize microtubules, and regulate anterograde transport by kinesin
and neurotransmitter release. The tau hypothesis suggests that hyperphosphorylated tau
proteins interfere with microtubule formation [128], causing microtubule depolymerization,
neuronal synaptic dysfunction, and NFT formation. In a brain with Alzheimer’s, modifica-
tions of tau proteins’ aberrant glycosylation facilitate the subsequent hyperphosphorylation
of tau [129].

Initially, studies of antitau drugs were focused on tau aggregation inhibitors and
microtubule stabilizers (Table 4). However, the failure of most of them may have been due
to their high toxicity or low efficacy. TRx0237 (LMTX™) is a tau aggregation inhibitor. Its
active ingredient methylthionine chloride (MTC) binds selectively to abnormal tau proteins
and removes damaging tau tangles. Although it has undergone two Phase III RCTs, neither
yielded positive primary results [130]. The microtubule stabilizer, TPI-287, causes severe
hypersensitivity reactions in AD patients [131].

Another research focus in antitau therapy is the clearance of tau proteins through
active or passive immunity (Table 4). One of the active immunotherapies is achieved
through tau vaccine injection. The most outstanding tau vaccine, AADvac1, has undergone
Phase II clinical trials with desirable safety and effective immune response [132]. Although
improvements in cognitive functions were observed in a subgroup of patients with con-
firmed AD biomarker profiles, the vaccine did not slow cognitive decline in the whole
study sample [133].

Table 4. Alzheimer drugs targeting tau protein.

Drug Name Principle Phase Effect in Clinical Trials Status Ref.

TRx0237
(LMTM)

Inhibit Tau
aggregation

Phase 3
(NCT01689233;
NCT01689246;
NCT02245568)

Did not significantly affect cognitive
decline

Active,
not

recruiting
[130]

TPI-287 microtubule
stabilizer

Phase 1
(NCT01966666) Severe hypersensitivity reactions Completed [131]

Tilavonemab
(ABBV-8E12)

Passive
immunity

Phase 2
(NCT03712787;
NCT02880956)

Did not change the decline of cognitive,
or lower brain atrophy or levels of

plasma neurofilament light
Discontinued [134]
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Table 4. Cont.

Drug Name Principle Phase Effect in Clinical Trials Status Ref.

BIIB076
(NI-105)

Passive
immunity

Phase 1
(NCT03056729)

Reduced half the amount of
mid-region-bearing tau in CSF * Discontinued [135]

Gosuranemab
(BIIB092)

Passive
immunity

Phase 2
(NCT03352557) Lack of efficacy Discontinued

https://www.
clinicaltrials.gov/
(accessed on 28

March 2023)

Semorinemab
(RO07105705)

Passive
immunity

Phase 2
(NCT03289143;
NCT03828747)

Caused 43.6% slowed decline in the
ADAS-Cog11 coprimary, and did not

change tangle accumulation

Active,
not

recruiting

https://www.
clinicaltrials.gov/
(accessed on 28

March 2023)

Bepranemab
(UCB0107)

Passive
immunity

Phase 2
(NCT04867616)

No drug-related adverse events or
changes in safety results were reported

Active,
not

recruiting
[136,137]

Zagotenemab
(LY3303560)

Passive
immunity

Phase 2
(NCT03518073) Missed its primary endpoint Discontinued [138,139]

JNJ-63733657 Passive
immunity

Phase 2
(NCT04619420)

Dose-dependent reductions in free p217
tau in CSF * in volunteers. Adverse
reactions: back pain and headache

Recruiting

https://www.
clinicaltrials.gov/
(accessed on 28

March 2023)

AAD-vac1 Active
immunity

Phase 2
(NCT02579252)

Reduced brain atrophy and cognitive
decline in mild to moderate AD *

patients; reduced the levels of p-tau181
and p-tau217

Completed [132,133,140]

ACI-35 Active
immunity

Phase 1
(NCT04445831)

Developed antitau IgG and IgM
antibodies preferentially against
phosphorylated tau, with high

IgG titers

Active,
not

recruiting
[141]

* Abbreviation: AD, Alzheimer’s disease; CSF, cerebrospinal fluid.

Intravenous administration of antitau monoclonal antibodies reduces pathological
tau protein levels through passive immunization. However, these tau antibodies fail to
achieve the desired outcome. Gosuranemab, Tilavonemab, and Zagotenemab were discontinued
after failure in Phase II RCTs, and Semorinemab and Bepranemab are still active in the
development process.

2.3. Drugs Targeting Calcium Balance and Reactive Oxygen Species

Disrupting calcium homeostasis is a prominent feature of Alzheimer’s disease [4,142].
Several drugs targeting calcium ions (Ca2+) have entered clinical trials. Memantine, which
targets the NMDAR receptor, is approved by the FDA for the treatment of moderate to se-
vere dementia in patients with AD. Memantine prevents neuronal excitatory toxicity caused
by excessive Ca2+ [143]. Drugs targeting AMPAR include LY451395 [144], LY450108 [145]
and S 18,986 [146], which can regulate Ca2+ penetration and reverse memory deficits in mice
while no efficacy in cognitive improvement in AD patients are observed. The compound
Tg-2112x protects neurons by reducing mitochondrial Ca2+ uptake, thereby preventing
neurodegeneration and the development of dementia [147]. Multi-target 1,4-dihydropyridines
show calcium channel blockade for AD therapy [148].

Reactive oxygen species (ROS) have been found to accelerate AD pathogenesis [149].
Several natural compounds show good antioxidant capacity. Astaxanthin (AST) is a potent
exogenous carotenoid that can scavenge superoxide anion radicals. AST slows memory
decline and decreases levels of Aβ and tau proteins in mice [150]. As an antioxidant
neuroprotector, AST improves the presynaptic and postsynaptic protein markers associated
with memory in APP/PS1 mice [151]. Crocin increases the levels of glutathione peroxidase
and superoxide dismutase and reduces ROS and Aβ1-42 in the brain of mice [152]. Linalool,
a monoterpene, decreases the levels of oxidative stress in AD model flies and rats [153].

https://www.clinicaltrials.gov/
https://www.clinicaltrials.gov/
https://www.clinicaltrials.gov/
https://www.clinicaltrials.gov/
https://www.clinicaltrials.gov/
https://www.clinicaltrials.gov/
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2.4. New Hypotheses and Drug Targets for AD Treatments

Failures in AD drug developments via Aβ and tau have led to the controversy in
the hypothesis of AD pathogenesis and the choice of drug targets. The most important
challenge is to determine which endogenous factor directly induces Aβ aggregation and tau
phosphorylation in AD. Recently, it has been proven that age-related endogenous formalde-
hyde is the direct trigger for Aβ- and tau-related pathology. Eliminating formaldehyde can
reduce Aβ and tau aggregation and improve memory [154]. This suggests that excessive
formaldehyde may be a novel target for AD therapy.

2.4.1. Exogenous Formaldehyde Directly Induces AD-Like Pathology

Gaseous formaldehyde (FA) is widely known as an irritating toxic gas in the environ-
ment, and is particularly common in industrialized production. Certainly, occupational
exposure to FA or FA solution injection can impair cognitive functions associated with
hippocampal neuron death [155]. In particular, formaldehyde induces pathological man-
ifestations similar to those in AD patients in animal brains. Formaldehyde exposure
directly causes spatial memory deficits in mice accompanied by hippocampal neuron
death [156] (Figure 3). Some early AD-like changes, including cognitive deficits associated
with Aβ plaques and tau hyperphosphorylation, have been observed in wild-type mice
after acute FA exposure [157]. Intracerebroventricular (i.c.v.) injection of formaldehyde
directly induces memory impairments in young rhesus monkeys associated with SP and
NFT appearance [158] (Figure 3). In addition, pathological concentrations of formaldehyde
impair cognitive function by interfering with DNA methyltransferases and reducing global
DNA methylation [159].

2.4.2. Age-Related Endogenous Formaldehyde Induces Memory Decline

Endogenous formaldehyde is a metabolite in the human body. During aging, the
imbalance in FA metabolism leads to FA accumulation and neuron death in the brain’s
age-related memory decline [160]. Further, clinical investigations have demonstrated that
age-related formaldehyde concentrations and memory loss are positively correlated in
the elderly [161–163]. An increased expression of semicarbazide-sensitive amine oxidase
(SSAO, a formaldehyde-generating enzyme) and the decline expression and activity of
formaldehyde dehydrogenase (FDH, a formaldehyde degrading enzyme) have been proven
to contribute to endogenous formaldehyde accumulation [164]. Overexpression of SSAO
in the blood leads to an increase in urinary FA levels in AD patients [162]. FA and Aβ in
the CSF of rhesus monkey macaques are positively correlated with age [165,166]. Brain
formaldehyde levels were gradually elevated in mice during normal aging, especially, in
AD model mice [167].

