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Abstract: Cancer is a multifaceted disease that results from the complex interaction between genetic
and environmental factors. Cancer is a mortal disease with the biggest clinical, societal, and economic
burden. Research on better methods of the detection, diagnosis, and treatment of cancer is crucial.
Recent advancements in material science have led to the development of metal–organic frameworks,
also known as MOFs. MOFs have recently been established as promising and adaptable delivery
platforms and target vehicles for cancer therapy. These MOFs have been constructed in a fashion
that offers them the capability of drug release that is stimuli-responsive. This feature has the
potential to be exploited for cancer therapy that is externally led. This review presents an in-depth
summary of the research that has been conducted to date in the field of MOF-based nanoplatforms
for cancer therapeutics.

Keywords: metal–organic frameworks; targeting drug delivery; targeted cancer therapy; light
response; multi-targeted response

1. Introduction

To maximize therapeutic efficacy and minimize side effects, a substantial amount of
work has been devoted to the development of novel micro- or nano-platforms for regulated
and smart drug release systems, thanks in large part to the explosive expansion of materials
chemistry [1]. High interest has been drawn to metal–organic frameworks (MOFs) ever
since they were first reported in 1989 by Hoskins and Robson [2]. These materials are
made by merging metal clusters or metal ions with organic ligands via coordinative bonds,
resulting in a two- or three-dimensional topology that offers architectural control at the
molecular scale. There are already over 20,000 unique MOF frameworks documented in the
Cambridge database [3]. A wide range of metal–organic frameworks (MOFs) with tailored
physicochemical properties (e.g., hydrophobicity or hydrophilicity, morphology, pore
diameter, surface area) can be fabricated for critical applications, including separations [4],
gas storage [5], analytical chemistry [6], catalysis [7–9], sensing [10], energy [11], imaging,
and biomedicine [12].

A multifunctional nanomaterial is not merely an improved form of the initial capa-
bility [13]. In fact, multifunctional nanostructures incorporate multiple functions into a
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single particle to increase the carrier’s utility [14]. This layout has the potential to improve
cancer treatment by allowing for a more precise detection, scanning, and management of
the tumor’s microenvironment [15]. Multifunctional particles’ architectural backbones can
be either organic (polymeric, liposomal, or proteinaceous) or inorganic (metal, nonmetallic,
or biomimetic) [16–18]. The building blocks of peptide nanoparticles are amino acids, either
organic or synthetic, that have been scaled down to the nanometer range. Due to their
biodegradability, peptide nanoparticles have found widespread usage in cancer therapy,
gene transfer, and target medication delivery [17]. However, while peptide-based delivery
methods have shown promise in in vitro and in vivo research, this progress has been slower
in transferring to clinical studies. Peptides are typically used for their therapeutic effects
rather than as a delivery mechanism in peptide-based therapeutics [19]. In another ad-
vancement, biomaterials called metal–organic frameworks (MOFs) are created when metal
cations or clusters are coordinated with organic ligands. MOFs have a large specific surface
area and a high porosity, both of which promote greater contact with the cell membranes,
leading to an increase in the amount of MOFs that are taken up by cells. Furthermore,
positively charged MOF materials are able to connect to cell membranes via electrostatic
interactions, and, as a result, are able to enter cells via the process of endocytosis [18]. MOFs
delivery systems are on the verge of becoming one of the greatest promising approaches
for use in biomedical applications.

The last decade has seen a massive increase in the utilization of MOFs in biological
applications in terms of their fine-tunability, vast surface areas, and high loading capacities.
In particular, a variety of applications for the delivery of drugs using MOFs are being
investigated [12,20]. Initially, MOFs were employed to deliver medications in the form of
tiny molecules, but more recent research has concentrated on the delivery of macromolec-
ular cargo, including nucleic acids and proteins. Here, we explore the recent utilization
of drug-delivery MOFs, with an emphasis on the alternatives that can be employed to
build toward particular drug-delivery MOF applications. Among these choices are the
MOF structure, the synthesis process, and the drug loading. Tuning, alterations, cellular
targeting, biocompatibility, and uptake are other factors to take into account [12,21].

