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Abstract: Amyotrophic lateral sclerosis (ALS) is the most prevalent motor neuron disorder in adults,
which is associated with a highly disabling condition. To date, ALS remains incurable, and the
only drugs approved by the FDA for its treatment confer a limited survival benefit. Recently,
SOD1 binding ligand 1 (SBL-1) was shown to inhibit in vitro the oxidation of a critical residue for
SOD1 aggregation, which is a central event in ALS-related neurodegeneration. In this work, we
investigated the interactions between SOD1 wild-type and its most frequent variants, i.e., A4V
(NP_000445.1:p.Ala5Val) and D90A (NP_000445.1:p.Asp91Val), with SBL-1 using molecular dynamics
(MD) simulations. The pharmacokinetics and toxicological profile of SBL-1 were also characterized in
silico. The MD results suggest that the complex SOD1-SBL-1 remains relatively stable and interacts
within a close distance during the simulations. This analysis also suggests that the mechanism of
action proposed by SBL-1 and its binding affinity to SOD1 may be preserved upon mutations A4V
and D90A. The pharmacokinetics and toxicological assessments suggest that SBL-1 has drug-likeness
characteristics with low toxicity. Our findings, therefore, suggested that SBL-1 may be a promising
strategy to treat ALS based on an unprecedented mechanism, including for patients with these
frequent mutations.

Keywords: amyotrophic lateral sclerosis; in silico; molecular dynamics; ADMET prediction

1. Introduction

Amyotrophic lateral sclerosis (ALS) is a highly disabling neurodegenerative disorder
characterized by the progressive and widespread loss of voluntary motor activity, which
results in a devastating condition with an enormous impact on patients, families, caregivers,
and medical professionals [1]. ALS presents a rapid progression, usually leading to death
within three to four years after symptoms onset due to respiratory failure [2]. ALS is
the most frequent motor neuron disorder in adults, affecting up to 5 per 100,000 new
individuals each year [3]. Due to population aging, the total number of ALS cases is
projected to increase by 69% in the next two decades, especially in developing countries [4].
The mean age of ALS onset is between 58–63 years in sporadic cases, and even younger in
familial cases, i.e., between 40–60 years, affecting individuals within the working age [5].
It results in a significant economic burden, estimated at over one billion dollars per year
in the United States only, attributed to loss of production, caregiver needs, and medical
costs [6]. To date, ALS remains incurable, and only two drugs have been approved by the
FDA for its treatment: riluzole and edaravone, which confer a limited survival benefit of a
few months. Thus, there is an urgent need to develop more effective treatments for ALS [7].

ALS can be classified as sporadic (sALS) and familial (fALS), which correspond to 90%
and 10% of all cases, respectively. Missense mutations in the SOD1 gene are considered
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an important cause of ALS, being associated with 23% of all fALS cases, and up to 7% of
sALS cases [8]. The protein encoded by the SOD1 gene, superoxide dismutase 1 (SOD1),
is a homodimeric metalloenzyme that catalyzes the dismutation of superoxide anion
to hydrogen peroxide, which plays a central role in the endogenous antioxidant defense
system [9]. SOD1 is ubiquitously expressed and localizes mainly to the cytosol, representing
1–2% of the total soluble protein in the central nervous system [10]. Conditions such as
impaired post-translational modifications, oxidation, and mutations can lead to SOD1
misfolding and toxic gain of function, initiating protein aggregation events that ultimately
lead to ALS-related neurodegeneration [11].

Recently, SOD1 binding ligand 1, also known as SBL-1, has shown promising in vitro
results in inhibiting the oxidation of Trp32, a critical residue for SOD1 aggregation. SBL-1
is an isoproterenol analog with a significant affinity for SOD1 [12]. Oxidation of the Trp32
side chain is known to potentiate SOD1 aggregation and cytotoxicity [13], which is central
to the pathophysiology of ALS [14]. Despite its potential as an anti-ALS drug, no assays
on the toxicity and pharmacokinetics properties have yet been performed for the SBL-1
compound [15]. Among the ALS-related mutations in SOD1, A4V (NP_000445.1:p.Ala5Val)
and D90A (NP_000445.1:p.Asp91Val) are the most prevalent worldwide, accounting for
approximately half of all ALS-SOD1 cases in the United States and Europe, respectively [16].
A previous study by our group indicated that these mutations promote important structural
and dynamic alterations in the SOD1 protein [2], which could affect SBL-1 binding modes
and affinity, influencing the individual drug response [17].

The safety and efficacy of drug candidates are key factors in drug development [18].
In silico data on drug toxicity and pharmacokinetics are becoming increasingly important,
particularly considering the growing number of restrictions imposed on in vivo testing by
International Regulatory Agencies [19]. Moreover, differences in the genetic background
existing in the overall population significantly influence drug efficiency, which can manifest
as limited pharmacological activity [18]. Following the methodology previously established
by our group [20–22], we investigated in silico the interactions between SOD1 wild-type
and its variants A4V, and D90A with the SBL-1 compound, in addition to assessing the
ADMET (absorption, distribution, metabolism, excretion, and toxicity) profile of SBL-1.

The predictive analyses we performed suggest that SBL-1 is a low-toxic compound
with drug-likeness characteristics. Our findings further indicate that the SBL-1 mechanism
of action is possibly preserved upon relatively frequent mutations on its receptor, which im-
plies that SBL-1 could also be promising for the treatment of ALS in patients carrying these
mutations. Initial evidence on SBL-1 safety, pharmacokinetics, and pharmacodynamics,
such as those provided in this study, could be useful to guide future experiments in vitro
and in vivo, saving time and resources [23].

2. Materials and Methods
2.1. Data Retrieval

The crystallographic structure of human SOD1 wild-type in complex with the SBL-1
compound was obtained from the Protein Data Bank (ID: 5YTO) [24]. Additional infor-
mation on SBL-1 structure and safety were obtained from the PubChem database (ID:
134828057) [15]. The SOD1-SBL-1 interactions observed in the crystallographic structure
5YTO were designed into a bidimensional diagram using the PoseView software [25] and
represented as an equivalent three-dimensional scheme using Pymol software [26].

2.2. Molecular Dynamics Simulations

Mutator Plugin 1.3. available on the Visual Molecular Dynamics (VMD) 1.9.3 [27] was
used to generate three-dimensional structures of variants A4V and D90A by inducing the
respective mutations on the crystallographic structure of wild-type SOD1 (PDB ID: 5YTO).
The protonation state of SBL-1 was predicted at pH 7.4 using the ACD/pKa GALAS module
(Advanced Chemistry Development. Inc., Toronto, ON, Canada). SBL-1 preparation
consisted of adding hydrogens to the molecule, which was performed by the Protoss
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server [28]. SBL-1 was then submitted to the SwissParam server, generating the topology
and parameters compatible with the CHARMM27 force field [29]. The protonation state of
SOD1 was predicted using the ProteinPrepare plugin available at the PlayMolecule server,
considering a pH of 7.4 [30]. Finally, SOD1 preparation consisted of manually selecting the
protonation state of each protein residue inside the GROMACS’s user interface.

Molecular Dynamics (MD) simulations of SOD1 wild-type and variants complexed
with SBL-1 were performed in triplicates using the GROMACS 2020.6 package [31], which
followed the methodology previously established by our group [20]. The crystallographic
structure of 5YTO was used as the starting point of the simulations. CHARMM27 was
selected as the force field [32]. The simulations occurred inside a triclinic box, which was
solvated by TIP3P water models, neutralized by adding Na+ and Cl− ions (0.15 mol/L),
and then minimized using the steepest descent method. After the energy minimization step,
an NVT ensemble (constant number of molecules, volume, and temperature) was followed
by an NPT ensemble (constant number of molecules, pressure, and temperature). NVT
was performed at 300 K for 100 ps using a v-rescale thermostat [33]. NPT was performed
at 300 K and 1 atm for 100 ps using a Parrinello-Rahman barostat [34] and v-rescale
thermostat [33]. Finally, the production simulation was performed at 300 K for 300 ns. The
particle mesh Ewald algorithm [35] was used to process electrostatic interactions, and the
Linear Constraint Solver algorithm [36] was used to constrain the covalent bonds.

2.3. Trajectory Analysis

The trajectories were concatenated and analyzed using the following GROMACS
distribution programs: gmx trjcat, gmx trjconv, gmx rms, gmx rmsf, gmx gyrate, gmx sasa,
gmx hbond, gmx mindist, gmx distance, and gmx gangle. The SBL-1 atoms and SOD1
backbone atoms were used for the root-mean-square deviation (RMSD). SOD1 atoms were
used to calculate the radius of gyration (Rg) and solvent-accessible surface area (SASA).
The number of protein-ligand contacts and minimum distances between these groups were
assessed using a cut-off range of 5 Å [20].