2.4.3. Formaldehyde Elicits Aβ Oligomerization and Fibrillation

Excessive levels of the endogenous formaldehyde crosslinked nontoxic Aβ monomer
promote the formation of toxic Aβ dimers, oligomers and fibrils in vitro [17]. Notably, they
also increase the formation of Aβ oligomers and Aβ-related SPs associated with mem-
ory deficits in AD model mice [154]. There is direct evidence that methanol (a precursor
of formaldehyde) can be oxidized to form formaldehyde in rhesus monkey brains [168].
Feeding rhesus monkeys with methanol causes an increase in the formation of SPs and
sustained memory impairments [169]. Aβ also interferes with formaldehyde metabolism.
For example, Aβ inactivates the FDH by binding with it, leading to formaldehyde accumu-
lation; in turn, formaldehyde promotes Aβ oligomerization and SP formation in AD model
mice [154] (Figure 3).
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Figure 3. Novel pathogenesis, drug target and delivery in AD. Briefly, aging induces endogenous
formaldehyde accumulation by disrupting FDH and SSAO expression [170,171]. Excessive formalde-
hyde can directly induce neuron death and cognitive decline by inhibiting NMDA receptor [172].
Especially, both age-associated formaldehyde and Aβ-inactivated FDH-derived formaldehyde elicit
the formation of intracellular AβO and NFTs and extracellular SP [18,173,174]. Formaldehyde-
induced Aβ deposition in ECS blocks ISF drainage and drug delivery [18].

2.4.4. Formaldehyde Promotes Tau Hyperphosphorylation and NFTs Formation

Excessive formaldehyde has been proven to elicit tau hyperphosphorylation and NFT
formation via glycogen synthase kinase 3β catalysis in vitro and in vivo [173,174]. After
chronic i.c.v. injections of formaldehyde, tau protein phosphorylation was observed in
the hippocampus, entorhinal cortex and prefrontal cortex of rhesus macaques [158]. After
feeding them with methanol for 6 months, the levels of tau protein phosphorylation on
residues T181 and S396 were increased in the CSF of rhesus monkeys. Meanwhile, NFTs
were also widely distributed in the brains [169].

2.4.5. Endogenous Formaldehyde as a Target for AD Therapy

The above studies suggest that excessive endogenous formaldehyde directly elicits Aβ-
and tau-related pathology associated with hippocampal neuron death. Thus, scavenging
formaldehyde may be a potential and new method for treating AD.

Coenzyme Q10 (CoQ10), is a vitamin-like substance that plays significant roles in the
energy supply process. It has been revealed that 30 nm nanopacked Q10 (which enhances
water solubility) reduces the formation of Aβ plaques and NFTs associated with improved
cognitive functions in APP/PS1 mice by directly scavenging formaldehyde [154]. In
addition, Q10 also reduces oxidative stress, Aβ production and intracellular Aβ deposition
in the cortex of mice with a progerin 1 mutation [175].

Resveratrol, a natural formaldehyde scavenger, reverses formaldehyde accumulation
and noradrenaline deficiency. Resveratrol can also improve LTP and memory functions in
SAMP8 mice [176]. It also attenuates Tau hyperphosphorylation induced by formaldehyde
in N2a cells [177]. Resveratrol reduces Aβ and p-tau pathology in the hippocampus of AD
transgenic mice [178] and enhances cognitive functions in AD patients [102]. However,
the low water solubility of resveratrol limits its clinical application [179], and nanopacked
methods have shown a promising prospect for AD treatments [180,181].
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Epigallocatechin gallate (EGCG), a catechin of plant origin, is primarily found in green
tea. EGCG make a spontaneous reaction with formaldehyde at room temperature (25 ◦C)
in vitro [182]. A large number of studies support the viewpoint that EGCG has potential
neuroprotective effects in neurological diseases including AD [183]. EGCG also activates
the Nrf2 signaling pathway and reduces formaldehyde-induced oxidative stress [184].
EGCG reduces Aβ deposition and phosphorylated tau and improves learning and memory
in AD mice [185–187]. Although the low water solubility of resveratrol limits its clinical
application, the nanopacked method has shown a promise prospect for AD treatments.

Hydrogen Sulfide (H2S), a signaling molecule, is associated with several systemic
diseases, including AD [188,189]. A study found that sodium hydrosulfide, a donor of H2S,
markedly scavenges formaldehyde, increases hippocampal brain-derived neurotrophic
factor expression, and alleviates cognitive deficits in formaldehyde-exposed rats [190]. H2S
reduces Aβ1-42 production by inhibiting APP expression promoted by exogenous ATP [191],
and improves cognitive function in AD models [192–194]. Whether this gaseous molecule
has clinical effects for AD is unclear.

2.4.6. Formaldehyde-Degrading Enzyme-ALDH2 as a Target for AD Treatments

Aldehyde dehydrogenase 2 (ALDH2, a formaldehyde-degrading enzyme) is expressed
at the highest levels in the liver, kidneys, muscles and the heart, while it is less expressed in
the brain [195]. ALDH2 genetic polymorphism is associated with many diseases including
aortic aneurysm/dissection (AAD), hypertension, liver disease and cancer [196–199]. In
alcohol-related diseases, ALDH2-deficient individuals are more susceptible to endogenous
formaldehyde [200]. The most common genetic mutation is ALDH2*2 associated with
cognitive impairment [201,202]. A meta-analysis has shown that the polymorphic locus
rs671 G > A of ALDH2 is a potential risk factor for AD in East Asians. An allele mutation
results in inactivated ALDH2 proteins, which may explain why carriers of the AA allele
are more likely to develop AD than carriers of the GG allele are [203,204]. Toxic aldehydes
accumulated in ALDH2-deficient mice brains induce Aβ plaques and NFT formation
associated with cognitive impairments [205,206]. On the contrary, ALDH2 overexpression
not only reverses cognitive deficits, but also improves mitochondrial integrity and neuronal
survival by reducing aldehyde and Aβ toxicity [207].

Alda-1, an ALDH2 activator, significantly protects neurovascular cells from excessive
formaldehyde during AD progression [167]. Alda-1 also protects against Aβ toxicity,
neuroinflammation [208], and Aβ-induced mitochondrial geometry anomalies [207].

2.4.7. Formaldehyde-Degrading Enzyme-ALDH2 as a Target for AD Treatments

A previous study revealed that red light at 630 nm can penetrate the skulls of mice,
and not only reduces levels of H2O2 in the brain, but also activates FDH (a specific
formaldehyde-degrading enzyme [164]) and scavenges excessive formaldehyde in the
brains. Subsequently, FDH activation by red light can alleviate memory deficits in AD
model mice [18,171].

3. Enhancing BBB Penetration for Drug Delivery in AD

Although the BBB is a physical barrier to drug delivery, carrier-mediated transport
is the approach through the BBB for small molecules, carbohydrates, amino acids, fatty
acids, and ions. Receptor-mediated transcytosis is finding a principal pathway for macro-
molecules, including proteins and peptides, to enter the central nervous system [209]. In
Alzheimer’s brains, the structure and function of the BBB are disrupted [210]. Aβ induces
astrocyte endfeet retraction leading to neurovascular uncoupling [211,212]. A reduction
in pericytes has been observed in the cortex and hippocampus [213], leading to a lower
clearance of soluble Aβ in interstitial fluid and accelerated brain pathology changes [214].
Therapeutic drugs tend to be trapped in the enlarged perivascular space, which makes it
difficult for them to be diffused through brain ECS to reach injured neurons [8] (Figure 3).
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The application of nanopacked medicines facilitates the entry of drugs through the
BBB. Several nanomedicines have been developed based on alterations in the BBB during
disease. Because the expression of the receptor of advanced glycation endproducts (RAGE)
in the microvasculature increases [215], RAGE-mediated transcytosis can be used to deliver
drugs to brains with Alzheimer’s. For example, an ibuprofen and FK506-encapsulated
drug codelivery system (Ibu&FK@RNPs) targeting RAGE inhibits the neuroinflammation
caused by the NF-κB pathway [216].

4. Aβ Plaques Deposition in ECS Blocks Drug Delivery in AD

Interstitial fluid (ISF) drainage is necessary for drug delivery to target neurons in the
brain. The myelin sheath separates the normal brain into different regions, affecting ISF
drainage and causing an uneven distribution of drugs in the brain. For example, ISF in
the caudate nucleus flows smoothly without being blocked along myelinated fiber tracts
toward the ipsilateral cortex, while ISF flowing in the opposite direction is completely
blocked by barrier structures [16].

