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Abstract: Neurodegeneration has been associated with chronic inflammation states in the brain.
For this reason, attention has been directed to drugs indicated as anti-inflammatory as possible
therapies for the treatment of said conditions. Tagetes lucida has been widely used as a folk remedy
in illnesses associated with the central nervous system and inflammatory ailments. Among the
compounds that stand out in the plant against these conditions are coumarins, such as 7-O-prenyl
scopoletin, scoparone, dimethylfraxetin, herniarin, and 7-O-prenylumbelliferone. Therefore, the
relationship between the therapeutic effect and the concentration was evaluated through pharma-
cokinetic and pharmacodynamic studies, including vascular permeability evaluation by blue Evans
and pro- and anti-inflammatory cytokines quantification, under a neuroinflammation model induced
by lipopolysaccharide by the oral administration of three different doses (5, 10, and 20 mg/kg) of a
bioactive fraction of T. lucida. In the present study, it was found that all doses showed a neuroprotec-
tive and immunomodulatory effect, although the doses of 10 and 20 mg/kg were able to exert their
effect for a longer time and to a greater extent. The protective effects of the fraction may be mainly
associated with the DR, HR, and SC coumarins due to their structural profile and plasmatic and brain
tissue bioavailability.

Keywords: pharmacokinetics; pharmacodynamics; 7-O-prenylscopoletin (PE); scoparone (SC); dimethyl-
fraxetin (DF); herniarin (HR); 7-O-prenylumbelliferone (PU); neuroprotector

1. Introduction

Neurodegenerative diseases (ND) are characterized by progressive dysfunction, as
well as neuronal and functional loss of the Central Nervous System (CNS) [1]. Neurode-
generative diseases currently affect more than 50 million people worldwide and represent
the leading causes of disability and death among the elderly population [2]. Nowadays, an
optimal treatment has not been developed to delay, reverse, or even avoid the neurodegen-
eration process [3]. Largely because the symptoms and pathological processes are varied in
each disease.

However, among the developments of pharmacological therapies, it has been deter-
mined that neuroinflammation is a common factor in the establishment and progression of
neurodegeneration due to defects caused in the regulatory pathways of the CNS [4,5]. As in
any inflammatory process, the response generated by specific CNS cells, such as microglia,
has a protective effect by maintaining optimal regulation within the brain [6]. However,
under certain pathological conditions or harmful stimuli against the CNS, these cells are
activated, giving rise to the presence of two phenotypes commonly characterized by its
neurotoxic (M1) or neuroprotective (M2) effects [7,8].
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The M1 phenotype is related to the production of harmful mediators as proinflam-
matory cytokines, such as tumor necrosis factor-alpha (TNF-α), a highly inflammatory
cytokine that plays an essential role in mediation of the transcription of anti-apoptotic
and anti-inflammatory genes that regulate CNS activities [9–11]. While its M2 counterpart
exerts an anti-inflammatory effect by releasing cytokines such as IL-10, M1 plays a key
role in the resolution of inflammation on the CNS because the receptor for this cytokine is
expressed in microglia to produce its activity locally [6,7,12]. The expression of these pro-
and anti-inflammatory mediators released in response to microglia activation are used as
markers of progression of neuroinflammation in neurodegenerative diseases [7,13].

On the other hand, the blood–brain barrier (BBB) allows the regulation of the entry of
molecules from the bloodstream into the brain tissue through selective transporters. Some
cell signaling proteins such as cytokines can cross the BBB from the periphery to reach
the brain. Entry of TNF-α into the BBB damages the tight integrity of the barrier, leading
to exacerbated levels of the cytokine that trigger cyclical processes of inflammation and
apoptosis that ultimately lead to CNS disease states [10,11,14].

Local or peripheral administration of LPS, an endotoxin purified from the cell wall
of Gram-negative bacteria, activates immune cells that trigger a systemic and periph-
eral inflammatory response through different mechanisms of action [15]. First, it has its
downstream effect by binding to Toll-like receptor 4 (TLR4); these receptors are abun-
dantly expressed in microglia, leading to activation of nuclear factor-κB (NF-κB), inciting
the synthesis and release of proinflammatory cytokines mediated by myeloid differentia-
tion adapter 88 (MyD88). LPS also induces amyloidogenesis by activation of β-secretase
(BACE1) and γ-secretase, which consequently increases the levels of β-amyloid peptide
(Aβ) after hydrolysis of the amyloid precursor protein (APP). In addition, LPS generates
increased expression of microRNA-155 (miRNA-155), which downregulates the suppressor
of cytokine signaling (SOCS1), a negative regulator of cytokine signaling, stimulating the
inflammatory process [16]. It has been generally established that the peripheral administra-
tion of LPS in adult and old mice at high doses produces an exacerbated neuroinflammatory
response, therefore offering an ideal model for the evaluation of new anti-inflammatory
drugs for CNS that may exert neuroprotective effects against neuroinflammation and
cognitive decline in mice through possible modulation of TLR4/MYD88/NF-κB, miRNA-
155/SOCS-1, and cAMP/phosphorylated CREB (pCREB) signaling pathways [16–18].