To battle diseases such as cancer, scientists are constantly looking for novel treatments,
early diagnoses, and early detection methods. The principal application of MOFs beyond
this viewpoint is their potential as cutting-edge materials and systems for cancer ther-
apy [22]. Also highlighted are several difficult and promising facets of MOF-based cancer
diagnosis and therapy. There are also a few successful case studies that can provide a phase
change to clinics, but this is a fascinating field of science with progressive breakthroughs
that require intense emphasis to fully transfer from bench to bedside. This is a crucial step
in identifying the restrictions and barriers to the use of cutting-edge materials, such as
MOFs, for the treatment of cancer that has reached the clinical stage [21,23].

Cancer is a leading cause of human mortality and poses a risk to nearly every family
on Earth. In 2020, the number of people diagnosed with cancer was 19.3 million, and ap-
proximately 10 million lost their lives to the disease [24]. Cancer treatment typically consists
of early diagnosis with X-ray computed tomography imaging, optical imaging, magnetic
resonance imaging, and other imaging methods applicable to biological subjects, and late
treatment with radiotherapy, chemotherapy, surgery, gene therapy, immunotherapy, and
combination therapy. Chemotherapy, along with cytoreductive surgery and radiotherapy, is
the most prevalent treatment for cancer. In particular, an abundance of immunotherapeutic
and chemotherapeutic medications has been established and approved to be utilized by
the Food and Drug Administration of the United States (FDA) because of the rising cancer
rate. Nanotechnology devices are on par in size with macromolecules (such as enzymes
and receptors) found in living organisms. Due to their microscopic size, nanoscale devices
can easily interact with biomolecules and can also reach places previously inaccessible in
the body, expanding the possibilities for illness detection and therapy [25]. Highly effective
modulators of biomolecules have been produced by chemical biologists; however, many of
these may not demonstrate perfect functionality in vivo because of an inadequate stability,
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solubility, poor pharmacokinetics, biocompatibility, and/or off-target activity. Scientists
working in the field of nanotechnology have created devices to address the problems
associated with the transport and pharmacokinetics of poorly behaving molecules. These
devices work by enclosing active cargos and directing them into certain tissues, cells, or
organelles [26].

Recently, MOFs have been developed as nanocarriers of medicines for cancer treat-
ment [27,28]. The advantages of MOFs are their huge specific surface area, high porosity,
and size controllability. They may be utilized as photothermal agents, photosensitizers, and
Fenton reaction catalysts in chemodynamic therapy (CDT), photodynamic therapy (PDT),
and photothermal therapy (PTT) (Figure 1). The poly(acrylic acid-mannose acrylamide)
that further functionalized MOF-808 provided highly effective selective drug delivery with
high cytotoxicity in HepG2 human hepatocellular carcinoma cells [14]. To increase the
biocompatibility, extend blood circulation time, and target the encapsulated medication
to the folate-expressing MCF-7 breast cancer, UiO-66 nanoparticles and folate-conjugated
pluronic F127 were integrated [29]. Encapsulated in ZIF8 and loaded onto gelatin nanofi-
brous, phenamil, an activator of bone morphogenetic protein pathways, can kill MG-63
cells in vitro and suppress the formation of subcutaneous tumors in vivo [30]. In addition,
MOFs can be loaded with therapeutic agents (drugs, photothermal agents, photosensitizers,
etc.) for use in CT, PTT, PDT, CDT, and other tumor-specific treatments. In this article, we
will discuss the most up-to-date findings about therapy-targeted MOFs as a foundation for
cancer therapy.
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Figure 1. Some monotherapies are based on MOFs. Metal ions and an organic ligand are the two
components that make up MOFs. The organic ligand joins the metal ions to form larger arrays. MOFs
have several desirable structural properties that make them excellent candidates in the fields of drug
administration and cancer therapy.

This review presents an overview of various innovative nanomaterials generated for
research and clinical application, highlights existing limitations and barriers that prevent
the transfer from research to clinical usage, and addresses solutions for a more efficient
utilization of nanoparticles in cancer therapy (Figure 2).
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2. Basic Nanomaterial and Cancer and Target Therapy
2.1. Basics of Nanomaterials for Drug Delivery

Nanotechnology holds great promise for the management of chronic human diseases
by delivering precise drugs to designated areas and targets. Recent years have seen many
significant applications for the use of nanomedicine (biological, chemotherapeutic, and
cancer immunotherapy agents) in the medical care of many diseases (Table 1). The review
article offers a comprehensive summary of recent developments in the field of nanocarriers
and drug delivery via nanocarrier technologies through a full assessment of the exploration
and usage of nanostructured materials in enhancing both the effectiveness of old and new
drugs and specific diagnosis through disease marker molecules [31].