In 2012, a method to visually detect brain ISF drainage was established. The dynamic
process of ISF drainage in rat brains can be imaged by magnetic resonance imaging (MRI)
with gadolinium-diethylenetriaminepentaacetic acid (Gd-DTPA) as the tracer [217]. The
diffusion properties of extracellular space (ECS) are usually evaluated in terms of volume
fraction (α) and tortuosity (λ), with α being the ratio of the volume of ECS to the total
volume of brain tissue, and λ being the ratio of the actual distance between two points
to the distance between straight lines. α and λ describe the geometric characteristics of
the cases in which the ECS can be used for diffusion; i.e., they describe the magnitude
factors that impede the diffusion of molecules. In normal brain tissue, the ECS has a
volume fraction of about 20% with a tortuosity of about 1.6 [218]. ISF drainage flows
from the superficial cortex and then deep into brain to the 3rd ventricle (V3) pouring into
the cerebrospinal fluid (CSF). Finally, CSF flows into nasal lymphatics (NL) where the
substances are exchanged with blood [18] (Figure 2). The diffusion function of the ECS is
disturbed in pathological conditions. One of the typical AD pathological features is Aβ

deposition in brain ECS [219]. Aβ plaques in the ECS impede the drainage of ISF from the
superficial to the deeper cortical layers and drive the diffusion of ISF around neurons (in
a horizontal direction) [18] (Figure 3). Aβ plaque and glial cell proliferation in AD mice
leads to ECS volume elevation and ISF flow restriction [220,221], which make it difficult for
drugs to reach the deeper layers of the brain. Meanwhile, toxic metabolite accumulation
exacerbates deep neuronal apoptosis or death. This may be a possible explanation for the
AD drug development failures over the last hundred years.

5. Novel Drug Delivery for AD Treatments
5.1. Drug Delivery via Brain ECS

Drug delivery via brain ECS involves direct therapeutic drug injection into dam-
aged deep neurons through a specialized catheter, avoiding a route with slow or less ISF
drainage which results in reduced drug concentrations and low clinical efficacy (Figure 4A).
MRI-guided stereotactic delivery improves the neuroprotective efficiency of drugs [222].
Although it is a promising method for AD drug delivery, this invasive treatment poses the
risk of intracranial infection and hemorrhage to patients. Additionally, it requires detailed
study of the locations and functions of brain subdivision before a highly precise procedure
can be performed.

5.2. Magnetic Nanoparticles

Magnetic nanoparticles (MNPs) can effectively penetrate the BBB and reach specific
brain regions when exposed to external magnetic fields [223,224] (Figure 4B). Superpara-
magnetic iron oxide nanoparticles (SPION) are currently the focus of research, and have
the advantages of inherent magnetism, high safety and targeting, and easy access to manu-
facturing methods [225,226]. For example, Tween 80-modified SPION (Tween-SPIONs), a
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kind of MNP, can pass through the BBB in rats and accumulates in large amounts in the
cortex near the magnet [227]. In the presence of an external static magnetic field (SMF),
insulin-modified NPs can effectively cross the BBB and improve the bioavailability of
insulin in the brain [228].

5.3. Near-Infrared Photosensitive Nanomedicines

Near-infrared light (NIR) is an electromagnetic wave between visible light and mid-
infrared light. The permeability and low tissue destruction of NIR make it widely used in
biological science and related fields, particularly in brain imaging [229] and nanomedicine
therapy [230] (Figure 4C). NIR combined with nanomedicine is commonly used in anti-
tumor therapy. For example, a NIR-excitable immunomodulating nanophotosensitizer
has been developed as an effective and precise antitumor immunotherapy [231]. NIR-
based phototherapy, a nanoplatform of the brain-targeting peptide RVG conjugated with
the 2D porphyrinic PCN-222 metal–organic framework and indocyanine green (PCN-
222@ICG@RVG), has been established for inhibiting Aβ aggregation by NIR irradia-
tion [232]. Local photothermal heat facilitates the photo-oxygenation process of generating
oxidized Aβ monomers with low aggregation capability [232]. Human serum albumin-
stabilized gold nanoclusters (AuNCs@HSA) have been found to inhibit Aβ aggregation,
oxidize Aβ monomers, and attenuate Aβ-mediated neurotoxicity through photo-oxidation
under NIR laser irradiation [233].

5.4. Combination of Focused Ultrasound and Nanomedicines

Focused ultrasound therapy is characterized by high tissue penetration and submil-
limeter steerable focusing. MRI-guided low-intensity focused ultrasound (FUS) serves
to induce the BBB to open safely, noninvasively, transiently and centrally in the human
hippocampus and internal olfactory cortex [234]. Some studies have revealed that increases
in brain interstitial fluid and lymphatic drainage and the opening of the BBB by FUS reduce
Aβ plaques [235,236]. FUS applied with microbubbles (FUS+MB) is a novel technique used
to breach the BBB and increase drug delivery. After FUS+MB treatment, the delivery of two
therapeutic AD antibodies, Aducanumab and RNF5, increases significantly [237].

FUS allows nanomedicines to be released in a specific brain region (Figure 4D). For
example, an albumin-based nanocluster and the FUS facilitate the opening of the BBB, al-
lowing the nanocluster to enter the ECS. After localization of drug using MRI, a second FUS
will release the nanocluster into the brain tissue [238]. Another method of the embedded
combining quercetin modified sulfur nanoparticles (Qc@SNPs) into microbubbles (MB)
construct a Qc@SNPs-MB nanosystem. FUS helps to release drugs embedded in microbub-
bles and cross the transiently opened the BBB, thus improve the abilities of learning and
memory in AD mice [239].

5.5. Extracellular Vesicles

Extracellular vesicles (EVs) are particles that are naturally released from cells [240]. It
was found that tumor-derived EVs can breach an intact BBB during brain metastasis [241].
Rabies viral glycoprotein-tagged exosomes derived from Mesenchymal stem cells (RVG-
tagged MSC-Exo) decrease plaque deposition and Aβ and prevent memory deficits in
APP/PS1 mice [242].

5.6. BBB Shuttle Peptide

The BBB shuttle peptide is used to increase the ability of adeno-associated virus (AAV)
vectors to cross the BBB [243]. A study showed that the PB5-3 peptide increased AAV9
transport and transendocytosis efficiency [244].
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6. Conclusions and Outlook

For the past two decades, many Alzheimer’s disease drug candidates have failed
in trials. Although these drugs showed some successes in cellular and animal model
experiments, they did not improve cognitive functions in clinical Alzheimer’s patients.
Aβ monoclonal antibodies reduce Aβ levels in brains with adverse reactions, especially
ARIA. Aβ deposition in blood vessels, brain extracellular space, an impaired BBB and
blocked ISF drainage cause low efficacy drug delivery. This leads to the lack of therapeutic
efficacy in AD drugs. Therefore, there is an imperative need for new therapies that increase
BBB permeability and ISF drainage. Encouragingly, red light, near-infrared and focused
ultrasound have been proven to enhance ISF drainage in brain ECS [18,235,245].

Even though drug delivery via brain ECS increases precision, it carries infection
and intracerebral hemorrhage risks. The noninvasive, low toxicity and high targeting
characteristics of physical therapy, nanomedicines with NIR and/or focused ultrasound
are considered to be the promising methods. In addition, endogenous formaldehyde
is proposed to be a direct endogenous factor in intracellular Aβ oligomerization, NFT
formation, and Aβ deposition in ECS in AD. Red light therapy at 630 nm can activate FDH
to degrade formaldehyde, smash Aβ plaques, increase ISF flow to deep into the brain, and
improve cognitive functions in AD models [18]. Thus, nanopackaged medicines targeting
formaldehyde for reducing SP, and new physical methods for accelerating ISF drainage
may be the promising strategies for clinical AD therapy.
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148. Malek, R.; Maj, M.; Wnorowski, A.; Jóźwiak, K.; Martin, H.; Iriepa, I.; Moraleda, I.; Chabchoub, F.; Marco-Contelles, J.; Ismaili, L.
Multi-target 1,4-dihydropyridines showing calcium channel blockade and antioxidant capacity for Alzheimer’s disease therapy.
Bioorg. Chem. 2019, 91, 103205. [CrossRef]

149. Bhatt, S.; Puli, L.; Patil, C.R. Role of reactive oxygen species in the progression of Alzheimer’s disease. Drug. Discov. Today 2021,
26, 794–803. [CrossRef]