Among the main sources of new anti-inflammatory therapeutic agents are natural
products derived from plants. Tagetes lucida, a plant of the Asteraceae family, has well-
documented ethnopharmacological reports that test its activity in biological models as
inflammatory inhibitors [19,20]. At the same time, the chemical components associated
with the effect have been determined where coumarins stand out. In the T. lucida hexanic
extract coumarins 7-O-prenylscopoletin (PE), scoparone (SC), dimethylfraxetin (DF), her-
niarin (HR), and 7-O-prenylumbelliferone (PU) had shown a potential anti-inflammatory
activity [19]. Whereby, this type of compounds represents potential therapeutic agents in
the treatment of neuroinflammation.

During the new herbal drug development, pharmacokinetic (PK) studies become
essential to providing information on the prediction of the distribution, metabolism, and
excretion of the chemical participants. As has been tested with the bioactive fraction
obtained from the T. lucida hexanic extract, administered at a dose of 10 mg/kg, carried
out in our previous study [21]. Nonetheless, it is important to establish the relationship
between different doses and the exposure of the molecules at the site of action to evaluate
the properties and therapeutic efficacy, through biological tests, that the herbal drug has at
different concentrations to the binding target [22–24].

It should be noted that these studies are particularly complex in tissues related to
neurodegenerative diseases, essentially due to the presence of the BBB, one of the main
limitations in getting bioactive compounds to reach the site of action [22]. For this, the eval-
uation of vascular permeability with Evans blue dye along with cytokines quantification
will determine the integrity of the BBB by inhibiting the damage caused by LPS associated
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with three different regimen doses concentrations and the PK behavior of bioactive com-
pounds to determine the course temporal dose effect of the bioactive fraction derived from
hexanic extract of T. lucida.

2. Materials and Methods
2.1. Chemicals

Rutin (internal standard, IS), trifluoroacetic acid (TFA), lipopolysaccharide (LPS), blue
Evans dye (BE), sodium chloride (NaCl), sodium dihydrogen phosphate (Na2HPO4), were
purchased from Sigma-Aldrich (St. Louis, MO, USA). HPLC-grade solvents: acetonitrile,
methanol, and water, were acquired from Tecsiquim (Mexico, Mexico), Tween 20, potassium
chloride (KCl), potassium dihydrogen phosphate (KH2PO4), and reagent-grade hexane
and ethyl acetate were purchased from Merck (Darmstadt, Germany).

2.2. Standardization of the Bioactive Fraction of Tagetes lucida

A hexanic extract from Tagetes lucida was obtained as described in our previous
work [21]. Briefly, dry milled plant material collected in Xochitepec, Morelos, Mexico
identified with the voucher No. 2081 [25], was macerated for 24 h with hexane in a 1:3 (w/v)
proportion by three times. Then, the extract was subjected to open column chromatography
with five elution systems (hexane:ethyl acetate) increasing the polarity by 5% for each
system (250 mL), starting in 100% hexane.

Finally, it was established that the standardized coumarin content in mg/g of extract
was equal to previously reported, using the same HPLC parameters that were described
in the mentioned work [21]. Briefly, a Waters 2695 separation equipment coupled to a
UV-VIS detector (Waters 2696) was used to carry out a 30 min run with a gradient elution
composed of an aqueous solution of trifluoroacetic acid at 0.5% and acetonitrile (Table S1).
The injection volume is 10 µL per sample at a flow of 0.9 mL/min of the mobile phase. The
data were recorded at a wavelength (λ) of 330 nm and were processed with Empower Pro
3.0 software (Waters, MA, USA).

2.3. Preparation of Administration Drugs and Solutions

Three aqueous solutions from active fraction from T. lucida with 1% Tween-20 were
prepared at concentrations of 0.5, 1.0, and 2.0 mg/mL to be used as treatments.