The most frequent types of protein-ligand interactions were computed over time,
i.e., hydrogen bonds, ionic bonds, hydrophobic contacts, π-stacking, and cation-π interac-
tions [37]. In this work, the donor(H)-acceptor distances were considered for the calculation
of hydrogen bond interactions. These interactions are commonly considered by algorithms
used to create representations of protein-ligand binding, like LigPlot, PoseView [25], and
nAPOLI [38]. The hydrogen bonds formed between SOD1 and SBL-1 were assessed based
on angles ≤30◦ and distances ≤3.5 Å [20]. Hydrophobic contacts were computed con-
sidering a maximum distance of 4 Å between carbon and sulfur atoms, according to the
definition proposed by Alvarez (2013) [39]. The following geometric restrictions were
considered for the π-stacking interactions: (i) parallel stacking: acute angle between ring
planes ≤22◦ and distance between ring centroids ≤4.5 Å; (ii) perpendicular stacking: acute
angle between ring planes ≥67◦ and distance between ring centroids ≤6 Å. π-stacking
interactions were defined according to the experimental distribution of protein-ligand com-
plexes included in the TOUGH-D1 dataset, as discussed by Brylinski (2018) [40]. Cation-π
interactions were defined according to the geometric criteria proposed by Kumar et al.
(2018). Kumar et al. (2018) considered a cylinder model in which valid cation-π interactions
occurred within a maximum height of 6 Å from the aromatic ring (perpendicular) and a
maximum distance of 2.3 Å from the ring centroid along with the horizontal plane [41].
Ionic bonds were computed based on distances ≤4 Å from the center of mass of opposed
charged groups, as defined by Piovesan et al. (2016) [42].

VMD 1.9.3 [27] was used to analyze the occupancy of hydrogen bonds formed between
SOD1 and SBL-1 during the simulation based on angles ≤30◦ and distances ≤3.5 Å [20].
Conformational ensembles of the SOD1-SBL-1 complex were extracted from the concate-
nated trajectories using the software gmx cluster available in the GROMACS 2016.6 package.
The Gromos method and an RMSD cut-off of 2.0 Å from the complex atoms were considered
for the clustering analysis. Representative structures for the protein-ligand complexes, i.e.,
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wild-type and mutants, were obtained by extracting the centroid structure from the most
populated cluster of SOD1-SBL-1 conformations [43]. The representative structures were
obtained from the equilibrated portion of the concatenated trajectories. The binding modes
observed in the representative structures were assessed using the Pymol [26] and PoseView
software [25].

Finallly, the concatenated trajectories were submitted to an MM-PBSA (molecular me-
chanics Poisson-Boltzmann surface area) analysis, which was performed using g_mmpbsa
software [44]. G_mmpbsa requires an old version of a .tpr file containing the molecular
system, which is generated by GROMACS 2018.1 or older. The .tpr files generated in the
newest versions of GROMACS contain essentially the same technical information as those
stored in the old .tpr file, but with a few format changes (only) that affect its compatibility
with g_mmpbsa. To manage this limitation, we generated an old .tpr file containing the
same molecular system as those simulated in this study but using GROMACS version
2018.1 instead of 2020.6. MMPBSA was used to estimate the binding free energy of the
SOD1-SBL-1 complex over time. The energy contribution of each amino acid to SBL-1
binding was also assessed. MMPBSA estimates the binding affinity mainly based on three
energetic terms: (i) Molecular Mechanics (MM), attributed to potential energy calculated in
a vacuum condition using an MM force field, which includes bonded terms related to inter-
actions between atoms linked by covalent bonds, and nonbonded, or noncovalent, terms
that describe the van der Waals forces and electrostatic interactions; (ii) Poisson-Boltzmann
(PB) characteristics, attributed to the polar solvation energy, which is estimated using the
Poisson-Boltzmann equation considering the repulsion and attraction between solute and
solvent molecules; (iii) surface area (SA) attributed to the nonpolar solvation energy, which
is calculated based on the assumption that the solvent accessible solvent area is linearly
related to the amount of apolar energy [44].

2.4. In Silico Pharmacokinetics and Toxicological Assessment

The pharmacokinetics and toxicity profile of the SBL-1 compound was character-
ized in silico using the ADMET Predictor™ 10.4 (Simulations Plus, Inc., Lancaster, CA,
USA). ADMET Predictor™ is a statistical-based QSAR (Quantitative Structure-Activity
Relationship) software.

Hepatotoxicity, mutagenicity, carcinogenicity, cardiotoxicity, and acute toxicity were
combined into a unique score, the TOX risk. Hepatotoxicity was estimated by assessing the
serum levels of liver-damage-related enzymes. Mutagenicity risk (MUT risk) was analyzed
using in silico variations of Ames tests, including assays with Salmonella typhimurium
strains (TA97, TA98, TA100, TA1535, and TA1537), and repair-deficient Escherichia coli
strains (WP2), with or without metabolic activation [45]. Mutagenicity was also evaluated
by using the MUTx risk model, which is a refined version of MUT risk that provides better
sensitivity and specificity. Acute rat toxicity was estimated based on the amount of orally
administered chemicals required to kill half of the rats tested within 24 h (LD50) [46].
The cardiotoxicity model was based on hERG (Ether-à-go-go Related Gene) potassium
channel inhibition [47]. Chronic toxicity was evaluated using rat and mouse-based models
considering the oral daily dose administered throughout their lifetimes required to produce
tumors in 50 percent of the population (TD50) [48]. Reproductive toxicity was also assessed
using the Repro TOX model, which predicts potential adverse effects on sexual organs,
teratogenicity, and fertility. Finally, we investigated the drug-drug interaction (DDI) ability
of SBL-1 using CYP inhibition models (2C9, 3A4, 1A2, 2D6, and 2C19).

Absorption risk (Absn risk) was assessed to better understand the potential oral
absorption problems SBL-1 may have. This score was calculated based on a combination of
the following features: size, number of rotatable bonds, hydrogen bond donors, hydrogen
bond acceptors, charge, lipophilicity, effective permeability in human jejunum, and water
solubility. For further evaluation of drug-like properties, we also used Lipinski’s rule of
five [49].
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Metabolic risk (CYP risk) was predicted based on the compound’s oxidation by cy-
tochrome P450 (CYP) enzymes. CYP risk was attributed to compounds with elevated
intrinsic clearance levels calculated using recombinant assays (CYP1A2, CYP2C9, CYP2C19,
CYP2D6, CYP3A4) and a human liver microsomal model.

The overall ADMET risk factor combines TOX risk, Absn risk, CYP risk, and two
potential distribution/excretion problems: (i) volume of distribution in humans tissues at
the steady-state (Vd), which is proportional to the amount of compound distributed into
body tissues in physiological conditions, and (ii) the fraction of unbound compound in
human plasma (fu).

The CYP (phase I) and UGT (UDP-glucuronosyltransferase) metabolism (phase II)
models available at the ADMET Predictor™ were used to predict the possible phase I and
phase II metabolites of SBL-1. Drugs can directly undergo phase I and phase II metabolism
or pass through initial phase I modifications and then phase II modifications [50], which
were considered in our analysis.

The predicted metabolites underwent toxicity assessment in the ADMET Predictor™
software, which includes mutagenicity, cardiotoxicity, reproductive toxicity, and CYP
inhibition. The analysis we carried out did not include hepatotoxicity, carcinogenicity, and
acute toxicity, since models were trained based on orally administered compounds.

Due to the complementary nature of the statistical-based and rule-based QSAR meth-
ods, we also assessed the ADMET profile of the SBL-1 compound using the ACD/Percepta
Platform (Advanced Chemistry Development. Inc., Toronto, ON, Canada).

The Drug Profiler module available in the ACD/Percepta Platform was used for
the evaluation of SBL-1 viability. The Drug Profiler module integrates three groups of
predictors: PhysChem, ADME, and Drug-safety. Most of Percepta’s models use a proba-
bilistic model combined with a knowledge-based expert system that identifies structural
alerts. Experimental evidence on structurally related compounds is also provided by
some predictors.

PhysChem performs a drug-likeness evaluation of the compound based on physico-
chemical features, including lipophilicity (log P), molecular weight, hydrogen bonding (ac-
ceptor and donors), solubility, number of rings, and flexibility (rotatable bonds). PhysChem
predictor considers some additional cut-offs associated with the concept of lead-likeness.

ADME profiler assesses the pharmacokinetics aspects of the drug candidate. The
human intestinal absorption (HIA) model estimates the extent of passive jejunal absorption
for orally administered compounds. The Caco-2 (colorectal adenocarcinoma cells) model
assesses the compound’s permeability across Caco-2 cell monolayers, considering the
transcellular and paracellular routes. The CNS-access (central nervous system) model is
based on the blood-brain barrier (BBB) penetration in rodents achieved through passive
diffusion. The plasma protein binding (PPB) model estimates the percentage of target
compounds bound to human plasma proteins. Fianlly, the metabolic stability model
predicts the t1/2 of drug candidates in liver microsomes (HLM).