150. Balendra, V.; Singh, S.K. Therapeutic potential of astaxanthin and superoxide dismutase in Alzheimer’s disease. Open. Biol. 2021,
11, 210013. [CrossRef]

151. Ali, T.; Kim, T.; Rehman, S.U.; Khan, M.S.; Amin, F.U.; Khan, M.; Ikram, M.; Kim, M.O. Natural Dietary Supplementation of
Anthocyanins via PI3K/Akt/Nrf2/HO-1 Pathways Mitigate Oxidative Stress, Neurodegeneration, and Memory Impairment in a
Mouse Model of Alzheimer’s Disease. Mol. Neurobiol. 2018, 55, 6076–6093. [CrossRef] [PubMed]

152. Wang, C.; Cai, X.; Hu, W.; Li, Z.; Kong, F.; Chen, X.; Wang, D. Investigation of the neuroprotective effects of crocin via antioxidant
activities in HT22 cells and in mice with Alzheimer’s disease. Int. J. Mol. Med. 2019, 43, 956–966. [CrossRef] [PubMed]

153. Yuan, C.; Shin, M.; Park, Y.; Choi, B.; Jang, S.; Lim, C.; Yun, H.S.; Lee, I.S.; Won, S.Y.; Cho, K.S. Linalool Alleviates Aβ42-Induced
Neurodegeneration via Suppressing ROS Production and Inflammation in Fly and Rat Models of Alzheimer’s Disease. Oxid.
Med. Cell. Longev. 2021, 2021, 8887716. [CrossRef] [PubMed]

154. Fei, X.; Zhang, Y.; Mei, Y.; Yue, X.; Jiang, W.; Ai, L.; Yu, Y.; Luo, H.; Li, H.; Luo, W.; et al. Degradation of FA reduces Aβ

neurotoxicity and Alzheimer-related phenotypes. Mol. Psychiatry 2021, 26, 5578–5591. [CrossRef] [PubMed]
155. Letellier, N.; Gutierrez, L.A.; Pilorget, C.; Artaud, F.; Descatha, A.; Ozguler, A.; Goldberg, M.; Zins, M.; Elbaz, A.; Berr, C.

Association Between Occupational Exposure to Formaldehyde and Cognitive Impairment. Neurology 2022, 98, e633–e640.
[CrossRef]

http://doi.org/10.14283/jpad.2017.36
http://www.ncbi.nlm.nih.gov/pubmed/29181488
http://doi.org/10.1016/j.ajpath.2017.01.022
http://www.ncbi.nlm.nih.gov/pubmed/28408124
http://doi.org/10.1007/s00401-018-1911-2
http://doi.org/10.1093/brain/awz100
http://doi.org/10.1016/j.jalz.2017.07.227
http://doi.org/10.1074/jbc.M111.229633
http://doi.org/10.1186/alzrt278
http://doi.org/10.1371/journal.pone.0072301
http://doi.org/10.3390/ijms22115900
http://doi.org/10.1007/s10787-020-00760-0
http://doi.org/10.1212/01.wnl.0000260240.46070.7c
http://doi.org/10.1177/0091270006286899
http://doi.org/10.1111/j.1755-5949.2009.00088.x
http://doi.org/10.1038/s41598-022-16817-9
http://doi.org/10.1016/j.bioorg.2019.103205
http://doi.org/10.1016/j.drudis.2020.12.004
http://doi.org/10.1098/rsob.210013
http://doi.org/10.1007/s12035-017-0798-6
http://www.ncbi.nlm.nih.gov/pubmed/29170981
http://doi.org/10.3892/ijmm.2018.4032
http://www.ncbi.nlm.nih.gov/pubmed/30569175
http://doi.org/10.1155/2021/8887716
http://www.ncbi.nlm.nih.gov/pubmed/33777322
http://doi.org/10.1038/s41380-020-00929-7
http://www.ncbi.nlm.nih.gov/pubmed/33328587
http://doi.org/10.1212/WNL.0000000000013146


Pharmaceutics 2023, 15, 1133 23 of 26

156. Li, F.; Yujie, Q.; Gong, S.; Zhang, H.; Ding, S. Learning and memory impairment of mice caused by gaseous formaldehyde.
Environ. Res. 2020, 184, 109318. [CrossRef]

157. Liu, X.; Zhang, Y.; Wu, R.; Ye, M.; Zhao, Y.; Kang, J.; Ma, P.; Li, J.; Yang, X. Acute formaldehyde exposure induced early
Alzheimer-like changes in mouse brain. Toxicol. Mech. Methods 2018, 28, 95–104. [CrossRef]

158. Zhai, R.; Rizak, J.; Zheng, N.; He, X.; Li, Z.; Yin, Y.; Su, T.; He, Y.; He, R.; Ma, Y.; et al. Alzheimer’s Disease-Like Pathologies and
Cognitive Impairments Induced by Formaldehyde in Non-Human Primates. Curr. Alzheimer Res. 2018, 15, 1304–1321. [CrossRef]

159. Tong, Z.; Han, C.; Qiang, M.; Wang, W.; Lv, J.; Zhang, S.; Luo, W.; Li, H.; Luo, H.; Zhou, J.; et al. Age-related formaldehyde
interferes with DNA methyltransferase function, causing memory loss in Alzheimer’s disease. Neurobiol. Aging 2015, 36, 100–110.
[CrossRef]

160. Kou, Y.; Zhao, H.; Cui, D.; Han, H.; Tong, Z. Formaldehyde toxicity in age-related neurological dementia. Ageing Res. Rev. 2022,
73, 101512. [CrossRef]

161. Tong, Z.; Zhang, J.; Luo, W.; Wang, W.; Li, F.; Li, H.; Luo, H.; Lu, J.; Zhou, J.; Wan, Y.; et al. Urine formaldehyde level is inversely
correlated to mini mental state examination scores in senile dementia. Neurobiol. Aging 2011, 32, 31–41. [CrossRef]

162. Tong, Z.; Wang, W.; Luo, W.; Lv, J.; Li, H.; Luo, H.; Jia, J.; He, R. Urine Formaldehyde Predicts Cognitive Impairment in Post-Stroke
Dementia and Alzheimer’s Disease. J. Alzheimers Dis. 2017, 55, 1031–1038. [CrossRef]

163. Wang, Y.; Pan, F.; Xie, F.; He, R.; Guo, Q. Correlation Between Urine Formaldehyde and Cognitive Abilities in the Clinical
Spectrum of Alzheimer’s Disease. Front. Aging Neurosci. 2022, 14, 820385. [CrossRef]

164. Boor, P.J.; Trent, M.B.; Lyles, G.A.; Tao, M.; Ansari, G.A. Methylamine metabolism to formaldehyde by vascular semicarbazide-
sensitive amine oxidase. Toxicology 1992, 73, 251–258. [CrossRef]

165. Li, Z.H.; He, X.P.; Li, H.; He, R.Q.; Hu, X.T. Age-associated changes in amyloid-β and formaldehyde concentrations in cere-
brospinal fluid of rhesus monkeys. Zool. Res. 2020, 41, 444–448. [CrossRef]

166. Zhao, Q.; Lu, J.; Yao, Z.; Wang, S.; Zhu, L.; Wang, J.; Chen, B. Upregulation of Aβ42 in the Brain and Bodily Fluids of Rhesus
Monkeys with Aging. J. Mol. Neurosci. 2017, 61, 79–87. [CrossRef]

167. Tao, R.; Liao, M.; Wang, Y.; Wang, H.; Tan, Y.; Qin, S.; Wei, W.; Tang, C.; Liang, X.; Han, Y.; et al. In Situ Imaging of Formaldehyde
in Live Mice with High Spatiotemporal Resolution Reveals Aldehyde Dehydrogenase-2 as a Potential Target for Alzheimer’s
Disease Treatment. Anal. Chem. 2022, 94, 1308–1317. [CrossRef]

168. Zhai, R.; Zheng, N.; Rizak, J.; Hu, X. Evidence for Conversion of Methanol to Formaldehyde in Nonhuman Primate Brain. Anal.
Cell. Pathol. 2016, 2016, 4598454. [CrossRef]

169. Yang, M.; Miao, J.; Rizak, J.; Zhai, R.; Wang, Z.; Huma, T.; Li, T.; Zheng, N.; Wu, S.; Zheng, Y.; et al. Alzheimer’s disease and
methanol toxicity (part 2): Lessons from four rhesus macaques (Macaca mulatta) chronically fed methanol. J. Alzheimers Dis. 2014,
41, 1131–1147. [CrossRef]