Table 1. Physicochemical properties and applications of nanomaterials for drug delivery.

Kind of
Material

Size
(nm) Shape Surface Area

(m2/g) Properties Application Ref.

Silica 100–108 Nanoparticles 1156.4

The photothermal heating
effect, efficient endocytosis,

(pH, NIR
irradiation)-responsive,

anchor effect

Chemo-
photothermal
therapy, active

targeting

[32]

Carbon
dots 4 Nanodots - Electrostatic interactions,

pH-dependent release Chemotherapy [33]

Silicon 100 Nanoparticles 1407
(pH and

NIR)-responsiveness,
mitochondrial targeting

Fluorescent image,
chemo-

photothermal
therapy, active

targeting

[34]

Liposome 165 Nanoparticles - X-ray-triggered liposomes

Chemotherapy,
radiotherapy,

photodynamic
therapy

[35]
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Table 1. Cont.

Kind of
Material

Size
(nm) Shape Surface Area

(m2/g) Properties Application Ref.

Magnetic-gold 11–29 Nanoparticles -
Multifunctional magnetic
gold, controlled-release

manner

Passively magnetic
targeting; chem-
mophotothermal

therapy; magnetic
resonance imaging

(MRI)

[36]

Carbon
nanotubes 0.4–2/2–100 Cylindrical

roll 232.5

π-π stacking, electrostatic
interaction,

pharmaco-toxicological
properties

Chemotherapy [37]

Hydrogel 35–60 Sphere NPs -
Thermo-sensitive micelles,

reversible sol–gel
transition,

Chemotherapy [38]

Protein 28 Monodisperse
nano-scaffold -

Receptor-mediated
internalization, fluorescent

image

Chemotherapy,
active targeting [39]

ZIF-8 50–160 Dodecahedral 1925

π–π stacking, hydrogen
bonding, electrostatic

interactions, fluorescent
imaging, and

pH-responsive drug
release

Chemotherapy,
passive targeting [40]

Treatment delivery using MOFs has also been researched, starting with loading cancer
drugs and controlling release. Small molecule medications, including the anticancer agents’
doxorubicin and curcumin, are still the main targets of applications of drug delivery
MOFs. The development of macromolecular drugs with various MOFs, including plasmids,
gelonin, siRNAs, and sgRNA-loaded Cas9 for CRISPR, has been accomplished via a method
known as biomimetic mineralization. A burgeoning field of research focuses on using
MOFs to deliver therapies of all sorts, such as cells, proteins, small chemicals, nucleic acids,
gasotransmitters, and viruses [41].

2.2. Basics of Cancer and Target Therapy

The evolutionary lens is reshaping our knowledge of cancer. Peter Nowell was an early
pioneer of the theory of tumor evolution. According to Nowell’s concept, most cancers
begin with a single neoplastic cell and then progress through a process of selection for
somatic modifications, with the most aggressive clones eventually proliferating and surviv-
ing [42]. Incredible advances in genetics and cell biology in recent years are shedding new
light on cancer that contradicts prior conceptions. The evolutionary viewpoint provides
five fundamentals of evolution necessary for understanding cancer: (1) the formation of
malignancies takes place through a process called somatic selection; (2) ecological prin-
ciples can be used to describe the relationship between tumors and microenvironments;
(3) principles of behavioral ecology give insight on the dynamics in which cancer clones
interact with one another in terms of cooperation and competition; (4) natural selection may
be credited for the rarity of cancer; and (5) the common occurrence of cancer is explained
by evolutionary medicine [43–47]. Cancer is therefore a multifaceted disease due to its
complex combination of genetic and environmental factors. It is now known that DNA
damage is a fundamental cause of the abnormalities that eventually lead to cancer. As
a result of these alterations, uncontrolled cell division occurs, which ultimately leads to
tissue damage (Figure 3).
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To combat the development and spread of cancer, scientists have developed targeted
cancer medicines that work by interfering with certain molecules (“molecular targets”). Var-
ious terms, including “molecule-targeted pharmaceuticals”, “molecule targeted therapies,”
“precision medicines,” and others, are used to refer to targeted cancer treatments [48,49].
The high degree of specificity achieved by targeted therapy is remarkable. This speci-
ficity permits the following comparisons between targeted therapies and conventional
chemotherapy [49]:

• In contrast to standard chemotherapies, which affect both rapidly dividing normal
and malignant cells, targeted therapies focus on a narrow set of molecular targets that
are suspected to play a role in cancer development and progression.