The mutagenicity, cardiotoxicity, and DDI potential of SBL-1 were analyzed using
the drug-safety profiler. The metabolites predicted by ADMET Predictor™ for the SBL-1
compound were also evaluated using this module. Mutagenicity was assessed using an
Ames model based on the most frequent assays of S. typhimurium strains in addition to
E. coli WP2 uvrA, with or without metabolic activation. Cardiotoxicity was predicted based
on an hERG inhibition model considering IC50. DDI was analyzed based on CYP 3A4, 2D6,
2C9, 2C19, and 1A2 inhibition models. The estimated IC50 values were used to classify
whether the compound is a CYP inhibitor.

Acute toxicity was additionally investigated for SBL-1 using the Acute Toxicity Haz-
ards module. This model is based on the identification of hazardous fragments (alerts)
responsible for high acute toxicity in rodents (Advanced Chemistry Development. Inc.,
Toronto, ON, Canada).
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3. Results and Discussion
3.1. Data Retrieval

SBL-1 (4-[(1R)-1-hydroxy-2-(naphthalen-2-ylmethylamino)ethyl]benzene-1,2-diol) is
a naphthalene-catechol-linked compound stored at the PubChem database under the
identification code: 134828057. SBL-1 is an R-enantiomer with a low molecular weight
(309.4 g/mol). To date, no information on pharmacokinetics and toxicity has been computed
for the compound [15]. The human SOD1 structure was co-crystallized with SBL-1 and
stored under the identification code 5YTO in the Protein Data Bank [24]. 5YTO is a high-
resolution structure (1.9 Å) that covers the complete SOD1 length. The binding mode
registered in the crystallographic structure, shown in Figure 1, suggests that the catechol
portion of SBL-1 forms hydrogen bonding with the residues Glu100, Pro28, and Lys23 of
SOD1. The naphthalene moiety of SBL-1 performs π-stacking interactions with the indole
group of Trp32, in addition to hydrophobic contacts with Trp32 and Lys30.
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Figure 1. SOD1-SBL-1 binding mode observed in the crystallographic structure 5YTO. (A) Three-
dimensional representations of SOD1-SBL-1 interactions were designed using the Pymol software.
The SBL-1 molecule is represented by green sticks and colored by atom type. The interacting residues
of SOD1 are represented by purple lines, colored by atom type, and labeled with the corresponding
amino acid residue. Hydrogen bonds are represented by dashed yellow lines, while π-stacking
is represented by dashed cyan lines. Residues involved in hydrophobic contact with SBL-1 are
also shown. (B) Bidimensional diagram of SOD1-SBL-1 interactions designed using the PoseView
software. SBL-1 and interacting residues of SOD1 (labeled) are represented by black lines and colored
by atom type. Hydrogen bond interactions are represented by dashed black lines, and hydrophobic
contacts are represented by continuous green lines.

Trp32, which is a hydrophobic residue, lies unusually exposed on the beta-barrel
surface of SOD1. Trp32 oxidation is a normal modification present in wild-type SOD1 and
is also observed in disease-related variants. The study of Taylor et al. (2007) investigated
in vivo the effects of Trp32 oxidation on SOD1 aggregation and neuron survival. The study
suggested that changing Trp32 to Phe, which has a slower oxidation rate, significantly
attenuates cytotoxicity and the formation of inclusions in motor neurons of mouse spinal
cords. These results, therefore, indicate that Trp32 oxidation exacerbates SOD1 toxicity
and potentiates aggregation [13]. Manjula et al. (2018) performed an in vitro oxidation
assay to investigate the SBL-1 ability to inhibit Trp32 oxidation. The study suggested that
SBL-1 significantly inhibits the oxidation of this key residue. Interestingly, when the same
experiment was performed with the isoproterenol compound, which is an SBL-1 analog
without the naphthalene moiety, only weak inhibition on Trp32 oxidation was observed.
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Based on this information and the interaction profile observed in the crystallographic
structure 5YTO (previously shown in Figure 1), Manjula et al. (2018) hypothesized that the
protective role of SBL-1 mainly occurs due to the proximity of binding, which might occlude
the indole group of Trp32, avoiding oxidation. The authors emphasized the importance
of the following interactions for protecting Trp32: (i) π-stacking interactions between the
naphthalene moiety of SBL-1 and the indole ring of Trp32; (ii) electrostatic interactions
occurring at the dihydroxy phenyl moiety of SBL-1. Hydrophobic interactions may be also
important for stabilizing SBL-1 [12].

3.2. Molecular Dynamics Simulations

X-ray crystallography, which is among the most used methods for determining macro-
molecular structures, only provides static snapshots [51]. Crystallography also subjects the
protein to conditions of high salinity, which could affect the interaction forces existing in
the system, inducing conformations different from those observed in a biological environ-
ment [52]. MD simulations, in turn, can accurately reproduce the dynamics of proteins and
other molecules in their biological environment. This in silico method generates compre-
hensive information on protein-ligand interactions and a relatively precise binding affinity
estimator, which are relevant to ensure drug efficacy [20,53]. MD is a powerful approach
for analyzing drug binding as it allows investigating the entire binding process, including
conformational rearrangements in the receptor, alternative binding modes of the ligand,
and solvent participation in the interaction [54]. MD also allows the study of perturbations
such as mutation and post-translational modifications on protein structures [51], which
have proved to be valuable for personalized medicine [55].

A previous study by our group suggested that the mutations A4V and D90A, which
account for approximately half of all ALS-SOD1 cases in the US and Europe, lead to a
substantial impact on SOD1 structural flexibility and essential dynamics [2]. These al-
terations, which occur at the proposed biological receptor of SBL-1, can lead to strong
and non-intuitive effects on protein binding affinity and specificity [56] with consequent
influence on individual drug response [17]. We then performed MD simulations of SOD1
wild-type and variants with SBL-1 to provide additional evidence on the compound’s phar-
macodynamics, and to better understand how the pharmacological activity of SBL-1 could
be affected by the most frequent missense mutations on its receptor, i.e., A4V and D90A.

The ACD/pKa GALAS prediction suggested that the secondary amine of SBL-1 is
protonated at pH 7.4. Notably, the protonation state predicted by SBL-1 using the ACD/pKa
GALAS algorithm agreed with the prediction by the Protoss algorithm, which is the
standard method to add hydrogens available in the PoseView server (Figure 1). According
to Vanni et al. (2011), most β-adrenergic agonists and antagonists have positively charged
amine groups, including isoproterenol [57], which is a compound analog to SBL-1 [12]. It
thus provides additional evidence on the protonated state of SBL-1 upon physiological pH.

RMSD is widely used to measure the atomic displacement between the coordinates
of a starting structure and all its subsequent conformations registered over time [58]. This
parameter allows for analyzing the time-dependent motions of protein-ligand complexes
in a molecular system, in addition to determining its structural convergence throughout
the simulation [20]. The RMSD values calculated from the SOD1 wild-type and variants’
conformations are shown in Figure 2A. This analysis indicated that the triplicates presented
similar behavior during the simulations when considering their respective means and
confidence intervals [2]. An initial moment of structural instability was observed in all
trajectories. This might occur due to the initial kinetic shock experienced by molecular
systems upon simulation processes [59]. Thus, during this period, variations in structural
parameters were not representative of the protein’s behavior. The early simulation effects,
i.e., those observed in the first 160ns, were not considered for further analysis aiming at
meaningful comparisons. It was followed by the establishment of plateaus in RMSD values
for SOD1 wild-type and variants, which remained until the end of all trajectories, indicating
that the protein structures fluctuate around average stable conformations. This condition is
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suggestive of system equilibration, i.e., the period when the physicochemical properties
of the molecular system reached an equilibrium state [20]. The simulations of variant
A4V were the first to reach equilibrium (∼=25 ns), which was followed by the wild-type
(∼=100 ns), and finally, variant D90A (∼=160 ns). Variant A4V (0.15 ± 0.01 nm) presented a
lower average RMSD when compared to the wild-type (0.24 ± 0.03 nm), indicating that
this variant may deviate less from its starting structure. No differences in average RMSD
were registered for wild-type SOD1 and variant D90A (0.26 ± 0.02 nm).