170. Del Mar Hernandez, M.; Esteban, M.; Szabo, P.; Boada, M.; Unzeta, M. Human plasma semicarbazide sensitive amine oxidase
(SSAO), beta-amyloid protein and aging. Neurosci. Lett. 2005, 384, 183–187. [CrossRef]

171. Zhang, J.; Yue, X.; Luo, H.; Jiang, W.; Mei, Y.; Ai, L.; Gao, G.; Wu, Y.; Yang, H.; An, J.; et al. Illumination with 630 nm Red Light
Reduces Oxidative Stress and Restores Memory by Photo-Activating Catalase and Formaldehyde Dehydrogenase in SAMP8
Mice. Antioxid. Redox Signal. 2019, 30, 1432–1449. [CrossRef] [PubMed]

172. Tong, Z.; Han, C.; Luo, W.; Wang, X.; Li, H.; Luo, H.; Zhou, J.; Qi, J.; He, R. Accumulated hippocampal formaldehyde induces
age-dependent memory decline. Age 2013, 35, 583–596. [CrossRef] [PubMed]

173. Lu, J.; Miao, J.; Su, T.; Liu, Y.; He, R. Formaldehyde induces hyperphosphorylation and polymerization of Tau protein both
in vitro and in vivo. Biochim. Biophys. Acta 2013, 1830, 4102–4116. [CrossRef] [PubMed]

174. Nie, C.L.; Wang, X.S.; Liu, Y.; Perrett, S.; He, R.Q. Amyloid-like aggregates of neuronal tau induced by formaldehyde promote
apoptosis of neuronal cells. BMC Neurosci. 2007, 8, 9. [CrossRef]

175. Yang, X.; Yang, Y.; Li, G.; Wang, J.; Yang, E.S. Coenzyme Q10 attenuates beta-amyloid pathology in the aged transgenic mice with
Alzheimer presenilin 1 mutation. J. Mol. Neurosci. 2008, 34, 165–171. [CrossRef]

176. Mei, Y.; Jiang, C.; Wan, Y.; Lv, J.; Jia, J.; Wang, X.; Yang, X.; Tong, Z. Aging-associated formaldehyde-induced norepinephrine
deficiency contributes to age-related memory decline. Aging Cell. 2015, 14, 659–668. [CrossRef]

177. He, X.; Li, Z.; Rizak, J.D.; Wu, S.; Wang, Z.; He, R.; Su, M.; Qin, D.; Wang, J.; Hu, X. Resveratrol Attenuates Formaldehyde Induced
Hyperphosphorylation of Tau Protein and Cytotoxicity in N2a Cells. Front. Neurosci. 2016, 10, 598. [CrossRef]

178. Corpas, R.; Griñán-Ferré, C.; Rodríguez-Farré, E.; Pallàs, M.; Sanfeliu, C. Resveratrol Induces Brain Resilience Against Alzheimer
Neurodegeneration Through Proteostasis Enhancement. Mol. Neurobiol. 2019, 56, 1502–1516. [CrossRef]

179. Jhaveri, A.; Deshpande, P.; Pattni, B.; Torchilin, V. Transferrin-targeted, resveratrol-loaded liposomes for the treatment of
glioblastoma. J. Control. Release 2018, 277, 89–101. [CrossRef]

180. Sun, J.; Wei, C.; Liu, Y.; Xie, W.; Xu, M.; Zhou, H.; Liu, J. Progressive release of mesoporous nano-selenium delivery system for the
multi-channel synergistic treatment of Alzheimer’s disease. Biomaterials 2019, 197, 417–431. [CrossRef]

181. Abozaid, O.A.R.; Sallam, M.W.; El-Sonbaty, S.; Aziza, S.; Emad, B.; Ahmed, E.S.A. Resveratrol-Selenium Nanoparticles Alle-
viate Neuroinflammation and Neurotoxicity in a Rat Model of Alzheimer’s Disease by Regulating Sirt1/miRNA-134/GSK3β
Expression. Biol. Trace Elem. Res. 2022, 200, 5104–5114. [CrossRef]

182. Takagaki, A.; Fukai, K.; Nanjo, F.; Hara, Y. Reactivity of green tea catechins with formaldehyde. J. Wood Sci. 2000, 46, 334–338.
[CrossRef]

http://doi.org/10.1016/j.envres.2020.109318
http://doi.org/10.1080/15376516.2017.1368053
http://doi.org/10.2174/1567205015666180904150118
http://doi.org/10.1016/j.neurobiolaging.2014.07.018
http://doi.org/10.1016/j.arr.2021.101512
http://doi.org/10.1016/j.neurobiolaging.2009.07.013
http://doi.org/10.3233/JAD-160357
http://doi.org/10.3389/fnagi.2022.820385
http://doi.org/10.1016/0300-483X(92)90067-O
http://doi.org/10.24272/j.issn.2095-8137.2020.088
http://doi.org/10.1007/s12031-016-0840-6
http://doi.org/10.1021/acs.analchem.1c04520
http://doi.org/10.1155/2016/4598454
http://doi.org/10.3233/JAD-131532
http://doi.org/10.1016/j.neulet.2005.04.074
http://doi.org/10.1089/ars.2018.7520
http://www.ncbi.nlm.nih.gov/pubmed/29869529
http://doi.org/10.1007/s11357-012-9388-8
http://www.ncbi.nlm.nih.gov/pubmed/22382760
http://doi.org/10.1016/j.bbagen.2013.04.028
http://www.ncbi.nlm.nih.gov/pubmed/23628704
http://doi.org/10.1186/1471-2202-8-9
http://doi.org/10.1007/s12031-007-9033-7
http://doi.org/10.1111/acel.12345
http://doi.org/10.3389/fnins.2016.00598
http://doi.org/10.1007/s12035-018-1157-y
http://doi.org/10.1016/j.jconrel.2018.03.006
http://doi.org/10.1016/j.biomaterials.2018.12.027
http://doi.org/10.1007/s12011-021-03073-7
http://doi.org/10.1007/BF00766227


Pharmaceutics 2023, 15, 1133 24 of 26

183. Pervin, M.; Unno, K.; Takagaki, A.; Isemura, M.; Nakamura, Y. Function of Green Tea Catechins in the Brain: Epigallocatechin
Gallate and its Metabolites. Int. J. Mol. Sci. 2019, 20, 3630. [CrossRef]

184. Huang, J.; Lu, Y.; Zhang, B.; Yang, S.; Zhang, Q.; Cui, H.; Lu, X.; Zhao, Y.; Yang, X.; Li, R. Antagonistic effect of epigallocatechin-3-
gallate on neurotoxicity induced by formaldehyde. Toxicology 2019, 412, 29–36. [CrossRef]

185. Cano, A.; Ettcheto, M.; Chang, J.H.; Barroso, E.; Espina, M.; Kühne, B.A.; Barenys, M.; Auladell, C.; Folch, J.; Souto, E.B.; et al.
Dual-drug loaded nanoparticles of Epigallocatechin-3-gallate (EGCG)/Ascorbic acid enhance therapeutic efficacy of EGCG in a
APPswe/PS1dE9 Alzheimer’s disease mice model. J. Control. Release 2019, 301, 62–75. [CrossRef]

186. Rezai-Zadeh, K.; Arendash, G.W.; Hou, H.; Fernandez, F.; Jensen, M.; Runfeldt, M.; Shytle, R.D.; Tan, J. Green tea epigallocatechin-
3-gallate (EGCG) reduces beta-amyloid mediated cognitive impairment and modulates tau pathology in Alzheimer transgenic
mice. Brain Res. 2008, 1214, 177–187. [CrossRef]

187. Lee, J.W.; Lee, Y.K.; Ban, J.O.; Ha, T.Y.; Yun, Y.P.; Han, S.B.; Oh, K.W.; Hong, J.T. Green tea (-)-epigallocatechin-3-gallate inhibits
beta-amyloid-induced cognitive dysfunction through modification of secretase activity via inhibition of ERK and NF-kappaB
pathways in mice. J. Nutr. 2009, 139, 1987–1993. [CrossRef]

188. Wang, R. Physiological implications of hydrogen sulfide: A whiff exploration that blossomed. Physiol. Rev. 2012, 92, 791–896.
[CrossRef]

189. Disbrow, E.; Stokes, K.Y.; Ledbetter, C.; Patterson, J.; Kelley, R.; Pardue, S.; Reekes, T.; Larmeu, L.; Batra, V.; Yuan, S.; et al. Plasma
hydrogen sulfide: A biomarker of Alzheimer’s disease and related dementias. Alzheimers Dement. 2021, 17, 1391–1402. [CrossRef]