Likewise, a 200 µg/mL solution of lipopolysaccharide (LPS) and another of 0.5%
Evans blue dye were prepared independently, contained in sterile phosphate-buffered
saline (PBS) with 1% Tween-20. PBS contained NaCl (8.06 g/L), KCl (0.22 g/L), Na2HPO4
(1.15 g/L), and KH2PO4 (0.20 g/L), adjusted to pH 7.4.

2.4. Animals

Male ICR strain mice between 8 to 10 weeks of age, provided by the Century XXI
Medical Center animal facility, with a weight range of 35 ± 5 g were used throughout the
experiments. Six mice per cage were placed and kept under the conditions of the vivarium
with cycles of 12 h of light/darkness (07:00 to 19:00 h) at 25 ◦C. Access to food (Rodent
Laboratory Diet pellets, Harlan) and water was allowed ad libitum up to 12 h before the
start of the evaluations. The mice were adapted to the laboratory environment three weeks
prior to their use in the experiments.

The studies were carried out in accordance with the Official Mexican Standard NOM-
062-ZOO-1999: Technical specifications for the production, care, and use of laboratory
animals [26]. The Local Health and Ethics Research Committee of the Instituto Mexicano
del Seguro Social (IMSS) approved the present project on 16 August 2021 (Registration
number: R 2021-1702-009).
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2.5. Pharmacokinetic and Brain Distribution Study

In Figure 1 is summarized the pharmacokinetic and tissue distribution study of the
coumarins PE, SC, DF, HR, and PU contained in the bioactive fraction of T. lucida, where a
total of 105 mice were used.
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Figure 1. Overview of the pharmacokinetic and brain distribution study.

Ten minutes before starting the study, all mice underwent an acute neuroinflammation
process caused by the intraperitoneal (i.p.) administration of the LPS solution at 2 mg/kg.
Once the time had elapsed, the mice were divided in three groups according to the different
administered doses: 5, 10, or 20 mg/kg of the fraction previously prepared, based on the
effect offered by these coumarins in CNS [19,25].

Finally, blood and tissue samples from mice (n = 5 per time), were obtained and
processed at 0, 0.25, 0.75, 1.5, 2, 4, and 6 h post-dosing, as indicated in the following section
for their further analysis.

2.5.1. Samples Collection and Processing

First, 500 µL of blood samples were collected at the established times from the retroor-
bital sinus of the mice in heparinized Eppendorf tubes. The plasma was separated, as soon
as possible, by centrifugation at 3500 rpm for 5 min and the plasma was separated into new
tubes stored at −70 ◦C until use.

Immediately after obtaining the blood samples, the mice were euthanized in a euthana-
sia chamber (10 cm × 20 cm × 5 cm) containing cotton pads and gauze soaked with diethyl
ether (10 mL), as well as subsequent cervical dislocation [26]. Once the death of the animal
was verified, the brain was dissected. The organs were rinsed with saline solution, to avoid
exogenous contaminants or interfering in the quantification, and immediately placed on
ice. The fresh weight of the brains was recorded, later subjected to a freeze-drying process
(LABCONCO ®, Kansas City, MO, USA), grounded and finally dry weighed.

2.5.2. Samples Coumarins Extraction and Analysis

Each grounded organs were suspended in methanol in 1:1 dry weight:volume ratios
for 24 h and centrifugated at 14,000 rpm for 7 min. Finally, the supernatants were collected
in clean tubes and stored at −70 ◦C until use.

To 100 µL of the plasma or tissue homogenate samples previously obtained, 300 µL of
acetonitrile with IS (10 µg/mL) were added and placed in a vortex for 3 min. Subsequently,
200 µL of dichloromethane were added and mixed for 5 min. The aggregate was centrifuged
at 14,000 rpm for 10 min and the organic layer was separated and filtered into new tubes to
be brought to dryness. For HPLC-UV analysis, samples were resuspended in methanol
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and 10 µL of sample was injected into the system, as indicated in HPLC-DAD-UV handling
conditions section by Santibáñez et al. [21].

2.5.3. Pharmacokinetic and Brain Distribution Analysis

Following the methodology indicated for PK analysis in our study previously men-
tioned, the parameters maximum plasma concentration (Cmax), time to reach the maximal
concentration (Tmax), half-life time (t1/2), area under the concentration–time curve to
6 h (AUC0–6) and to infinity (AUC0–∞), mean residence time (MRT), and the observed
oral clearance (CL/F) of PE, SC, DF, HR, and PU in plasma were calculated by PKSolver
software [27] using a non-compartmental model for each of the three doses, as well as the
quantification of the coumarins content in liophilized brains by HPLC system.