To further assess system equilibration, we performed Rg (Figure 2B) and SASA
(Figure 2C) analyses of SOD1 [22]. Rg is a measure of the displacement of all atoms in a
protein structure from their common center of mass, providing information on the protein’s
overall dimensions or volume [20]. SASA, in turn, is a measure of the exposed surface
area in protein structures, which is related to the protein’s ability to interact with solvent
molecules, and also proportional to its degree of exposure to the environment [60]. Plateaus
of Rg and SASA values were observed after approximately 100 ns in all simulations, which
suggests stable protein folding for SOD1 wild-type and variants [61], thus reaffirming sys-
tem equilibration [22]. The average Rg registered for the wild-type, variant A4V, and variant
D90A were, respectively, 2.03 ± 0.02 nm, 2.03 ± 0.01 nm, and 2.04 ± 0.01 nm, while their
average SASA values were 152.71 ± 2.20 nm2, 147.11 ± 2.30 nm2, and 152.48 ± 2.92 nm2.
Overall, the proteins presented similar Rg and SASA values, except for variant A4V, which
presented a lower average SASA (147.11 ± 2.30 nm2) when compared to the wild-type
(152.71 ± 2.20 nm2). This, therefore, indicates that the analyzed mutations may not affect
the volume of SOD1, but A4V may reduce the protein’s exposed surface with consequent
impact on its surface-to-volume ratio [62].

The RMSD computed from the SBL-1 atoms is shown in Figure 3A. This analysis shows
that the compound presented a steady behavior when complexed to SOD1, given that the
RMSD values fluctuated over average values (plateau) after approximately 140 ns in all
simulations, which is suggestive of ligand binding stability [20]. No differences in average
ligand-RMSD were observed between the wild-type (0.044 ± 0.014 nm) and its variants
A4V (0.045 ± 0.011 nm) and D90A (0.054 ± 0.013 nm). Noticeably, the RMSD values
computed for SBL-1 remained below 2 Å throughout the simulations, which, according to
Liu & Kokubo (2017), further indicates the stability of the ligand binding pose [63].

The minimum distances between SOD1 and SBL-1 computed during the simula-
tions are shown in Figure 3B. This analysis indicates that the wild-type and variants
remained at a relatively short and constant distances from SBL-1 during the entire simula-
tion. Similar distances were registered for SOD1 wild-type (0.171 ± 0.014 nm), variant A4V
(0.175 ± 0.022 nm), and variant D90A (0.171 ± 0.014 nm). The number of contacts within
5 Å formed between SOD1 and SBL-1 was also assessed (Figure 3C). This parameter is used
as an indicator of possible interactions between two groups, usually protein and ligand [64].
As shown in Figure 3C, SBL-1 remained interacting with SOD1 throughout the simulations.
No differences were observed in the average number of contacts formed for the wild-type
(485.69 ± 96.53) and its variants A4V (474.88 ± 170.76), and D90A (459.82 ± 96.15).

Clustering is often applied to group protein conformations based on their geometric
similarities. In this analysis, protein coordinates extracted from MD trajectories are used
to compute the RMSD values within the ensembled conformations. The RMSD values are
then used to identify structurally related conformations, which are grouped in the same
cluster. The structure with the smallest RMSD between all others inside the cluster, i.e.,
centroid, is considered the one that best describes the group [20]. When extracted from the
most populous cluster, the centroid structure is usually an effective indicator of molecular
behavior, given that it represents the largest amount of similar conformations sampled
from the MD trajectory [43]. The binding modes registered at the representative structures
of SOD1-SBL-1 complexes are shown in Figure 4.
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Figure 2. RMSD, Rg, and SASA analyses of the human SOD1 protein. The wild-type is represented in
black, variant A4V is represented in red, and variant D90A is represented in blue. The means (solid
lines) and confidence intervals (smooth lines) are displayed for the triplicates. (A) The RMSD values
computed from the backbone atoms of SOD1 are shown as a function of time. (B) The Rg values
computed from the protein atoms are shown as a function of time. (C) The SASA values computed
from the protein atoms are shown as a function of time.
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Figure 3. Ligand RMSD, minimum distances, and contact analyses. The wild-type is represented in
black, variant A4V is represented in red, and variant D90A is represented in blue. The means (solid
lines) and confidence intervals (smooth lines) are displayed for the triplicates. (A) The RMSD values
computed from the SBL-1 atoms when complexed to SOD1 wild-type are shown as a function of
time. (B) The minimum distances between SOD1 and SBL-1 are shown as a function of time. (C) The
number of contacts formed between SOD1 and SBL-1 is shown as a function of time.
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MD trajectories. Three-dimensional representations of SOD1-SBL-1 interactions were designed us-
ing Pymol software. SBL-1 molecule is represented by green sticks and colored by atom type. The 
interacting residues of SOD1 are represented by purple lines, colored by atom type, and labeled 
with the corresponding amino acid residue. Hydrogen bonds are represented by dashed yellow 
lines, while π-stacking is represented by dashed cyan lines. Residues involved in hydrophobic con-
tact with SBL-1 are also shown. The bidimensional diagram of SOD1-SBL-1 interactions was de-
signed using PoseView software. SBL-1 and interacting residues of SOD1 (labeled) are represented 
by black lines and colored by atom type. Hydrogen bond interactions are represented by dashed 
black lines, and hydrophobic contacts are represented by continuous green lines. (A) Wild-type; (B) 
variant A4V; (C) variant D90A. 

Figure 4. SOD1-SBL-1 binding modes observed in the representative structures extracted from the
MD trajectories. Three-dimensional representations of SOD1-SBL-1 interactions were designed using
Pymol software. SBL-1 molecule is represented by green sticks and colored by atom type. The
interacting residues of SOD1 are represented by purple lines, colored by atom type, and labeled with
the corresponding amino acid residue. Hydrogen bonds are represented by dashed yellow lines,
while π-stacking is represented by dashed cyan lines. Residues involved in hydrophobic contact with
SBL-1 are also shown. The bidimensional diagram of SOD1-SBL-1 interactions was designed using
PoseView software. SBL-1 and interacting residues of SOD1 (labeled) are represented by black lines
and colored by atom type. Hydrogen bond interactions are represented by dashed black lines, and
hydrophobic contacts are represented by continuous green lines. (A) Wild-type; (B) variant A4V;
(C) variant D90A.
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The cluster analysis suggests that the catechol moiety of SBL-1 formed hydrogen bonds
with the residues Glu21 and Glu100 of the wild-type. Hydrogen bonds with the catechol
moiety of SBL1 were also registered in the crystallographic structure 5YTO (Figure 1),
but differed in the number of interactions formed and binding residues (Figure 4A). π-
stacking and hydrophobic interactions were also formed between the naphthalene group
of SBL-1 and the indole rings of Trp32 in the wild-type (Figure 4A), similar to those
observed in 5YTO (Figure 1). An overlay picture of the original (5YTO) and representative
conformation of the wild-type SOD1-SBL-1 complex is shown in Figure S1, aiming to show
a better visualization of their structural similarities. Moreover, the clustering analysis
indicates that three hydrogen bonds were formed between the catechol moiety of SBL-1 and
residues Lys23, Pro28, and Glu100 of variant A4V. An additional ionic bond was observed
between the secondary amine of SBL-1 and Glu21. Hydrophobic contacts were formed
between the naphthalene group of SBL-1 and residues Lys30 and Trp32 of variant A4V. The
binding mode registered at the representative structure of variant D90A, in turn, suggesting
that the catechol moiety of SBL-1 also formed three hydrogen bonds with Lys23, Pro28,
and Glu100. No interactions between SBL-1 and Trp32 were observed for this variant.
Notably, the electrostatic interactions with the catechol moiety of SBL-1, emphasized by
Manjula et al. (2018) as important for its pharmacological activity, appeared to be preserved
in the variants analyzed. On the other hand, the naphthalene interactions with residue
Trp32, which are involved in the proposed mechanism of action of SBL-1 [12], may have
been affected by mutations.

To further investigate the interaction profile of the SOD1-SBL-1 complex and overcome
the limitations of using static structures such as those provided by clustering and X-ray
crystallography, we analyzed over time the most frequent interactions involved in protein-
ligand binding, i.e., π-stacking, cation-π, hydrogen bonds, hydrophobic contacts, and ionic
bonds. These interactions were computed at each simulation frame using the geometric
restrictions previously described.

An individual analysis, whose results are shown in Table 1, was carried out to in-
vestigate the SBL-1 interactions with Trp32, which are crucial for achieving its proposed
pharmacological effects. No ionic or hydrogen bonds were formed between SBL-1 and
Trp32 during the trajectories. Thus, they were not included in Table 1. Overall, π-stacking,
cation-π, and hydrophobic contacts were formed in a considerable number of frames dur-
ing the simulations of all proteins (Table 1), which may occlude Trp32, thus protecting it
against oxidation. π-stackings and hydrophobic contacts were formed between the indole
rings of Trp32 and the naphthalene moiety of SBL-1. Cation-π interactions, in turn, were
formed between the indole rings of Trp32 and the charged amine of SBL-1. Among them,
π-stacking is believed to be particularly important for this mechanism [12]. The interactions
analyzed, including π-stackings, were recorded in a higher number of frames during the
simulations of A4V and D90A when compared to the wild-type. To further investigate
the SBL-1 ability to occlude the indole rings of Trp32, we assessed the minimum distances
registered between these groups. As shown in Table 1, no differences were observed in the
average distances from SBL-1 during the simulations of SOD1 wild-type and variants. Our
findings, therefore, indicate that SBL-1 may be also effective in protecting Trp32 oxidation
upon A4V and D90A variants.