190. Li, X.; Zhuang, Y.Y.; Wu, L.; Xie, M.; Gu, H.F.; Wang, B.; Tang, X.Q. Hydrogen Sulfide Ameliorates Cognitive Dysfunction in
Formaldehyde-Exposed Rats: Involvement in the Upregulation of Brain-Derived Neurotrophic Factor. Neuropsychobiology 2020,
79, 119–130. [CrossRef]

191. Cao, L.; Cao, X.; Zhou, Y.; Nagpure, B.V.; Wu, Z.Y.; Hu, L.F.; Yang, Y.; Sethi, G.; Moore, P.K.; Bian, J.S. Hydrogen sulfide inhibits
ATP-induced neuroinflammation and Aβ(1–42) synthesis by suppressing the activation of STAT3 and cathepsin S. Brain Behav.
Immun. 2018, 73, 603–614. [CrossRef] [PubMed]

192. Aboulhoda, B.E.; Rashed, L.A.; Ahmed, H.; Obaya, E.M.M.; Ibrahim, W.; Alkafass, M.A.L.; Abd El-Aal, S.A.; ShamsEldeen, A.M.
Hydrogen sulfide and mesenchymal stem cells-extracted microvesicles attenuate LPS-induced Alzheimer’s disease. J. Cell. Physiol.
2021, 236, 5994–6010. [CrossRef] [PubMed]

193. Xuan, A.; Long, D.; Li, J.; Ji, W.; Zhang, M.; Hong, L.; Liu, J. Hydrogen sulfide attenuates spatial memory impairment and
hippocampal neuroinflammation in β-amyloid rat model of Alzheimer’s disease. J. Neuroinflamm. 2012, 9, 202. [CrossRef]
[PubMed]

194. Xi, Y.; Zhang, Y.; Zhou, Y.; Liu, Q.; Chen, X.; Liu, X.; Grune, T.; Shi, L.; Hou, M.; Liu, Z. Effects of methionine intake on cognitive
function in mild cognitive impairment patients and APP/PS1 Alzheimer’s Disease model mice: Role of the cystathionine-β-
synthase/H(2)S pathway. Redox Biol. 2023, 59, 102595. [CrossRef] [PubMed]

195. Stewart, M.J.; Malek, K.; Crabb, D.W. Distribution of messenger RNAs for aldehyde dehydrogenase 1, aldehyde dehydrogenase 2,
and aldehyde dehydrogenase 5 in human tissues. J. Investig. Med. 1996, 44, 42–46.

196. Li, R.; Zhao, Z.; Sun, M.; Luo, J.; Xiao, Y. ALDH2 gene polymorphism in different types of cancers and its clinical significance. Life
Sci. 2016, 147, 59–66. [CrossRef]

197. Yang, K.; Ren, J.; Li, X.; Wang, Z.; Xue, L.; Cui, S.; Sang, W.; Xu, T.; Zhang, J.; Yu, J.; et al. Prevention of aortic dissection and
aneurysm via an ALDH2-mediated switch in vascular smooth muscle cell phenotype. Eur. Heart J. 2020, 41, 2442–2453. [CrossRef]

198. Fan, Y.; Chen, Z.; Ye, T.; Lin, W.; Wang, Q.; Lin, B. Aldehyde dehydrogenase II rs671 polymorphism in essential hypertension.
Clin. Chim. Acta 2018, 487, 153–160. [CrossRef]

199. Tanaka, F.; Shiratori, Y.; Yokosuka, O.; Imazeki, F.; Tsukada, Y.; Omata, M. High incidence of ADH2*1/ALDH2*1 genes among
Japanese alcohol dependents and patients with alcoholic liver disease. Hepatology 1996, 23, 234–239. [CrossRef]

200. Dingler, F.A.; Wang, M.; Mu, A.; Millington, C.L.; Oberbeck, N.; Watcham, S.; Pontel, L.B.; Kamimae-Lanning, A.N.; Langevin, F.;
Nadler, C.; et al. Two Aldehyde Clearance Systems Are Essential to Prevent Lethal Formaldehyde Accumulation in Mice and
Humans. Mol. Cell. 2020, 80, 996–1012.e1019. [CrossRef]

201. Chen, C.H.; Kraemer, B.R.; Mochly-Rosen, D. ALDH2 variance in disease and populations. Dis. Model. Mech. 2022, 15, dmm049601.
[CrossRef]

202. Jin, X.; Long, T.; Chen, H.; Zeng, Y.; Zhang, X.; Yan, L.; Wu, C. Associations of Alcohol Dehydrogenase and Aldehyde
Dehydrogenase Polymorphism With Cognitive Impairment Among the Oldest-Old in China. Front. Aging Neurosci. 2021,
13, 710966. [CrossRef]

203. Chen, J.; Huang, W.; Cheng, C.H.; Zhou, L.; Jiang, G.B.; Hu, Y.Y. Association Between Aldehyde dehydrogenase-2 Polymorphisms
and Risk of Alzheimer’s Disease and Parkinson’s Disease: A Meta-Analysis Based on 5,315 Individuals. Front. Neurol. 2019,
10, 290. [CrossRef]

204. Wang, B.; Wang, J.; Zhou, S.; Tan, S.; He, X.; Yang, Z.; Xie, Y.C.; Li, S.; Zheng, C.; Ma, X. The association of mitochondrial aldehyde
dehydrogenase gene (ALDH2) polymorphism with susceptibility to late-onset Alzheimer’s disease in Chinese. J. Neurol. Sci.
2008, 268, 172–175. [CrossRef]

205. Ohsawa, I.; Nishimaki, K.; Murakami, Y.; Suzuki, Y.; Ishikawa, M.; Ohta, S. Age-dependent neurodegeneration accompanying
memory loss in transgenic mice defective in mitochondrial aldehyde dehydrogenase 2 activity. J. Neurosci. 2008, 28, 6239–6249.
[CrossRef]

http://doi.org/10.3390/ijms20153630
http://doi.org/10.1016/j.tox.2018.10.022
http://doi.org/10.1016/j.jconrel.2019.03.010
http://doi.org/10.1016/j.brainres.2008.02.107
http://doi.org/10.3945/jn.109.109785
http://doi.org/10.1152/physrev.00017.2011
http://doi.org/10.1002/alz.12305
http://doi.org/10.1159/000501294
http://doi.org/10.1016/j.bbi.2018.07.005
http://www.ncbi.nlm.nih.gov/pubmed/29981830
http://doi.org/10.1002/jcp.30283
http://www.ncbi.nlm.nih.gov/pubmed/33481268
http://doi.org/10.1186/1742-2094-9-202
http://www.ncbi.nlm.nih.gov/pubmed/22898621
http://doi.org/10.1016/j.redox.2022.102595
http://www.ncbi.nlm.nih.gov/pubmed/36608589
http://doi.org/10.1016/j.lfs.2016.01.028
http://doi.org/10.1093/eurheartj/ehaa352
http://doi.org/10.1016/j.cca.2018.09.037
http://doi.org/10.1002/hep.510230206
http://doi.org/10.1016/j.molcel.2020.10.012
http://doi.org/10.1242/dmm.049601
http://doi.org/10.3389/fnagi.2021.710966
http://doi.org/10.3389/fneur.2019.00290
http://doi.org/10.1016/j.jns.2007.12.006
http://doi.org/10.1523/JNEUROSCI.4956-07.2008


Pharmaceutics 2023, 15, 1133 25 of 26

206. D’Souza, Y.; Elharram, A.; Soon-Shiong, R.; Andrew, R.D.; Bennett, B.M. Characterization of Aldh2 (-/-) mice as an age-related
model of cognitive impairment and Alzheimer’s disease. Mol. Brain 2015, 8, 27. [CrossRef]

207. Yang, Y.; Chen, W.; Wang, X.; Ge, W. Impact of mitochondrial aldehyde dehydrogenase 2 on cognitive impairment in the AD
model mouse. Acta Biochim. Biophys. Sin. 2021, 53, 837–847. [CrossRef]

208. Joshi, A.U.; Van Wassenhove, L.D.; Logas, K.R.; Minhas, P.S.; Andreasson, K.I.; Weinberg, K.I.; Chen, C.H.; Mochly-Rosen, D.
Aldehyde dehydrogenase 2 activity and aldehydic load contribute to neuroinflammation and Alzheimer’s disease related
pathology. Acta Neuropathol. Commun. 2019, 7, 190. [CrossRef]