2.6. Vascular Permeability Evaluation

The integrity of BBB after an acute inflammation damage was evaluated in 75 mice
equally divided in the groups: Basal (Bas), vehicle (Veh), and three treatment groups (Tx)
for each dose of 5 mg/kg (Tx-5), 10 mg/kg (Tx-10), and 20 mg/kg (Tx-20), as shown in
Figure 2.
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Figure 2. General scheme of vascular permeability evaluation.

To begin the evaluation, mice, except for those in the Bas group, get an i.p. admin-
istration of LPS at 2 mg/kg. After 10 min of damage induction, the Bas and Veh groups
were administered orally with a Tween 1% aqueous solution and the remaining mice were
administered with the corresponding dose of coumarin treatment. Fifteen minutes later,
200 µL of a PBS solution was added with 0.5% Evans blue were perfused through the
lateral tail vein. Finally, the mice were euthanized, as described before, at 0.75, 2 and 4 h
post- administration and the brains of mice were immediately dissected, rinsed with saline
solution, weighted, and incubated in a 55 ◦C water bath in Eppendorf tubes containing
500 µL of formamide for 24 h.

Once the time had elapsed, the brains were centrifuged at 14,000 rpm for 7 min
and 300 µL of the supernatant were recovered in 96-well microplates for analysis in the
spectrophotometer at λ = 620 nm, using formamide as blank. A quantitative analysis of
the content of BE in the tissues was carried out with a calibration curve based on external
standard method in formamide.

2.7. Cytokine Quantification

For cytokine analysis, sketched in Figure 3, the same experimental design as in vascular
permeability assay was used. After dosing profiles and evaluation times were completed,
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the brains were dissected and individually homogenized at a 5:1 weight:volume ratio
with a PBS solution at pH 7.4 with 1% phenyl methyl sulfonyl fluoride (PMSF), using an
ULTRA-TURRAX T25 basic polytron at 6500 rpm. After homogenization, the samples were
centrifuged at 14,000 rpm for 7 min, the supernatant was recovered for cytokine quantifica-
tion by the ELISA method using cytokine kits (BD Biosciences, Franklin Lakes, NJ, USA),
according to the manufacturer’s instructions for IL-10 and TNF-α: Mouse IL-10 ELISA Set
(Cat. No. 555252) and Mouse TNF Mono/Mono ELISA Set (Cat. No. 555268), respectively.
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Figure 3. Overview for cytokine analysis.

2.8. Statistical Analysis

Each experiment was conducted using five individuals per group. The resulting data
were expressed as mean ± standard error (SEM). Afterwards, they were analyzed by using
an Analysis of Variance (ANOVA) followed by the post hoc Dunnet test (* p < 0.05 and
** p < 0.01). Statistical analysis was performed with IBM SPSS Statistics ver. 25.0 software
program (SPSS Inc., Chicago, IL, USA).

3. Results and Discussion
3.1. Chemical Composition of the Bioactive Fraction of Tagetes lucida

The species of Tagetes lucida is rich in content of terpenes, phenolic acids, flavonoids
and coumarins, mainly [19,20,28–31]. These constituents offer a wide range of biological
activities due to their antidepressant, antibacterial, antinociceptive, antispasmodic, anti-
hypertensive, and specially antioxidant and anti-inflammatory properties [19,20,28,32–36].
Due to its valuable pharmacological properties, this plant can be used as a potential source
of novel herbal medicines to treat conditions related to CNS diseases, such as neurodegen-
erative diseases, which have related their etiology to neuroinflammation [37,38].

The bioactive fraction for oral administration, with a high content of anti-inflammatory
coumarins, obtained from the hexane extract of T. lucida was analyzed at λ = 330 nm by
HPLC-UV (Figure 4).
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In the present work, a fraction rich in coumarins was used: PE, SC, DF, HR, and
PU, with previously proven anti-inflammatory activity for each of these components [19].
However, one of the main limitations that arise during the development of medicines
obtained from natural sources is the poor standardization of bioactive components [23].
The RT and UV spectra were compared with the PE, SC, DF, HR, and PU standards obtained
by prior purification in the laboratory to determine which corresponded to the coumarins
of interest [21]. The RT values, maximum absorbance (λmax), and the concentrations of each
coumarin quantified in the fraction are shown in Table 1.

Table 1. Identification parameters of coumarins by HPLC-UV.