Table 1. Interactions between SBL-1 and residue Trp32.

Protein π-Stacking 1 Cation-π 1 Hydrophobic Contacts 1 Minimum Distance 2

wild-type 9.02% 3.8% 36.13% 0.37 ± 0.10 nm
A4V 16.88% 38.46% 89.55% 0.26 ± 0.03 nm

D90A 15.76% 10.12% 49.25% 0.34 ± 0.08 nm
1 Percentage of frames in which at least one interaction was registered during the trajectories. 2 Means and
standard deviations are shown.
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We also assessed the overall interactions of SBL-1-SOD1 complexes, which are shown
in Table 2. π-stacking interactions of SBL-1 were only formed with residue Trp32, which
was previously discussed individually, thus, not included in Table 2. Hydrogen bonds
and hydrophobic contacts were registered in approximately 100% of the trajectory frames.
Thus, their analyses are shown numerically rather than as percentages. Hydrogen bonds
play a key role in molecular recognition and protein-ligand stability [65]. According to
Manjula et al. (2018), the hydrogen bonds formed with the catechol ring of SBL-1 are crucial
for stabilizing the complex and might participate in the protection of Trp32 residue [12].
Our analysis suggested that the complexes formed, on average, around two hydrogen
bonds during simulations. Moreover, no differences in the average number of hydrogen
bonds were observed upon variants when compared to the wild-type. Thus, the mutations
analyzed may not impair these interactions (Table 2).

Table 2. Interactions between SBL-1 and SOD1 protein.

Protein Hydrogen
Bonds 1

Hydrophobic
Contacts 1 Ionic Bonds 2 Cation-π 2

WT 2.42 ± 1.07 10.07 ± 5.69 72.72% 19.92%
A4V 1.98 ± 1.25 11.81 ± 7.63 57.34% 55.51%

D90A 1.78 ± 0.91 8.91 ± 5.88 48.39% 13.61%
1 Means and standard deviations are shown. 2 Percentage of frames in which at least one interaction was registered
during the trajectories.

To obtain a deep understanding of how hydrogen bonds are formed, we performed an
occupancy analysis, which is shown in Table 3. Hydrogen bond occupancy is defined as the
percentage of total conformations registered throughout the simulation in which a ligand
performs at least one interaction of this type with a protein residue [66]. Only residues with
occupancy equal to or higher than 1% were considered for meaningful comparison, which
were Glu21, Lys23, Pro28, and Glu100. Except for Glu21, the three other residues were
previously observed as performing hydrogen bonds within the crystallographic structure
5YTO (Figure 1). As shown in Table 3, SOD1 wild-type and variant D90A presented similar
hydrogen bonding patterns in which the interactions with Glu100 were the most present,
followed by Glu21, then Lys23, and finally Pro28. Variant A4V, in turn, presented a slightly
different pattern, with Glu21 as the most frequent residue (71%), followed by Glu100 (51%),
then Lys23 (12%), and finally Pro28 (1%).

Table 3. Hydrogen bond occupancy of the SBL-1-SOD1 complex.

Protein Lys23 Glu21 Pro28 Glu100

WT 18.23% 46.76% 5.21% 93.67%
A4V 12.15% 71.51% 1.38% 51.09%

D90A 18.83% 35.74% 6.85% 70.99%

As described by Manjula et al. (2018), hydrophobic contacts may also be important for
stabilizing the SOD1-SBL-1 complex [12]. Our findings suggested that hydrophobic contacts
were formed between SBL-1 and residues Lys23, Lys30, and Trp32 in all simulations. The
residues formed additional hydrophobic contacts with SBL-1, as follows: (i) wild-type:
Glu24, Ser25, Val31, Ser34, and Ile104; (ii) variant A4V: Glu21, Gln22, Val29, Gly33, and
Glu100, and (iii) variant D90A: Glu21, Gln22, Pro28, Val29, and Glu100. No differences
in the average number of hydrophobic contacts were observed for the variants when
compared to the wild-type (Table 2), suggesting that these mutations may not affect the
formation of hydrophobic contacts.

Ionic bonding involves electrostatic interactions between ions with opposite charges,
which can have a significant influence on the binding strength of biomolecules, including
protein-ligand complexes [22,67]. The analysis of ionic bonds suggests that SBL-1 only
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forms this type of interaction with Glu21. Our findings also suggest that this interaction
is frequently formed since it was registered in at least 48% of the simulation frames in all
complexes. Furthermore, ionic bonds were considerably more present in the wild-type
complex, having been registered during 72% of its trajectories.

Finally, we investigated the cation-π interactions formed within the SOD1-SBL-1
complexes. This analysis suggests that SBL-1 formed three cation-π interactions with
SOD1: (i) between the indole rings of Trp32 and the charged amine of SBL-1, as previously
discussed; (ii) between the catechol ring of SBL-1 and Lys23, and (iii) between the catechol
ring of SBL-1 and Lys30. As shown in Table 2, cation-π interactions were noticeably more
frequent during the simulations of variant A4V (55.51%) when compared to the wild-type
(19.92%) and variant D90A (13.61%).

Our interaction analysis thus suggested that Glu21, Lys23, Pro28, Lys30, Trp32, and
Glu100 may be key residues for stabilizing the SOD1-SBL-1 complex. Overall, variant
D90A presented a similar interaction pattern to that of wild-type SOD1, except for the
frequency of ionic bonds formed during the simulations, which was considerably lower
in the variant. On the other hand, the interactions registered for the A4V complex were
notably different when compared to the wild-type, especially considering the ionic bonds
and cation-π interactions (Table 2). Despite these differences, A4V formed relatively more
hydrophobic and π-stacking interactions with Trp32 (Table 1), which are believed to be
crucial for the pharmacological activity of SBL-1 [12].

In a previous study by our group [2], we investigated in silico structural and dynamic
alterations in SOD1 protein upon relatively frequent mutations. Among them, A4V and
D90A promoted particularly high alterations in the flexibility and essential dynamics of
SOD1 functional domains, i.e., electrostatic and metal-binding loops (Figure S2). In the
referred study, no flexibility alterations were reported to occur in the corresponding SBL-1
binding site (residues Glu21, Lys23, Pro28, Lys30, Trp32, and Glu21), so it is unlikely to
be the main driving factor responsible for the different interaction profiles of SOD1-SBL-1
complexes (Tables 1 and 2).

On the other hand, variant A4V presented a reduced SASA when compared to the
wild-type (Figure 2), which may affect the SBL-1 binding site, e.g., reducing its size, partic-
ularly considering that it is located right in the SOD1 exposed surface (Figure S2). Notably,
relatively higher differences in the binding pattern were observed during the simulations
of A4V (Tables 1 and 2). Variant D90A, in turn, presented a considerably more similar
interaction profile, and no SASA alterations were observed related to the wild-type. Ad-
ditionally, as shown in the representative structures extracted from the MD trajectories
(Figure 5), variant A4V appears to have a smaller binding site compared to the wild-type,
further suggesting that it may have a role in the different binding patterns registered dur-
ing the simulations. Despite being far from the mutated sites (Figure S2), the amino acid
substitutions A4V and D90A may exert long-range effects on binding cavities, influencing
protein binding [68].

Binding affinity can be defined as the free energy alteration caused by the formation
of a molecular complex. This parameter is useful to measure the strength of protein-ligand
interactions, thus being an important initial indicator of drug potency [69]. Negative free
energy values indicate favorable processes, i.e., those formed spontaneously, while positive
values indicate unfavorable ones [70].

An MMPBSA analysis was then performed on the MD trajectories to estimate the bind-
ing affinity of the SOD1-SBL-1 complexes. This method provides an accurate estimation
of the binding free energy in protein-ligand complexes, circumventing molecular docking
approaches. When combined with molecular dynamics, which provides a sampling of
different binding modes, MMPBSA calculations consider the effects of conformational fluc-
tuations and binding entropy, which considerably enhance its predictive power, and greatly
increase its computational cost [53]. The binding free energy can be further decomposed to
account for the contribution of each protein residue to the interaction [44].
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Figure 5. MMPBSA analysis for SBL-1 binding site within SOD1 surface. Residues within the SBL-1
binding site are shown in stick representation and colored according to their energetic contribution,
which follows the colorimetric scale displayed in the figure. SOD1 surface is also shown for better
visualization. (A) Wild-type; (B) Variant A4V; (C) Variant D90A.