209. Abbott, N.J.; Patabendige, A.A.; Dolman, D.E.; Yusof, S.R.; Begley, D.J. Structure and function of the blood-brain barrier. Neurobiol.
Dis. 2010, 37, 13–25. [CrossRef]

210. Zenaro, E.; Piacentino, G.; Constantin, G. The blood-brain barrier in Alzheimer’s disease. Neurobiol. Dis. 2017, 107, 41–56.
[CrossRef]

211. Merlini, M.; Meyer, E.P.; Ulmann-Schuler, A.; Nitsch, R.M. Vascular β-amyloid and early astrocyte alterations impair cere-
brovascular function and cerebral metabolism in transgenic arcAβ mice. Acta Neuropathol. 2011, 122, 293–311. [CrossRef]
[PubMed]

212. Ahn, K.C.; Learman, C.R.; Dunbar, G.L.; Maiti, P.; Jang, W.C.; Cha, H.C.; Song, M.S. Characterization of Impaired Cerebrovascular
Structure in APP/PS1 Mouse Brains. Neuroscience 2018, 385, 246–254. [CrossRef] [PubMed]

213. Sengillo, J.D.; Winkler, E.A.; Walker, C.T.; Sullivan, J.S.; Johnson, M.; Zlokovic, B.V. Deficiency in mural vascular cells coincides
with blood-brain barrier disruption in Alzheimer’s disease. Brain Pathol. 2013, 23, 303–310. [CrossRef] [PubMed]

214. Sagare, A.P.; Bell, R.D.; Zhao, Z.; Ma, Q.; Winkler, E.A.; Ramanathan, A.; Zlokovic, B.V. Pericyte loss influences Alzheimer-like
neurodegeneration in mice. Nat. Commun. 2013, 4, 2932. [CrossRef]

215. Donahue, J.E.; Flaherty, S.L.; Johanson, C.E.; Duncan, J.A., 3rd; Silverberg, G.D.; Miller, M.C.; Tavares, R.; Yang, W.; Wu, Q.;
Sabo, E.; et al. RAGE, LRP-1, and amyloid-beta protein in Alzheimer’s disease. Acta Neuropathol. 2006, 112, 405–415. [CrossRef]

216. He, X.; Wang, X.; Yang, L.; Yang, Z.; Yu, W.; Wang, Y.; Liu, R.; Chen, M.; Gao, H. Intelligent lesion blood-brain barrier targeting
nano-missiles for Alzheimer’s disease treatment by anti-neuroinflammation and neuroprotection. Acta Pharm. Sin. B 2022, 12,
1987–1999. [CrossRef]

217. Han, H.; Li, K.; Yan, J.; Zhu, K.; Fu, Y. An in vivo study with an MRI tracer method reveals the biophysical properties of interstitial
fluid in the rat brain. Sci. China Life Sci. 2012, 55, 782–787. [CrossRef]

218. Syková, E.; Nicholson, C. Diffusion in brain extracellular space. Physiol. Rev. 2008, 88, 1277–1340. [CrossRef]
219. Shoji, M.; Golde, T.E.; Ghiso, J.; Cheung, T.T.; Estus, S.; Shaffer, L.M.; Cai, X.D.; McKay, D.M.; Tintner, R.; Frangione, B.; et al.

Production of the Alzheimer amyloid beta protein by normal proteolytic processing. Science 1992, 258, 126–129. [CrossRef]
220. Syková, E.; Vorísek, I.; Antonova, T.; Mazel, T.; Meyer-Luehmann, M.; Jucker, M.; Hájek, M.; Ort, M.; Bures, J. Changes in

extracellular space size and geometry in APP23 transgenic mice: A model of Alzheimer’s disease. Proc. Natl. Acad. Sci. USA 2005,
102, 479–484. [CrossRef]

221. Mueggler, T.; Meyer-Luehmann, M.; Rausch, M.; Staufenbiel, M.; Jucker, M.; Rudin, M. Restricted diffusion in the brain of
transgenic mice with cerebral amyloidosis. Eur. J. Neurosci. 2004, 20, 811–817. [CrossRef]

222. Xu, F.; Hongbin, H.; Yan, J.; Chen, H.; He, Q.; Xu, W.; Zhu, N.; Zhang, H.; Zhou, F.; Lee, K. Greatly improved neuroprotective
efficiency of citicoline by stereotactic delivery in treatment of ischemic injury. Drug. Deliv. 2011, 18, 461–467. [CrossRef]

223. Kong, S.D.; Lee, J.; Ramachandran, S.; Eliceiri, B.P.; Shubayev, V.I.; Lal, R.; Jin, S. Magnetic targeting of nanoparticles across the
intact blood-brain barrier. J. Control. Release 2012, 164, 49–57. [CrossRef]

224. Gkountas, A.A.; Polychronopoulos, N.D.; Sofiadis, G.N.; Karvelas, E.G.; Spyrou, L.A.; Sarris, I.E. Simulation of magnetic
nanoparticles crossing through a simplified blood-brain barrier model for Glioblastoma multiforme treatment. Comput. Methods
Programs Biomed. 2021, 212, 106477. [CrossRef]

225. Laurent, S.; Saei, A.A.; Behzadi, S.; Panahifar, A.; Mahmoudi, M. Superparamagnetic iron oxide nanoparticles for delivery of
therapeutic agents: Opportunities and challenges. Expert. Opin. Drug. Deliv. 2014, 11, 1449–1470. [CrossRef]

226. Pedram, M.Z.; Shamloo, A.; Alasty, A.; Ghafar-Zadeh, E. Optimal Magnetic Field for Crossing Super-Para-Magnetic Nanoparticles
through the Brain Blood Barrier: A Computational Approach. Biosensors 2016, 6, 25. [CrossRef]

227. Huang, Y.; Zhang, B.; Xie, S.; Yang, B.; Xu, Q.; Tan, J. Superparamagnetic Iron Oxide Nanoparticles Modified with Tween 80 Pass
through the Intact Blood-Brain Barrier in Rats under Magnetic Field. ACS Appl. Mater. Interfaces 2016, 8, 11336–11341. [CrossRef]

228. Chen, J.; Yuan, M.; Madison, C.A.; Eitan, S.; Wang, Y. Blood-brain barrier crossing using magnetic stimulated nanoparticles.
J. Control. Release 2022, 345, 557–571. [CrossRef]

229. Hong, K.S.; Khan, M.N.A.; Ghafoor, U. Non-invasive transcranial electrical brain stimulation guided by functional near-infrared
spectroscopy for targeted neuromodulation: A review. J. Neural Eng. 2022, 19, 4. [CrossRef]

230. Cai, Y.; Wei, Z.; Song, C.; Tang, C.; Han, W.; Dong, X. Optical nano-agents in the second near-infrared window for biomedical
applications. Chem. Soc. Rev. 2019, 48, 22–37. [CrossRef]

231. Zheng, Y.; Zhang, Z.; Liu, Q.; Wang, Y.; Hao, J.; Kang, Z.; Wang, C.; Zhao, X.; Liu, Y.; Shi, L. A near-infrared light-excitable
immunomodulating nano-photosensitizer for effective photoimmunotherapy. Biomater. Sci. 2021, 9, 4191–4198. [CrossRef]
[PubMed]

http://doi.org/10.1186/s13041-015-0117-y
http://doi.org/10.1093/abbs/gmab057
http://doi.org/10.1186/s40478-019-0839-7
http://doi.org/10.1016/j.nbd.2009.07.030
http://doi.org/10.1016/j.nbd.2016.07.007
http://doi.org/10.1007/s00401-011-0834-y
http://www.ncbi.nlm.nih.gov/pubmed/21688176
http://doi.org/10.1016/j.neuroscience.2018.05.002
http://www.ncbi.nlm.nih.gov/pubmed/29777753
http://doi.org/10.1111/bpa.12004
http://www.ncbi.nlm.nih.gov/pubmed/23126372
http://doi.org/10.1038/ncomms3932
http://doi.org/10.1007/s00401-006-0115-3
http://doi.org/10.1016/j.apsb.2022.02.001
http://doi.org/10.1007/s11427-012-4361-4
http://doi.org/10.1152/physrev.00027.2007
http://doi.org/10.1126/science.1439760
http://doi.org/10.1073/pnas.0408235102
http://doi.org/10.1111/j.1460-9568.2004.03534.x
http://doi.org/10.3109/10717544.2011.589084
http://doi.org/10.1016/j.jconrel.2012.09.021
http://doi.org/10.1016/j.cmpb.2021.106477
http://doi.org/10.1517/17425247.2014.924501
http://doi.org/10.3390/bios6020025
http://doi.org/10.1021/acsami.6b02838
http://doi.org/10.1016/j.jconrel.2022.03.007
http://doi.org/10.1088/1741-2552/ac857d
http://doi.org/10.1039/C8CS00494C
http://doi.org/10.1039/D1BM00569C
http://www.ncbi.nlm.nih.gov/pubmed/33982683