Analyte Concentration
(µg/mL)

TR
(min)

λmax1
(nm)

λmax2
(nm)

λmax3
(nm)

PE 165.9 ± 1.49 9.826 219.2 324.4 —
SC 225.9 ± 3.21 11.351 229.8 294.7 343.4
DF 234.6 ± 8.60 12.844 215.7 295.9 338.6
HR 203.0 ± 3.57 13.689 219.2 323.2 —
PU 103.8 ± 0.41 28.051 204.0 323.2 —

PE = 7-O-prenylscopoletin, SC = scoparone, DF = dimethylfraxetin, HR = herniarin, and PU = 7-O-
prenylumbelliferone. Results are presented as mean ± S.D. (n = 3).

3.2. PK of Different Doses of Active Fraction of T. lucida

Applying a validated method for the quantification of coumarins by HPLC, which has
previously been reported [21], samples from mice that were administered three different
doses, 5, 10 [21], and 20 mg/kg, of T. lucida bioactive fraction, were analyzed to determine
the temporal course of the variation in the concentration of PE, SC, DF, HR and PU was
evaluated, both in plasma (Figure 5) and in the brain (Figure 6).
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Figure 5. Concentration-time profile of coumarins in plasma samples: (a) PE, (b) SC, (c) DF, (d) HR,
and (e) PU, after a dose administration of 5 (-�-), 10 (-#-) [21], or 20 mg/kg (-N-) of the hexanic
extract of Tagetes lucida, in ICR mice LPS-damaged. Results are presented as mean ± SEM (n = 5). As
observed in Figure 4, a dose-dependent concentration behavior was presented for the five coumarins.
However, the concentration-time profile presented differences in the maximum concentration values;
PE and HR showed their maximum concentration at 30 min. DF and PU presented their maximum
concentration at min 60, while SC presented it at 120 min.
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Figure 6. Concentration-time profile of quantified coumarins in the brain: (a) PE, (b) SC, (c) DF,
(d) HR and (e) PU. After administration of three doses of the hexanic extract of Tagetes lucida 5 (-�-),
10 (-#-) [21], or 20 mg/kg (-N-), in ICR mice exposed to damage by the administration of LPS. Results
are presented as mean ± SEM (n = 5).

Consistent with the neuroprotective effect of T. lucida, the study of variation in the
plasmatic concentration of active coumarins was carried out in mice previously exposed
to neuro-inflammation, secondary to the administration of LPS, where the PK parameters
were obtained (Table 2).
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Table 2. Pharmacokinetic parameters of coumarins estimated by non-compartmental analysis in ICR
mice plasma after different doses of oral administration of bioactive fraction.

Dose = 5 mg/kg

Parameter Unit PE SC DF HR PU

Cmax µg/mL 0.35 ± 0.05 0.65 ± 0.02 0.58 ± 0.11 0.71 ± 0.09 0.38 ± 0.07
Tmax h 1.05 ± 0.40 1.55 ± 0.34 0.50 ± 0.25 0.45 ± 0.12 0.80 ± 0.20
t1/2 h 2.76 ± 0.49 4.62 ± 2.47 3.10 ± 0.60 4.03 ± 1.94 3.76 ± 1.12

AUC0–t µg·h/mL 0.77 ± 0.08 2.38 ± 0.13 1.28 ± 0.17 1.55 ± 0.21 1.14 ± 0.09
AUC0–∞ µg·h/mL 1.10 ± 0.22 4.45 ± 1.30 1.92 ± 0.50 2.25 ± 0.26 1.71 ± 0.32

MRT h 4.29 ± 0.98 7.62 ± 3.51 4.66 ± 0.88 6.04 ± 2.42 5.53 ± 1.69
CL/F * 53.20 ± 9.97 13.99 ± 2.51 30.94 ± 4.76 23.71 ± 3.26 32.81 ± 5.01
Vd/F & 184.67 ± 9.15 59.25 ± 15.66 130.15 ± 30.65 122.40 ± 46.54 149.73 ± 14.28

Dose = 10 mg/kg [21]

Parameter Unit PE SC DF HR PU

Cmax µg/mL 1.77 ± 0.31 1.28 ± 0.11 1.82 ± 0.27 1.48 ± 0.19 0.69 ± 0.07
Tmax h 0.85 ± 0.28 0.70 ± 0.34 0.60 ± 0.24 0.25 ± 0.00 1.05 ± 0.31
t1/2 h 4.48 ± 1.31 0.65 ± 0.06 1.50 ± 0.37 1.49 ± 0.35 0.95 ± 0.10