The energetic terms calculated for the SOD1-SBL-1 complexes are shown in Table 4.
Overall, the polar solvation term is unfavorable for complex formation, while apolar
solvation and MM energies are favorable. MM term dominates the overall binding affinity
in all complexes. The binding energy estimated for the compounds further suggests that the
formation of the SOD1-SBL-1 complex is a favorable and spontaneous process, reaffirming
its viability (Table 4). No differences were observed in the individual energetic terms for
the complexes analyzed. Moreover, the total binding energy estimated for the wild-type
during the simulations (−129 ± 42 kJ/mol) was similar to that of A4V (−209 ± 52 kJ/mol)
and D90A (−146 ± 39 kJ/mol). Despite the different patterns registered for the variants
in the interaction analysis (Table 2), our findings indicated that SBL-1 may also bind with
significant affinity upon these mutations.

Table 4. MMPBSA analysis for the SOD1-SBL-1 complexes.

Protein ∆E Polar
(kJ/mol)

∆E Apolar
(kJ/mol)

∆E MM
(kJ/mol)

Binding Energy
(kJ/mol)

WT 229 ± 35 −9.41 ± 1.27 −349 ± 65 −129 ± 42
A4V 205 ± 85 −8.80 ± 2.27 −409 ± 118 −209 ± 52

D90A 240 ± 31 −9.22 ± 1.20 −377 ± 61 −146 ± 39
The respective means and standard deviations are shown.
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The binding energies computed over time for the SOD1-SBL-1 complexes are shown
in Figure S3. The wild-type and variant D90A displayed similar and steady behaviors
throughout the simulations, which further suggest complex stability. Variant A4V, in turn,
had a relatively less stable behavior but presented numerically lower binding energy values,
and thus more favorable ones.

Finally, we investigated the energetic contribution of each residue for complex forma-
tion. As shown in Figure S3, the wild-type and variants presented considerably similar
contribution patterns, except for position 90 in variant D90A, having an Ala instead of an
Asp. Mutation D90A results in the substitution of a negatively charged and hydrophilic
amino acid for a non-charged and hydrophobic one, which may be related to the altered
binding energy values registered in the referred position (Figure S3). The energetic contri-
bution of Trp32 to the complex formation was not impaired upon A4V and D90A mutations
(Table S1), further suggesting that the SBL-1 interactions with this residue, which are in-
volved in its proposed mechanism of action, may be preserved. This analysis also indicates
that Glu21, Glu24, Asp96, and Glu100 are the residues that most favor SBL-1 interaction
with SOD1, while Lys3, Lys23, and Lys30 are the most unfavored ones. Interestingly, most
of these residues were located at the SBL-1 binding site (Figure 5) or nearby regions. Overall,
glutamic acid and aspartic acid, which are negatively charged, significantly favor SBL-1
interactions with SOD1. On the other hand, positively charged residues, i.e., histidine,
lysine, and arginine, most disfavored complex formation (Table S1).

Amino acids with electrically charged side chains have a deep influence on protein
binding affinity to charged ligands such as SBL-1. Interactions between electric charges
also confer binding specificity, given that opposite charges attract themselves, whereas
like charges repel. Despite being inversely proportional to distance, the strength of charge
interactions can be strong even at relatively long ranges, i.e., 5–10 Å [71,72]. This may
be related to the energetic contribution pattern previously described for SOD1-SBL-1
complexes from the MMPBSA analysis, in which charged residues located at the SBL-1
binding site (Figure 5) or nearby regions most favored or disfavored the interaction.

Based on the geometric definitions included in the study, cation-π interactions with
SBL-1 were formed with residues Lys23 and Lys30 during part of the simulations (Table 2).
On the other hand, charged amino acids also exert profound effects on binding to charged
ligands due to charge-charge interactions [71]. Thus, a possible explanation for the unfavor-
able contribution of Lysines to SBL-1 interaction, as suggested by the MMPBSA analysis,
is that the repulsive forces between like charges, i.e., charged Lys and protonated amine
of SBL-1, would overcome the attractive cation-π forces. Repulsive forces between like-
charges can be particularly strong at low ranges [72]. Lys3 remains relatively far from
the cut-off range of cation-π interactions, but could still exert long-range repulsive effects
through charge-charge interactions [71].

Our in-depth characterization of SOD1-SBL-1 interactions using MD simulations
indicates that the mechanism of action proposed by SBL-1 and its binding affinity to
SOD1 may be preserved upon relatively frequent mutations on its receptor, i.e., A4V and
D90A. Thus, SBL-1 could be promising for the treatment of ALS in patients carrying these
mutations. Nonetheless, missense mutations resulting in substitutions to positively charged
amino acids, especially those occurring at the SBL-1 binding site or nearby regions, may
disfavor the interaction with a consequent impact on SBL-1 activity.

3.3. In Silico Pharmacokinetics and Toxicological Assessment

Unsatisfactory ADMET properties are a major cause of drug candidate failure during
drug development [73]. Accurate in silico tools for ADMET prediction, such as ADMET
Predictor™ and ACD/Percepta, can help decision-making in the early phases of drug
discovery, particularly by identifying compounds with the best potential to fit the desired
pharmacological properties later in vivo, i.e., those reaching effective concentrations at
their targets with low toxicity [74].
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The overall evaluation provided by ADMET Predictor™ combines toxicity (TOX risk),
absorption (Absn risk), distribution (fu, Vd), and metabolism (CYP risk) issues. Ninety
percent of the 2260 commercial drugs available in a reference dataset derived from the
World Drug Index (WDI) [75] were estimated to have ADMET risk values below 7. The SBL-
1 compound presented only three violations in the overall evaluation: mutagenicity (MUT),
hydrogen bond donor (HBD), and high CYP2D6 clearance (2D6), totalizing 2.5 penalties
(Table 5), far below the reprobation cut-off (seven penalties).

Table 5. ADMET Predictor™ analysis for the SBL-1 compound.

Model ADMET
Risk

Absn
Risk CYP Risk Tox Risk MutRisk Mutx

Risk Vd & Fu Lipinski’s
Rule

Repro
Tox

CYP Inhi-
bition

Penalty 2.5 0.5 1 1 1.2 0.64 0 0 _ _

Violation HBD;
MUT; 2D6 HBD 2D6 MUT S_97;

NIHS
S_97;
NIHS No No No

CYP1A2,
CYP2D6,
CYP3A4

Cut-off ≤7 ≤4 ≤2 ≤2 ≤1 ≤1 _ ≤2 _ _

HBD: hydrogen bond donor; MUT: mutagenicity in Mut Risk model; 2D6: increased intrinsic clearance for
CYP2D6; S_97: mutagenic in S. typhimurium TA97 + TA1537 strains without microsomal activation; NIHS:
classified as mutagenic by a model trained on the NIHS’s Ames test dataset;Vd: volume of distribution; Fu:
fraction unbound. The underline represents parameters not-applicable to the model. Cut-off based on an empirical
distribution calculated from commercial compounds available in the WDI subset.

SBL-1 was only classified as mutagenic by the Ames models of NIHS and S. ty-
phimurium TA97 + TA1537 strains without microsomal activation (S). SBL-1 presented a
Mut risk of 1.2, thus raising a mutagenic alert (Mut risk ≤ 1.0), but it is still within 90% of
the empirical distribution calculated from commercial compounds available in the WDI
subset. To further assess mutagenicity, we evaluated the Mutx risk of SBL-1, which is
an improved version of Mut risk that provides better sensitivity and specificity within
the same cut-off (risk ≤ 1.0) (Simulations Plus, Inc., Lancaster, CA, USA). SBL-1, in turn,
presented a Mutx risk of 0.64 (Table 5). Thus, it was not considered mutagenic by the Mutx
risk model.

The toxicity analysis suggests that SBL-1 was not classified as hepatotoxic, carcino-
genic, cardiotoxic, or acutely toxic, thus receiving a Tox risk penalty of 1, attributed to the
mutagenicity in Ames tests, as previously discussed for Mut risk. Ninety percent of the
compounds available in the WDI subset presented Tox risk values ≤2.0 (Table 5). Thus, the
Tox risk score estimated for SBL-1 was within the expected range for commercial drugs,
indicating that SBL-1 could be safe.

Disturbance in critical events in prenatal and early postnatal development by teratogen
agents can lead to irreversible defects or dysfunctions [76]. The Repro Tox model, which ac-
counts for reproductive and developmental toxicity, suggested that SBL-1 is non-teratogenic
(Table S2).

The estimated Absn risk of SBL-1 was 0.5, which was attributed to undesired hydrogen
bond donor properties (HBD). Half of the penalty was attributed to SBL-1 given that it
presented an HDB value within the soft threshold, i.e., the region in which the compound
violates the cut-off but is still very close to it. Ninety-one percent of the commercial drugs
available in the WDI subset have Absn risk values lower than 4 (Table 5). Furthermore,
no violations of Lipinski’s rule of five were registered for SBL-1. The rule states that a
compound is likely to exhibit poor oral absorption or permeability when ≥2 rules are
violated, which applies to most commercial drugs suitable for oral dosing [77]. Given the
respective Absn risk and Lipinski’s score values, SBL-1 presented drug-like properties, thus
being possibly suitable for oral administration.