• Targeted therapies are selected or engineered to interact with their target, while many
mainstream chemotherapies were discovered because they kill cells.

Targeted therapies are frequently cytostatic (that is, they prevent the proliferation
of cancerous cells), whereas conventional chemotherapy medicines are cytotoxic (that
is, they kill tumor cells). Combinations of metal clusters and organic linkers fabric the
structure of MOFs, which gives them many desirable properties (including a large surface
area and pore volume, surface chemistry, and a tunable pore environment) and allows for
their application in a wide range of imaging and drug delivery systems. Biocompatibility,
large drug payloads, and the ability to hybridize with a wide range of functions make
MOFs an attractive option for targeted drug delivery [8,50]. For biomedical applications,
nanoscale MOFs that are Zr-linked, such as MOF-808, offer some significant benefits in
particular [14]. To improve chemotherapy’s therapeutic efficiency and achieve a highly
selective target in cancer cells, nanoparticles loaded with floxuridine and carboplatin
and further functionalized with a poly (acrylic acid-mannose acrylamide) glycopolymer
coating was developed. Specifically, in HepG2 human hepatocellular carcinoma cells,
the modification boosted the absorption of the nanoparticles and provided a significant
selective drug delivery with great cytotoxicity. These findings demonstrate that MOF-808
is a promising choice for future drug delivery investigations [14].
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3. Synthesis, Functionalization, and Modification of MOF Nanomaterials for Targeted
Cancer Drug Delivery
3.1. Direct Assembly Technique

In addition to being directly encapsulated, some cargo molecules or their prodrug form
can be utilized as ligands to actively contribute to the development of framework structures
through coordination bonds between the cargo’s accessible coordinated functions and par-
ticular metal nodes [51]. A few chemotherapy agents, including pamidronate, zoledronate,
methotrexate, and several platinum-based anticancer agents, as well as photoactive car-
gos for phototherapy, have been effectively introduced into MOFs. Through the gradual
breakdown of these cargo or prodrug ligands into active components in a physiological
milieu, this type of MOF nanoparticle can achieve its entire therapeutic function. The most
significant aspects of this technique are its uniform cargo distribution and increased loading
within the NMOF matrix, but it is important to completely evaluate how to preserve the
therapeutic action of those cargo ligands during the synthesis process [52,53].

Coordination modulation is currently widely used in MOF chemistry due to the
exquisite control it provides for the synthetic chemist. The technique evolved from early
attempts to regulate the particle size of MOFs into a set of diverse synthetic protocols to
manufacture single crystals, simplify synthesis, induce defects, and regulate a variety of
physical properties, and, additionally, it has recently provided conditions in complicated
delivery systems.

Related methods are currently being developed, such as multivariate modulation to
increase the storage of numerous cargo molecules and pore complexity from the MOFs
porosity, which allows for the simultaneous control of surface chemistry and particle size.
Coordination modulation is currently motivating other techniques to exercise kinetic control
while applying to substitute materials because the capacity to influence self-assembly
kinetics has the potential to be highly strong. Even in previously well-researched chemical
regions, the kinetic control provided by the various modulation strategies should aid in the
identification of novel materials [54].

The path is taken by self-assembly to create nanocomposites containing upconversion
nanoparticles that are homogeneously paved over MOFs. This approach, which is primarily
driven by electrostatic interactions, can be utilized to combine various upconversion NPs
with various MOFs. The as-synthesized composites are helpful for applications such as
luminescence-monitored medication delivery. They can also be utilized to create compos-
ites with distinctive architectures, such as MOF@upconversion NPs@MOF sandwiched
nanocomposites (Figure 4) [55].

To create novel functionalized heterogeneous catalysts of Cage@FDU-ED during a
reaction of (2,2,6,6-tetramethylpiperidin-1-yl)oxyl, metal-organic cages were placed inside
mesoporous carbon with amino functions. The discovered bifunctional catalyst has an
improved catalytic activity, selectivity, and recyclability due to the orthogonal properties of
the segregated actively catalyzing locations, resulting in an overall transformation yield of
up to a 96% conversion. It is possible to achieve a constant and highly effective chemical
transformation by carefully designing the catalytic sites in both the mesoporous matrix and
MOF cages separately (Figure 4) [56].
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schematically. Direct mixing results in the formation of nanocomposites from the reaction intermedi-
ates of MOF and ligand-free UCNPs. The processes demonstrate the three hypothesized formation
mechanisms: (i) nucleation of MOFs, (ii) electrostatic bonding of NPs to MOFs, and (iii) produc-
tion of nanocomposite materials; (b) catalyst with two functions for single-pot sequential reactions
using confinement self-assembly and M12L24 cage C in FDU-ED cavities mesoporous to produce
cage@FDU-ED is shown schematically. Reproduced with permission from references [55,56].