AUC0–t µg·h/mL 3.52 ± 0.10 2.77 ± 0.21 3.25 ± 0.31 2.95 ± 0.28 2.22 ± 0.26
AUC0–∞ µg·h/mL 6.37 ± 1.20 2.78 ± 0.21 3.61 ± 0.40 3.21 ± 0.38 2.24 ± 0.26

MRT h 6.96 ± 1.92 2.26 ± 0.17 2.72 ± 0.30 2.77 ± 0.25 2.68 ± 0.14
CL/F * 17.38 ± 2.25 36.52 ± 2.68 28.81 ± 2.51 32.50 ± 2.91 46.95 ± 5.03
Vd/F & 95.74 ± 8.76 35.34 ± 5.14 58.00 ± 8.77 66.54 ± 14.92 66.62 ± 12.38

Dose = 20 mg/kg

Parameter Unit PE SC DF HR PU

Cmax µg/mL 1.96 ± 0.10 2.02 ± 0.14 3.13 ± 0.20 1.80 ± 0.20 0.88 ± 0.06
Tmax h 0.25 ± 0.00 1.35 ± 0.15 0.75 ± 0.00 0.45 ± 0.12 1.50 ± 0.31
t1/2 h 4.30 ± 0.56 2.57 ± 0.80 1.63 ± 0.10 2.69 ± 0.59 1.70 ± 0.18

AUC0–t µg·h/mL 6.76 ± 0.48 6.22 ± 0.22 8.33 ± 0.52 3.71 ± 0.11 3.21 ± 0.30
AUC0–∞ µg·h/mL 10.84 ± 1.08 7.91 ± 0.79 8.87 ± 0.54 5.07 ± 0.56 3.55 ± 0.25

MRT h 6.27 ± 0.84 4.07 ± 0.90 2.63 ± 0.12 4.21 ± 0.85 3.15 ± 0.15
CL/F * 19.20 ± 1.88 26.17 ± 2.25 22.90 ± 1.44 41.34 ± 4.26 57.62 ± 4.71
Vd/F & 115.48 ± 10.99 87.06 ± 20.06 53.49 ± 3.08 146.80 ± 20.34 143.61 ± 21.95

Concentration quantification after oral dose administration of 5, 10 [21], or 20 mg/kg. Values represent mean
± SEM (n = 5). PE = 7-O-prenylscopoletin, SC = scoparone, DF = dimethylfraxetin, HR = herniarin, and
PU = 7-O-prenylumbelliferone. * (mg/kg)/(µg/mL)/h. & (mg/kg)/(µg/mL).

Comparing the maximum concentration values of the coumarins, presented in Table 2,
with the administered dose (Cmax/dose), we obtain the following sequence of ratios:
DF >> SC > PE ≈ HR > PU, (DF = 11.87, SC = 6.89, PE = 4.70, HR = 4.54, PU = 2.16). What
differs from the administered dose PE ≈ PU > HR > SC ≈ DF.

Regarding the above, the importance of chemical groups that substitute in the aromatic
ring of coumarins is notable. DF is the one that was administered in a lower dose according
to the standardization of the active fraction (13.18 mg/g) and DF is the one that reached
the highest index of Cmax/dose; structurally what distinguishes DF is the presence of
3 methoxyls at C-6, C-7, and C-8. Secondly, in the sequence, it is SC, and this coumarin
only has 2 methoxyls at C-6 and C-7. HR has a lower value of the aforementioned index
and only presents a methoxyl at C-7, while PE has a similar value of the index with an
isoprenoxyl group at C-7 and methoxyl at C-6. Considering the PU index, which only has
isoprenoxyl at C-7, it indicates the importance of the substituent size and position.

3.3. Brain Distribution of Coumarins in T. lucida

Figure 6 shows the variation tissue concentration profile of the coumarins PE, SC, DF,
HR, and PU, of the same mice in which the plasmatic bioavailability of the coumarins
present in the fraction of T. lucida was analyzed. Unlike the dose-dependent behavior of
Cmax, obtained in the determinations of the plasmatic concentration of said coumarins,
only PE clearly showed this behavior (Figure 6a). The most evident contrast was PU, where
the Cmax of a lower dose (10 mg/kg) of hexane extract showed a higher Cmax than was
observed with the 20 mg/kg dose (Figure 6e). With SC, DF, and HR, very similar Cmax
values were reached, with the 10 and 20 mg/kg doses (Figure 6b–d).