Vd and fu models account for the distribution and excretion properties in the ADMET
Predictor™ method, which are based on the extent to which a drug is bound in the circula-
tion (fu) or tissues (Vd). According to an analysis from the WDI subset, compounds with
Vd < 4 and fu > 4 are likely to have distribution and excretion problems. SBL-1 had a Vd of
16.4 and fu of 2.2, presenting favorable distribution and excretion properties.
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CYP risk accounts for possible metabolization issues a compound may have, penal-
izing elevated levels of intrinsic clearance by the corresponding CYP enzyme. Extensive
metabolism with consequently high clearance reduces the half-life and bioavailability of
potential drugs, which could compromise their activity in the target organ [78]. SBL-1 was
predicted to have a CYP risk of 1 (Table 5), which was attributed to increased intrinsic
clearance by CYP2D6. Despite this potential problem, SBL-1 still presents a CYP risk
comparable to most commercial drugs (CYP risk ≤ 2), and it may not affect its activity.

The pharmacological treatment of ALS involves the simultaneous administration of
multiple drugs, which include the disease-modifying drugs Riluzole and Edaravone, in
addition to a plethora of drugs aiming to manage the disease’s symptoms [79]. Thus,
we investigate potential DDI issues by evaluating the CYP inhibition ability of SBL-1.
Inhibition of cytochrome P450 enzymes is a central mechanism in DDI, which may decrease
the metabolization of co-administered drugs [80], leading to adverse drug reactions [81].
CYP inhibition is observed in the majority of commercial drugs, especially CYP3A4 [80,82].
Our findings indicate that SBL-1 may inhibit the activity of CYP1A2, CYP2D6, and CYP3A4
enzymes (Table 5), thus requiring some caution when co-administered with drugs used to
treat ALS, particularly SSRIs [83], benzodiazepines [84], and hypnotics [85,86], which are
mainly metabolized by CYP2D6, CYP3A4, and CYP3A4, respectively.

Phase I and Phase II modifications produce more polar molecules, facilitating elimi-
nation [87]. The metabolism model available in ADMET Predictor™ considered the most
frequent reactions within phase I and phase II, i.e., oxidation (CYP model) and glucuronida-
tion (UGT model).

Seventeen metabolites were predicted by ADMET Predictor™ for SBL-1, as shown in
Figure 6. Four metabolites result from direct phase I metabolism: M1, M2, M3.1, and M3.2.
CYP2D6 was the unique CYP enzyme predicted to metabolize SBL-1 during phase I. M1
was produced from the aromatic hydroxylation of the ortho position at the naphthalene
ring, while M2 results from the same modification but at the meta position. M1 and M2
are produced in high levels, corresponding to 86% of all metabolites generated during
this phase. M3.1 and M3.2 result from the N-dealkylation of the amine group, which is
considered relatively rare, corresponding to only 14% of phase I metabolites. M4, M5, and
M6 were directly generated during phase II metabolism. M4 and M5 were produced by
the action of UGT1A1, UGT1A6, UGT1A9, UGT1A10, and UGT2B7, which results in the
conjugation of a glucuronic acid into the dihydroxy phenyl moiety. M6 was generated
through glucuronidation at the hydroxyl group bound to asymmetric carbon, which was
catalyzed by UGT1A3. ADMET Predictor™ does not provide the percentage of metabolites
generated during phase II.

Additionally, the metabolites M1-M1 and M1-M2 were generated from the subsequent
metabolism of M1 by UGT1A1, UGT1A6, UGT1A9, UGT1A10, and UGT2B7, which con-
jugate a glucuronic acid into the dihydroxy phenyl moiety. M2-M1 and M2-M2 result
from a similar process but within the M2 metabolite. M1-M3 and M2-M3 metabolites
were formed through the glucuronidation of the ortho and meta hydroxyl moieties present
in the corresponding naphthalene rings of M1 and M2. This process was also catalyzed
by enzymes UGT1A1, UGT1A6, UGT1A9, UGT1A10, and UGT2B7. M1-M4 and M2-M4
were formed by UGT1A3 upon the glucuronidation of the asymmetric carbon of M1 and
M2. Finally, M3.2-M1 and M3.2-M2 metabolites were generated by UGT1A6 through the
conjugation of a glucuronide acid into the dihydroxy phenyl moiety of M3.2.

The predicted metabolites of SBL-1 were assessed for potential toxicity hazards, as
shown in Table S2. CYP inhibition was also investigated for them, given that some
drugs that reversibly inhibit CYP enzymes have circulating metabolites that are CYP
inhibitors [88]. The ADMET PredictorTM analysis raised mutagenicity alerts for the
metabolites, attributed to positive Ames tests within the NIHS model and S. typhimurium
TA97 + TA1537 strains without microsomal activation. The maximum Mut risk calculated
for the metabolites was 1.2, similar to that described for SBL-1. The Mutx risk analysis
indicated that the metabolites presented a maximum of 0.64 Mutx risk score, which is far
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below the cut-off of 1.0 expected for commercial drugs. No cardiotoxicity was observed
for the metabolites, but some of them were considered out-of-scope by the hERG model
available in ADMET Predictor™, thus receiving an hERG-tag. The out-of-scope condition
was observed in all phase II metabolites, which may be related to the acid glucuronic
conjugated to the molecule (Simulations Plus, Inc., Lancaster, CA, USA). According to the
safety and hazard profile raised in PubChem, glucuronic acid (IDs: 94715) is not considered
cardiotoxic, but it may cause respiratory irritation [15]. Furthermore, no developmental
toxicity was observed for the SBL-1 metabolites (Table S2).

Pharmaceutics 2023, 15, x FOR PEER REVIEW 20 of 27 
 

 

 
Figure 6. Phase I and phase II metabolism of the SBL-1 compound as predicted by ADMET Predic-
tor™. SBL-1 and its metabolites are displayed as bidimensional chemical structures with their cor-
responding nomenclature. Each metabolism step is represented by an arrow containing related en-
zyme(s). The percentage of each metabolite generated during phase I metabolism is shown between 
brackets. ADMET Predictor™ does not provide the percentage of metabolites generated during 
phase II. Chiral centers are highlighted by asterisks. 

The predicted metabolites of SBL-1 were assessed for potential toxicity hazards, as 
shown in Table S2. CYP inhibition was also investigated for them, given that some drugs 
that reversibly inhibit CYP enzymes have circulating metabolites that are CYP inhibitors 
[88]. The ADMET PredictorTM analysis raised mutagenicity alerts for the metabolites, at-
tributed to positive Ames tests within the NIHS model and S. Typhimurium TA97 + TA1537 
strains without microsomal activation. The maximum Mut risk calculated for the metab-
olites was 1.2, similar to that described for SBL-1. The Mutx risk analysis indicated that 
the metabolites presented a maximum of 0.64 Mutx risk score, which is far below the cut-
off of 1.0 expected for commercial drugs. No cardiotoxicity was observed for the metabo-
lites, but some of them were considered out-of-scope by the hERG model available in AD-
MET Predictor™, thus receiving an hERG-tag. The out-of-scope condition was observed 
in all phase II metabolites, which may be related to the acid glucuronic conjugated to the 
molecule (Simulations Plus, Inc., Lancaster, CA, USA). According to the safety and hazard 
profile raised in PubChem, glucuronic acid (IDs: 94715) is not considered cardiotoxic, but 
it may cause respiratory irritation [15]. Furthermore, no developmental toxicity was ob-
served for the SBL-1 metabolites (Table S2). 

ACD/Percepta Platform was further used to characterize the ADMET profile of SBL-
1 (Table 6). Combining different QSAR methods, particularly those with complementary 
nature like ADMET Predictor™ and ACD/Percepta, add robustness to the prediction [23], 
which could benefit our assessment by providing more solid initial evidence on SBL-1 
safety and pharmacokinetics. 

  

Figure 6. Phase I and phase II metabolism of the SBL-1 compound as predicted by ADMET Pre-
dictor™. SBL-1 and its metabolites are displayed as bidimensional chemical structures with their
corresponding nomenclature. Each metabolism step is represented by an arrow containing related
enzyme(s). The percentage of each metabolite generated during phase I metabolism is shown between
brackets. ADMET Predictor™ does not provide the percentage of metabolites generated during
phase II. Chiral centers are highlighted by asterisks.

ACD/Percepta Platform was further used to characterize the ADMET profile of SBL-1
(Table 6). Combining different QSAR methods, particularly those with complementary
nature like ADMET Predictor™ and ACD/Percepta, add robustness to the prediction [23],
which could benefit our assessment by providing more solid initial evidence on SBL-1
safety and pharmacokinetics.