3.2. Encapsulation Technique

Active compounds, primarily anticancer medicines, have been effectively integrated
into nanoMOFs utilizing the three primary methodologies depicted in Figure 5. This section
will focus on the specifics of how biomolecules are enclosed within the pores of MOFs.
Utilizing the high and modifiable porous structure of MOFs and encapsulating bioactive
molecules within the pores of MOFs can be a simple and effective way to overcome the lim-
itations of the surface attachment method. However, as the majority of biomacromolecules
have diameters >2 nm, the greatest difficulty in capturing biomolecules comes in the fab-
rication of MOFs with large pore spaces. The International Union of Pure and Applied
Chemistry (IUPAC) divides nanocomposites into three main categories determined by the
size of their pores: macroporous (>50 nm), mesoporous (2–50 nm), and microporous (2 nm).
Mesoporous MOFs are widely used as host matrices for biomolecules due to their ability
to shield them from environmental perturbations such as pH and temperature shifts and
organic solvents. In addition, the microenvironment around the encapsulated biomolecules
can be changed by precisely controlling the structure or property (e.g., functionality, charge,
or lipophilicity) of the pore walls of MOFs, creating optimal conditions for biomolecules’
activities or applications [57]. Particularly attractive for drug entrapment are Materials
Institute Lavoisier (MIL) MOFs constructed from centers of trivalent metal and bridging
ligands of polycarboxylic acid, which create extraordinary surface areas ranging from 1500
to 5900 m2/g and huge pore diameters ranging from 25 to 34 Å [58]. MIL MOFs have been



Pharmaceutics 2023, 15, 931 9 of 30

successfully loaded with a wide variety of different sorts of active compounds, including
anti-inflammatory, anticancer drugs, metallodrugs, antiviral, nitric oxide, and peptides
(Table 2). Several additional MOFs, including those based on zinc, copper, and zirconium,
were utilized as drug carriers. Due to the possible advantages that metal ions such as
Gd, In, and Ni could impart, several MOFs based on them were also examined for drug
encapsulation, and their imaging characteristics were also investigated. On the other hand,
it has been noted that the toxicity of metals might be an obstacle to the use of certain MOFs
in medical applications.
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three basic techniques have been successfully used to insert active compounds, particularly anticancer
medicines, into the MOFs.

Table 2. A summary of documented MOFs for the delivery of medicinal substances [59].

Therapeutic Drug MOFs Organic Linker Metal Ion Drug Encapsulation
Method Ref.

1. Anti-inflammatory and analgesics drugs

Ibuprofen MIL-100 1,3,5-benzene tricarboxylic acid
(BTC) Cr3+ Post-synthetic (PS)

encapsulation [60]

Ibuprofen MIL-101 1,4-benzene dicarboxylic acid
(BDC) Cr3+ PS encapsulation [60]

Ibuprofen MIL-53 BDC Fe3+, Cr3+ PS encapsulation [61]
Curcumin,
Sulindac MOF-5 BDC Zn2+ PS encapsulation [62]

Diclofenac sodium ZJU-800 F-H2PDA Zr2+ PS encapsulation [63]
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Table 2. Cont.

Therapeutic Drug MOFs Organic Linker Metal Ion Drug Encapsulation
Method Ref.