When the ratio Cmax/dose was calculated (DF = 14.03, HR = 9.34, PE = 8.88, SC = 7.51,
PU = 6.63), the following comparative sequence of values was observed: DF >>HR ≈ PE >
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SC > PU. Once again, the categorical presence of the three methoxyl substituents present in
the molecule was corroborated at C-6, C-7, and C-8 to define the greater bioavailability of
in brain tissue, noting that in this case the blood–brain barrier (BBB) is another frontier that
must be crossed to reach the brain. However, HR (C-6) resulted in a higher bioavailability
than SC (C-6 and C-7), where the bioavailability of coumarins gradually decreased as the
number and position of methoxyl substituents were eliminated. However, we can consider
that this trend is maintained, to the extent that the bioavailability values of HR and SC are
very close.

3.4. Vascular Permeability Evaluation by Blue Evans Dye in Brain

Figure 7 shows the kinetics of extravasation of plasma fluid into brain tissue, mea-
sured by the release into the extravascular space of Evans Blue. Neuronal damage from the
exposure of the mice to LPS by systemic administration is evident, as shown by the size of
the vehicle (Veh) bar with respect to that observed in the basal (Bas) condition. In the same
way, the increase in extravasation is dependent on the exposure time, as demonstrated
by the increasing trend of the vehicle bars, as the exposure time progresses. Addition-
ally, treatments (Tx) with the bioactive fraction standardized in coumarins counteract
the extravasation of plasmatic fluid secondary to systemic inflammation. This decrease
is dose-dependent, which allowed us to calculate the associated pharmacological con-
stants. At 0.75 h, Emax = 92.60% and DE50 = 10.32 mg/kg; at 2:00 h, Emax = 86.21% and
ED50 = 4.39 mg/kg; and 4:00 h, Emax = 100 % and ED50 = 8.79 mg/kg.
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Figure 7. Evans blue concentration-time profile quantified in the brain to measure extravasation of
plasma fluid in brain tissue. The brain of mice exposed to neuroinflammation by administration
of LPS and treated with different doses of T. lucida bioactive fraction: 5, 10, and 20 mg/kg. Results
are presented as mean ± SEM, ANOVA post hoc Tukey comparing against damage group (Veh).
(* p < 0.05, ** p < 0.01); (n = 5).

It is noteworthy that the effect of LPS on the increase in extravasation of plasmatic
fluid depends on the exposure time. This is due to two considerations, firstly to paracellular
mechanisms, and secondly to transcellular processes; the first of these result from the struc-
tural and functional alterations that LPS causes on endothelial cells (EC) that participate
in the BBB [39]. Under homeostatic conditions, the BBB maintains conditions of isolation
from potential aggressive stimuli from the environment [40].

The low permeability of the BBB, dependent on paracellular mechanisms, is exerted
in principle by tight junctions (TJs). These consist primarily of the densely distributed
transmembrane protein claudin (especially claudin-5), occluding, tricellulins, junctional
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adhesion molecules, and intracellular support proteins such as zonula occludens (ZO).
TJs seal the paracellular pathway, significantly reducing the penetration of polar solutes
from the plasma into the interstices of the brain and are responsible for the integrity of the
BBB [41,42].

On the other hand, there are also adherent junctions (AJ) formed by intercellular
cadherin and intracellular catenin and are also responsible for sustaining BBB function. It
has been reported that LPS impairs the BBB by significantly increasing the permeability
of solutes from the peripheral circulation to the cerebral space by eliminating TJ and AJ
by decreasing their gene expression and altering distribution [43]. This paves the way for
harmful chemicals that bypass the BBB and alter the functions of the CNS. It has also been
described how LPS causes a disruption of the BBB by increasing the expression of C-X-C
Motif Chemokine Receptor 2 (CXCR2) in brain EC in a time-dependent manner, where
endothelial actin polymerization is involved [39].

Another protein involved in LPS-mediated damage to TJs is matrix metalloproteinase
(MMP), especially MMP-9, which participates in TJ degradation and therefore increases
BBB permeability [44]. On the other hand, LPS can stimulate the expression of NF-κB,
which is a key regulator of gene expression of proteins related to the inflammatory process;
this results from the binding of LPS by binding to the Toll-like receptor 4 (TLR4) [45–47].
Thus, LPS can destroy BBB by reducing the level of occludin through the TLR4/NF-kB
pathway [45]. In addition, it has been described as LPS can activate RhoA as well as
downstream NF-κB, and lead to increased phosphorylation of myosin light chain (MLC),
which ultimately causes a decrease in the expression of TJs proteins, claudin-5 and ZO-1.
Therefore, NF-κB play a determining role in TJ damage in LPS-associated inflammatory
responses, which ultimately impairs BBB function [48,49].