The evaluation provided by the PhysChem profiling module indicates that SBL-1
does not violate any of Lipinski’s nor Lead-like rules, i.e., −2 ≤ logP < 4.2, molecular
weight < 460, number of hydrogen bond donors ≤ 5, and number of hydrogen bond
acceptors ≤ 9. The Lead-like rule is an adapted and stricter form of Lipinski’s rule designed
to deal with possible modifications a lead compound would have during its development
stage (Advanced Chemistry Development. Inc., Toronto, ON, Canada). The solubility
estimated for SBL-1 was 33.9 mg/mL, thus being classified as a soluble compound, which
is crucial for a drug to achieve proper concentration in the systemic circulation and further
exert its pharmacological response [89]. Based on the analyses of marketed drugs, relatively
rigid compounds with few rings are usually more suitable for oral dosing [90,91]. SBL-1
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presented 5 rotatable bonds and three rings, which are within the desired range of values
adopted by ACD/Percepta, i.e., number of rings ≤ 4 and number of rotatable bonds ≤ 10
(Table 6). Our findings further suggest that SBL-1 is likely to exhibit satisfactory oral
absorption and permeability [77].

Table 6. ACD/Percepta analysis for the SBL-1 compound.

Module Model Parameter Value Classification Reference Value

DrugSafetyprofiling

Mutagenicity 0.35 Undefined ≤0.33
hERG inhibition 0.31 Non-inhibitor ≤0.33

CYP inhibition 0.33–0.64
Undefined (3A4, 2D6,

2C19, 1A2);
Non-inhibitor (2C9)

≤0.33

Acute Toxicity _ No hazardous fragment No hazardous fragment

PhysChem profiling

Lipinski’s Rule 0 violations Optimal _
Lead-like Rule 0 violations Optimal _

Solubility 33.9 mg/mL Soluble ≥10 mg/mL
Rotatable bonds 5 Optimal ≤10

Nº of rings 3 Optimal ≤4

ADME profiling

Bioavailability 96% High ≥70%
Caco-2 16 × 10−6 cm/s High ≥7 × 10−6 cm/s

HIA 100% High ≥70%
PPB 81% High ≥40% & ≤80%

Metabolic Stability 0.49 Undefined ≤0.33

CNS-Access −2.93 Sufficient for CNS
activity >3

The underline represents parameters not-applicable to the model. Reference values based on the
ACD/Percepta evaluations.

The assessment by the ADME profiling module provided a model to directly account
for bioavailability SBL-1, which was predicted to have 96% bioavailability, thus it would
successfully reach the systemic circulation. Additionally, SBL-1 was predicted to have high
permeability through Caco-2 scales (16 × 10−6 cm/s) and high passive jejunal absorption
(HIA: 100%) (Table 6), corroborating results concerning bioavailability previously discussed.

The pharmacological target of SBL-1, i.e., SOD1, is mainly located in the CNS [10].
BBB penetration is crucial, especially for CNS-acting drugs, which must cross the BBB to
interact with their target receptors [92]. The CNS access model available in ADME profiling
combines descriptors for passive brain penetration (Log BB and Log PS) and the fraction
unbound in the brain (fu, brain) to evaluate whether the compound would exhibit CNS
activity (Advanced Chemistry Development. Inc., Toronto, ON, Canada). The final CNS
access score estimated for SBL-1 was −2.93, suggesting that it would exhibit CNS activity,
i.e., score > −3 (Table 6).

ADME profiling module uses a PPB model to account for the compound’s distribution.
The free-drug hypothesis states that only unbound drugs are available for interacting with
their pharmacological targets [93]. On the other hand, weak PPB makes the drug more
available for metabolism and excretion, ultimately reducing its half-life [94]. Thus, the
PPB model considers moderately bound plasma proteins, i.e., 40% < PPB ≤ 80%, as the
optimal condition for drug candidates. SBL-1 was predicted to have 81% of PPB, which
is very close to the upper range of optimal values (Table 6). Thus, it may still present
favorable distribution.

As previously discussed, readily metabolized compounds, i.e., those with low t1/2

values in HLM, often possess reduced bioavailability and limited activity [95]. ADME
profiling classifies compounds with t1/2 in HLM < 30 min as metabolically unstable. The
classification is based on the HLM score estimated for the compound, which is a combina-
tion of the reliability index (RI) and predicted probability (p). The resulting score penalizes
probabilities close to 0.5 and low RI, which are indicators of inconclusive prediction. The
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HLM score predicted for SBL-1 was 0.49, suggesting undefined metabolic stability (Table 6),
i.e., 0.33 < HLM score ≤ 0.67.

A similar score system is also used by the Drug-safety profiler module to account
for mutagenicity and cardiotoxicity. Additionally, experimental evidence on structurally
related compounds is also provided by the predictors included in this module. The mu-
tagenicity model is based on Ames tests. SBL-1 received an Ames score of 0.35, thus
being classified as undefined mutagenic, but still very close to the upper range of the
non-mutagenic class (Ames score < 0.33), and very far from the bottom range of the mu-
tagenic class (Ames score ≤ 0.67). Additionally, experimental evidence indicates that
compounds structurally related to SBL-1, including its analog isoproterenol, are non-
mutagenic (Table S3). Thus, together with Mutx risk analysis (Table S2), the Ames model
available in the Drug-safety profiler further suggests that SBL-1 may not be mutagenic. In
turn, the cardiotoxicity model ACD/Percepta is based on the inhibition of hERG channels.
The hERG score estimated for SBL-1 was 0.31, indicating non-cardiotoxicity, which is in
agreement with the ADMET Predictor™ evaluation (Table S2). Experimental evidence on
compounds structurally related to SBL-1, which includes its analog isoproterenol, further
suggests non-mutagenicity, in accordance with data from the literature (Table S3).

The Drug-safety profiler evaluation on CYP inhibition suggests that SBL-1 does not
inhibit CYP2C9, but it was inconclusive for CYP3A4, CYP2D6, CYP2C19, and CYP1A2
(Table S4). Notably, the highest CYP scores, i.e., those closer to the inhibitor class, were
achieved by CYP3A4, CYP2D6, and CYP1A2 enzymes, which had previously been classified
as inhibited by SBL-1 within the ADMET Predictor™ assessment (Table 6). Compounds
structurally related to SBL-1, including catecholamines and β1 adrenergic agonists, have
not demonstrated CYP inhibition experimentally (Table S4).

No hazardous fragment associated with severe acute toxicity was detected for SBL-1
using the expert system model included in the Acute Toxicity Hazards module. This model
accounts for 86 predefined toxicophores compiled from the toxicological literature, i.e.,
structural fragments that are statistically related to toxic properties in drugs (Table 6) [96].

Finally, the metabolites predicted by ADMET Predictor™ for the SBL-1 compound, as
shown in Figure 6, underwent toxicity assessment using the Drug-safety profiler module.
No mutagenicity, cardiotoxicity, or CYP inhibition were identified for the metabolites
(Table S3).

Overall, the in silico pharmacokinetics and toxicological assessments we carried
out suggest that SBL-1 has drug-likeness characteristics with low toxicity, which may be
favorable for the development of an anti-ALS compound [74].

4. Conclusions

Our MD findings suggest that the complex SOD1-SBL-1 remains relatively stable
and interacts within a close distance during the simulations. The MMPBSA analysis
indicates that the SOD1-SBL-1 complex formation is energetically favorable, thus occurring
spontaneously. Our in-depth characterization of SOD1-SBL-1 interactions suggests that the
mechanism of action proposed by SBL-1 and its binding affinity to SOD1 may be preserved
upon the relatively frequent mutations A4V and D90A. Thus, SBL-1 could also be promising
to treat ALS in patients carrying these mutations. On the other hand, missense mutations
resulting in substitutions to positively charged amino acids, particularly those occurring at
the SBL-1 binding site or nearby regions, may disfavor the interaction with a consequent
impact on its pharmacological activity. The in silico pharmacokinetics and toxicological
assessments we carried out suggest that SBL-1 has drug-likeness characteristics with low
toxicity, which may be favorable for the development of an anti-ALS compound based on
an unprecedented mechanism. Initial evidence on SBL-1 safety, pharmacokinetics, and
pharmacodynamics, such as those provided in this work, could be useful to guide future
studies in vitro and in vivo, saving time and resources.



Pharmaceutics 2023, 15, 1095 22 of 26

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/pharmaceutics15041095/s1, Table S1: Energetic contribution of
each SOD1 residue to SBL-1 interaction computed from the MMPBSA analysis, Table S2: ADMET
Predictor™ analysis of SBL-1 compound and predicted metabolites, Table S3: Percepta analysis of
SBL-1 compound and predicted metabolites, Table S4: CYP inhibition analysis of SBL-1 compound
and predicted metabolites performed using the ACD/Percepta platform, Figure S1: Overlay picture of
the original (5YTO) and representative conformation of the wild-type SOD1-SBL-1 complex extracted
from the molecular dynamics, Figure S2: Three-dimensional representation of SOD1-SBL1 complex
showing important protein sites, Figure S3: MMPBSA analysis of SOD1-SBL-1 complexes.
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