2. Antiviral and antibacterial drugs
Cidofovir MIL-101-NH2 2-amino-BDC Fe3+ PS encapsulation [64]

Nalidixic acid Bio-MOF Nalidixic acid Mg2+,
Mn2+ Direct assembly [65]

Vancomycin MIL-53 BDC Fe3+ PS encapsulation [66]
Ciprofloxacin UiO-66 BDC Zr4+ PS encapsulation [67]
Gentamicin ZIF-8 2-methyl imidazolate Zn2+ PS encapsulation [68]
Ciprofloxacin ZIF-8 2-methyl imidazolate Zn2+ PS encapsulation [69]
Ceftazidime ZIF-8 2-methyl imidazolate Zn2+ One-pot synthesis (OPS) [70]
Tetracycline ZIF-8 2-methyl imidazolate Zn2+ OPS [71]
Enrofloxacin,
Florfenicol γ-CD-MOF Cyclodextrin K+ PS encapsulation [72]

3. Anti-cancer drugs
Nimesulide HKUST-1 BTC Cu2+ PS encapsulation [73]
Busulfan MIL-100 BTC Fe3+ PS encapsulation [64]
Doxorubicin MIL-100 BTC Fe3+ PS encapsulation [74]
Doxorubicin MIL-89 Muconic acid Fe3+ PS encapsulation [64]
Oridonin MOF-5 BDC Zn2+ PS encapsulation [75]
Cisplatin NCP-1 Disuccinatocisplatin Tb3+ Direct assembly [76]
Methotrexate PCN-221 TCPP Zr4+ PS encapsulation [77]
Alendronate UiO-66 BDC Zr4+ Covalent bonding [78]
Doxorubicin ZIF-67 2-methyl imidazolate Co2+ OPS [79]
5-Fluoro uracil ZIF-67 Imidazole-2-carboxaldehyde Co2+ PS encapsulation [80]
Doxorubicin ZIF-67 Imidazole-2-carboxaldehyde Co2+ Covalent bonding [80]
5-Fluoro uracil ZIF-8 2-methyl imidazolate Zn2+ PS encapsulation [81]
Camptothecin ZIF-8 2-methyl imidazolate Zn2+ OPS [82]
Doxorubicin ZIF-8 2-methyl imidazolate Zn2+ OPS [83]
3-Methyl adenine ZIF-8 2-methyl imidazolate Zn2+ OPS [84]
Doxorubicin,
Camptothecin,
Daunomycin

Zn(bix) bix Zn2+ OPS [85]

4. Peptides, Proteins, and enzymes

Insulin NU-1000
4,4′,4′′,4′′′-(pyrene-1,3,6,8-
tetrayl)tetrabenzoic
acid

Zr4+ PS encapsulation [86]

Glucose oxidase Cu-TCCP(Fe) TCPP(Fe) Cu2+ Surface attachment [87]
Insulin MIL-100 1,3,5-benzene tricarboxylic acid Fe3+ PS encapsulation [88]
Myoglobin MOF-74 2,5-dioxido terephthalate Zn2+, Mg2+ PS entrapment [89]
Tyrosinase PCN-333 TATB Al3+ PS entrapment [90]
Cytochrome c Tb-meso MOF Triazine-1,3,5-tribenzoic acid Tb3+ PS entrapment [91]
Microperoxidase-
11 Tb-meso MOF Triazine-1,3,5-tribenzoic acid Tb3+ PS entrapment [92]

Glucose oxidase ZIF-8 2-methyl imidazolate Zn2+ OPS [93]
Horseradish
peroxidase ZIF-8 2-methyl imidazolate Zn2+ OPS [94]

Hemoglobin,
Glucose oxidase ZIF-8 2-methyl imidazolate Zn2+ Biomimetic

mineralization [95]

Melittin ZIF-8 2-methyl imidazolate Zn2+ OPS [96]
Catalase ZIF-90 Imidazole-2-carboxaldehyde Zn2+ OPS [97]
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Table 2. Cont.

Therapeutic Drug MOFs Organic Linker Metal Ion Drug Encapsulation
Method Ref.

5. Antibodies and antigens
αCD47 Hf-DBP 5,15-di(p-benzoato) porphyrin Hf4+ Surface attachment [98]
H-IgG, ZIF-90 Imidazole-2-carboxaldehyde Zn2+ OPS [99]
G-IgG ZIF-90 Imidazole-2-carboxaldehyde Zn2+ OPS [99]

Nivolumab ZIF-8 2-methyl imidazolate Zn2+ Biomimetic
mineralization [95]

Ovalbumin ZIF-8 2-methyl imidazolate Zn2+ One-pot synthesis [100]
anti-EpCAM MIL-100 BTC Fe3+ Surface attachment [101]
Ovalbumin UiO-AM BDC, 2-amino-BDC Zr4+ Surface attachment [102]
Ovalbumin Al-MOF BDC, 2-amino-BDC Al3+ OPS [103]