In the literature, it is mentioned that biological interactions, including those between
drugs and their receptors, establish a rapid equilibrium, such that changes in the concentra-
tion of the free ligand (drug) are immediately reflected in an alteration in the amount of
bound ligand (drug-receptor complex). Although, there is a history that almost 80% of the
FDA-approved drugs operate through a non-equilibrium mode of action and therefore the
activity of the drug in vivo is controlled by both the thermodynamics and the kinetics of
drug-receptor interactions. This is supported by the fact that many drugs dissociate slowly
from their drug targets, which supports that the kinetics of drug-receptor interactions
provides a more realistic view of the drug’s mode of action [50].

3.5. TNF-α and IL-10 Cytokine Quantification

In Figure 8, the kinetics of TNF-α and IL-10 production and release are shown. In the
first panel (TNF-a), it is observed that the differential between the TNF- α released by the
Veh group and the Bas group, present a tendency to increase the value of the differential.
With the different doses of the bioactive fraction treatments, a tendency to decrease the
concentration of this proinflammatory cytokine is observed.

The following panel presents the behavior of IL-10. It is notable that Veh and Bas
groups show similar levels so that the neuroinflammation process results from a basic
response of the production and release of IL-10. In contrast, the treatments stimulate IL-10
release several times, indicating that the control of neuroinflammation is probably sec-
ondary to IL-10-driven modulation. In order to estimate the degree of immunomodulation,
the TNF-a/IL-10 index is calculated, thereby generating the graph of the third panel. It was
observed that the value of the index shows a remarkable dose-dependent behavior. This
allowed us to calculate the associated pharmacological constants. The Emax indexes in
each of the chosen times, 0.75, 2.00, and 4.00 h, were 4.44, 3.36, 4.24, respectively. While the
EC50 values were 2.04, 4.33, and 0.2 mg/kg in the same order.
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The inflammatory stimulus of LPS in the CNS results from binding to Toll-like receptor
4 (TLR4), present in large quantities in microglia, which causes phosphorylation of nuclear
factor-κB (NF-κB), which leads to the production of proinflammatory cytokines via the pri-
mary myeloid differentiation adapter 88 (MyD88) response [16]. The neurotropic activity of
scoparone has recently been described in models of neurodegeneration, by administration
of LPS. However, SC did not reverse LPS-mediated cognitive impairment, suggesting no
central anti-inflammatory effects. On the contrary, the acute administration of scoparone
led to a very strong and unexpected increase in arachidonic acid and prostaglandins, but
also N-acylethanolamines and a concomitant decrease in 2-arachidonoyl glycerol (2-AG).
The latter has been implicated in anxiety and is currently being studied in the context of
stress-related conditions [51].

Furthermore, studies have shown increased expression of microRNA-155 (miRNA-155)
after LPS administration. MiRNA-155 downregulates the suppressor of cytokine signaling
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(SOCS1) in such a way that LPS by this mechanism stimulates the inflammatory process [16].
Therefore, the neuroprotective effect of coumarins present in the active fraction of T. lucida
is established by the possible modulation of TLR4/MYD88/NF-κB, miRNA-155/SOCS-1.

4. Conclusions

The chemical characterization of the active fraction was achieved, since the concen-
tration of five coumarins (PE, SC, DF, HR, and PU) was determined and that when they
were administered orally in increasing doses, the sequence of bioavailability values was
established, where DF, the highest value, and PU, the lowest value, are both in plasma and
in the brain. Regarding the pharmacological effect, the neuroprotection against the damage
caused by LPS of the fraction standardized in coumarins was determined, by reducing
vascular extravasation and generating an environment of immunomodulation, associated
with the decrease in the TNF-α/IL10 index caused by LPS.

It can be inferred that the neuroprotective activities described for SC and HR con-
tribute to the therapeutic effect among the different doses of treatment with the active
fraction of standardized in coumarins of T. lucida. However, the expectation arises that
DF also contributes to this effect due to two considerations: the first, due to the structural
similarity of SC, HR, and DF (pharmacodynamic approach) and, on the other hand, that DF
has the highest bioavailability index among the coumarins present in the bioactive fraction.
For this reason, this study is part of the technological development of a neuroprotective
medication based on the standardized extract of T. lucida, where it is defined that both
the 10 and 20 mg/kg doses are effective in counteracting the damage caused by neuroin-
flammation underlying the administration of LPS, protecting the BBB, and generating an
immunomodulatory environment.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/pharmaceutics15030967/s1, Table S1: Elution gradient of the
analytical method by HPLC-UV for coumarin determination in a bioactive fraction of T. lucida.
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