Pharmaceutics 2023, 15, 1133 26 of 26

232. Wang, J.; Gu, Y.; Liu, X.; Fan, Y.; Zhang, Y.; Yi, C.; Cheng, C.; Yang, M. Near-Infrared Photothermally Enhanced Photo-Oxygenation
for Inhibition of Amyloid-β Aggregation Based on RVG-Conjugated Porphyrinic Metal-Organic Framework and Indocyanine
Green Nanoplatform. Int. J. Mol. Sci. 2022, 23, 10885. [CrossRef] [PubMed]

233. Liu, W.; Zhang, H.; Dong, X.; Sun, Y. Composite of gold nanoclusters and basified human serum albumin significantly boosts the
inhibition of Alzheimer’s β-amyloid by photo-oxygenation. Acta Biomater. 2022, 144, 157–167. [CrossRef] [PubMed]

234. Rezai, A.R.; Ranjan, M.; D’Haese, P.F.; Haut, M.W.; Carpenter, J.; Najib, U.; Mehta, R.I.; Chazen, J.L.; Zibly, Z.; Yates, J.R.; et al.
Noninvasive hippocampal blood-brain barrier opening in Alzheimer’s disease with focused ultrasound. Proc. Natl. Acad. Sci.
USA 2020, 117, 9180–9182. [CrossRef] [PubMed]

235. Mehta, R.I.; Carpenter, J.S.; Mehta, R.I.; Haut, M.W.; Ranjan, M.; Najib, U.; Lockman, P.; Wang, P.; D’Haese, P.F.; Rezai, A.R.
Blood-Brain Barrier Opening with MRI-guided Focused Ultrasound Elicits Meningeal Venous Permeability in Humans with
Early Alzheimer Disease. Radiology 2021, 298, 654–662. [CrossRef]

236. Rezai, A.R.; Ranjan, M.; Haut, M.W.; Carpenter, J.; D’Haese, P.F.; Mehta, R.I.; Najib, U.; Wang, P.; Claassen, D.O.; Chazen, J.L.; et al.
Focused ultrasound-mediated blood-brain barrier opening in Alzheimer’s disease: Long-term safety, imaging, and cognitive
outcomes. J. Neurosurg. 2022, 1, 1–9. [CrossRef]

237. Wasielewska, J.M.; Chaves, J.C.S.; Johnston, R.L.; Milton, L.A.; Hernández, D.; Chen, L.; Song, J.; Lee, W.; Leinenga, G.;
Nisbet, R.M.; et al. A sporadic Alzheimer’s blood-brain barrier model for developing ultrasound-mediated delivery of Adu-
canumab and anti-Tau antibodies. Theranostics 2022, 12, 6826–6847. [CrossRef]

238. Rich, M.C.; Sherwood, J.; Bartley, A.F.; Whitsitt, Q.A.; Lee, M.; Willoughby, W.R.; Dobrunz, L.E.; Bao, Y.; Lubin, F.D.; Bolding, M.
Focused ultrasound blood brain barrier opening mediated delivery of MRI-visible albumin nanoclusters to the rat brain for
localized drug delivery with temporal control. J. Control. Release 2020, 324, 172–180. [CrossRef]

239. Liu, Y.; Gong, Y.; Xie, W.; Huang, A.; Yuan, X.; Zhou, H.; Zhu, X.; Chen, X.; Liu, J.; Liu, J.; et al. Microbubbles in combination with
focused ultrasound for the delivery of quercetin-modified sulfur nanoparticles through the blood brain barrier into the brain
parenchyma and relief of endoplasmic reticulum stress to treat Alzheimer’s disease. Nanoscale 2020, 12, 6498–6511. [CrossRef]

240. Ramos-Zaldívar, H.M.; Polakovicova, I.; Salas-Huenuleo, E.; Corvalán, A.H.; Kogan, M.J.; Yefi, C.P.; Andia, M.E. Extracellular
vesicles through the blood-brain barrier: A review. Fluids Barriers CNS 2022, 19, 60. [CrossRef]

241. Morad, G.; Carman, C.V.; Hagedorn, E.J.; Perlin, J.R.; Zon, L.I.; Mustafaoglu, N.; Park, T.E.; Ingber, D.E.; Daisy, C.C.; Moses, M.A.
Tumor-Derived Extracellular Vesicles Breach the Intact Blood-Brain Barrier via Transcytosis. ACS Nano 2019, 13, 13853–13865.
[CrossRef]

242. Cui, G.H.; Guo, H.D.; Li, H.; Zhai, Y.; Gong, Z.B.; Wu, J.; Liu, J.S.; Dong, Y.R.; Hou, S.X.; Liu, J.R. RVG-modified exosomes derived
from mesenchymal stem cells rescue memory deficits by regulating inflammatory responses in a mouse model of Alzheimer’s
disease. Immun. Ageing 2019, 16, 10. [CrossRef]

243. Zhang, X.; He, T.; Chai, Z.; Samulski, R.J.; Li, C. Blood-brain barrier shuttle peptides enhance AAV transduction in the brain after
systemic administration. Biomaterials 2018, 176, 71–83. [CrossRef]

244. Zhang, X.; Chai, Z.; Lee Dobbins, A.; Itano, M.S.; Askew, C.; Miao, Z.; Niu, H.; Samulski, R.J.; Li, C. Customized blood-brain
barrier shuttle peptide to increase AAV9 vector crossing the BBB and augment transduction in the brain. Biomaterials 2022,
281, 121340. [CrossRef]

245. Hersh, D.S.; Anastasiadis, P.; Mohammadabadi, A.; Nguyen, B.A.; Guo, S.; Winkles, J.A.; Kim, A.J.; Gullapalli, R.; Keller, A.;
Frenkel, V.; et al. MR-guided transcranial focused ultrasound safely enhances interstitial dispersion of large polymeric nanoparti-
cles in the living brain. PLoS ONE 2018, 13, e0192240. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.3390/ijms231810885
http://www.ncbi.nlm.nih.gov/pubmed/36142796
http://doi.org/10.1016/j.actbio.2022.03.019
http://www.ncbi.nlm.nih.gov/pubmed/35301147
http://doi.org/10.1073/pnas.2002571117
http://www.ncbi.nlm.nih.gov/pubmed/32284421
http://doi.org/10.1148/radiol.2021200643
http://doi.org/10.3171/2022.9.JNS221565
http://doi.org/10.7150/thno.72685
http://doi.org/10.1016/j.jconrel.2020.04.054
http://doi.org/10.1039/C9NR09713A
http://doi.org/10.1186/s12987-022-00359-3
http://doi.org/10.1021/acsnano.9b04397
http://doi.org/10.1186/s12979-019-0150-2
http://doi.org/10.1016/j.biomaterials.2018.05.041
http://doi.org/10.1016/j.biomaterials.2021.121340
http://doi.org/10.1371/journal.pone.0192240

	Introduction 
	Developed Drugs Targeting A and Tau for AD Therapy 
	Drugs Targeting A 
	Drugs Used to Reduce A Production 
	Drugs Used to Prevent A Aggregation 
	Drugs Used to Promote A Clearance 

	Drugs Targeting Tau Protein 
	Drugs Targeting Calcium Balance and Reactive Oxygen Species 
	New Hypotheses and Drug Targets for AD Treatments 
	Exogenous Formaldehyde Directly Induces AD-Like Pathology 
	Age-Related Endogenous Formaldehyde Induces Memory Decline 
	Formaldehyde Elicits A Oligomerization and Fibrillation 
	Formaldehyde Promotes Tau Hyperphosphorylation and NFTs Formation 
	Endogenous Formaldehyde as a Target for AD Therapy 
	Formaldehyde-Degrading Enzyme-ALDH2 as a Target for AD Treatments 
	Formaldehyde-Degrading Enzyme-ALDH2 as a Target for AD Treatments 


	Enhancing BBB Penetration for Drug Delivery in AD 
	A Plaques Deposition in ECS Blocks Drug Delivery in AD 
	Novel Drug Delivery for AD Treatments 
	Drug Delivery via Brain ECS 
	Magnetic Nanoparticles 
	Near-Infrared Photosensitive Nanomedicines 
	Combination of Focused Ultrasound and Nanomedicines 
	Extracellular Vesicles 
	BBB Shuttle Peptide 

	Conclusions and Outlook 
	References