6. Nucleotides and Nucleic Acids
siRNA MIL-101 BDC Fe3+ Covalent-linkage [104]
Terminal
phosphate
modified
oligo-nucleotides

UiO-66 BDC Zr4+ Covalent linkage [105]

Plasmid DNA ZIF-8 2-methyl imidazolate Zn2+ OPS [106]

7. Carbohydrates
Heparin,
Hyaluronic acid MAF-7 2-methyl imidazolate Zn2+ Biomimetic

mineralization [107]

Meglumine,
Carboxylate
dextran

ZIF-8 2-methyl imidazolate Zn2+ OPS [108]

3.3. Post-Synthesis Technique

In the absence of functional groups, the structurally unmodified form of an MOF may
restrict its usefulness. Toward this aim, post-synthetic modification (PSM) is performed to
increase the functional groups attached to MOFs (Figure 5) [109,110], thereby extending
their potential spectrum of applications. Briefly, PSM is a systematic approach to surface
functionalization that is used to introduce functional groups into MOFs [111,112]. If suitable
functional groups are installed, PSM has the potential to enhance the chemical and physical
characteristics of materials. This alteration also serves to govern the overall utilization
(colloidal stability or self-assembly under varying conditions) and its interactions with
its surroundings, such as a target-specific accumulation [110]. Surface functionalization
has many additional benefits, including (i) preventing nanoparticle aggregation; (ii) phase
transfer, transferring nanoparticles from one solvent to another solvent (e.g., organic solvent
to water); (iii) allowing nanomaterials to associate with particular biomolecules of attention,
such as nucleic acid, in delivery, therapeutic use, and biological networks for imaging; and
(iv) modification using fluorescent dyes for functionality [113].

3.4. In Situ Synthesis Technique

Given their host–guest characteristics and ease of chemical synthesis modification, one
of the most important and potentially useful applications of MOFs is the delivery of drugs.
The inorganic segment of MOFs regulates medication release, while the organic segment of
MOFs can be customized to encapsulate a variety of pharmaceuticals. Even though these
substances have demonstrated an adequate drug loading capacity and controllable drug
distribution behavior, few studies on drug delivery in MOFs have been established up
until this point. A nanoscale MOF was recently used for effective medication loading and
delivery [114].
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4. Applications of MOF Nanomaterials in Targeting Cancer Therapy
4.1. Active Targeted Cancer Therapy by MOF Nanomaterials

Using an active targeting method, nanoparticles (NPs) can increase the intracellular
concentration of medications in malignant cells while minimizing damage in healthy cells.
Bioscience-enhanced NPs are actively being developed for targeted drug administration,
biomarkers for cancer using bimolecular profiling, and in vivo tumor imaging. The patient
will need to take fewer doses more frequently, the drug will have a more consistent impact,
there will be fewer side effects, and the levels of the drug in the blood will fluctuate less.
These are all benefits of the active targeted release system. Active targeting entails adding
various ligands to the medication or DDS, including vitamins, peptides, antibodies, sugars,
and biological proteins. These ligands interact with cell receptors to form complexes that
induce the drug to assemble within the target cells [115–117].

A methodical approach to creating an MOF that is two-photon active is through a click
reaction of PCN-58-Ps. Hyaluronic acid is additionally added to PCN-58-Ps by coordination
to give it cancer-cell-specific targeting characteristics. The improved composite of PCN-
58-Ps-HA consequently demonstrates the strong activity of two-photon (up activation by
a laser with a 910 nm wavelength) and light-activated ROS of 1O2 and O2

•− production
capabilities (Figure 6a,b). Future clinical applications of deep-tissue cancer imaging using
two-photon PDT that is activated by NIR light and treatment have a large amount of
potential due to the interaction of these two crucial variables inside the framework of
PCN-58-Ps-HA [118].
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Figure 6. (a) Schematic illustration displaying the PDT guided by two-photon fluorescence imaging,
the target cancer cell, and the light-induced ROS creation; (b) mechanisms of ROS created by PCN-58-
Ps-HA by light irradiation of two-photon; (c) drug delivery systems using functionalized Zr-based
NMFOs (NH2-UiO-66) for the targeted therapy of hepatocellular cancer are represented systematically.
Reproduced with permission from references [118,119].

Glycyrrhetinic acid (GA), lactobionic acid (LA), dual ligands of GA and LA, and
folic acid (FA) were designed and built as effective multifunctional DDSs for combating
hepatocellular carcinoma (HCC). Doxorubicin was loaded into the Zr (IV)-based NMOF
(NH2-UiO-66) nanoscale. It was established that pure NH2-UiO-66 was safe when used
with HSF cells based on biocompatibility experiments; however, DOX-loaded NMOF was
discovered to be more harmful to HepG2 cells by flow cytometry (Figure 6c). The created
dual-ligated NMOF demonstrated a pH change in response to the DOX release [119].



Pharmaceutics 2023, 15, 931 13 of 30

4.2. Passive Targeted Cancer Therapy by MOF Nanomaterials

To achieve screening and therapeutic uses in cancer nanobiotechnology in vivo, nanopar-
ticles must be transported to cancer locations. To achieve this, two broad strategies have
been employed: passive targeting and active targeting (Figure 7) [120–122]. Passive targeting
exploits the biological characteristics of tumors to enable nanocarrier accumulation in tumors
via an improved permeability and retention (EPR) [123]. For the accumulation of NPs in
tumors, passive targeting relies on aberrant gap junctions (100–600 nm) in the endothelium
of tumor blood arteries. MOFs can typically be adequately manipulated at the nanoscale for
passive targeting. Park and colleagues explored the HeLa human cervical tumor cell absorp-
tion of a porphyrinic MOF (PCN-224) by altering the particle size to boost the cytotoxicity
and internalization via passive targeting [124]. They found evidence that MOFs improve the
photodynamic performance. The cytotoxicity of photosensitizers is minimal when MOFs are
not included. The use of TCPP@PCN-24 in photodynamic therapy was found to be most
successful when the particle size was 90 nm, whereas the use of this combination was found
to be least effective when the particle size was 190 nm. Due to its superior retention impact
in the tumor area, Duan also showed that particles of size 60 nm AZIF-8 have an anti-tumor
effect superior to those of other sizes [125].

Pharmaceutics 2023, 15, x FOR PEER REVIEW 12 of 30 
 

 

manipulated at the nanoscale for passive targeting. Park and colleagues explored the 
HeLa human cervical tumor cell absorption of a porphyrinic MOF (PCN-224) by altering 
the particle size to boost the cytotoxicity and internalization via passive targeting [124]. 
They found evidence that MOFs improve the photodynamic performance. The 
cytotoxicity of photosensitizers is minimal when MOFs are not included. The use of 
TCPP@PCN-24 in photodynamic therapy was found to be most successful when the 
particle size was 90 nm, whereas the use of this combination was found to be least effective 
when the particle size was 190 nm. Due to its superior retention impact in the tumor area, 
Duan also showed that particles of size 60 nm AZIF-8 have an anti-tumor effect superior 
to those of other sizes [125]. 

 
Figure 7. Cancer treatment involves passive and active targeting of nanoparticles. Extravasation of 
nanomaterials through enhanced permeability (EPR effect) of the tumor vasculature enables passive 
tumor targeting. By functionalizing nanomaterials aimed specifically at ligands that improve cell-
specific identification and adherence, active tumor targeting (left inset) is possible. Reproduced with 
permission from [122]. Copyright 2018, Springer Nature. 

4.3. Physicochemical Targeting Cancer Therapy by MOF Nanomaterials 
4.3.1. Light-Responsive Targeted Cancer Therapy by MOF Nanomaterials 

Recent advances in light-mediated nanomedicines, particularly their minimally 
invasive abilities and great spatiotemporal accuracy, have made them attractive methods 
for precisely controlling the therapeutic activation and imaging probes both in vivo and 
in vitro (Figure 8) [126,127], particularly the light-activated MOF-based therapeutic 
system, which not only offers imaging-guided or combination therapies but also improves 
the laser penetration depth and targeting [128,129]. 

Figure 7. Cancer treatment involves passive and active targeting of nanoparticles. Extravasation of
nanomaterials through enhanced permeability (EPR effect) of the tumor vasculature enables passive
tumor targeting. By functionalizing nanomaterials aimed specifically at ligands that improve cell-
specific identification and adherence, active tumor targeting (left inset) is possible. Reproduced with
permission from [122]. Copyright 2018, Springer Nature.

4.3. Physicochemical Targeting Cancer Therapy by MOF Nanomaterials
4.3.1. Light-Responsive Targeted Cancer Therapy by MOF Nanomaterials

Recent advances in light-mediated nanomedicines, particularly their minimally in-
vasive abilities and great spatiotemporal accuracy, have made them attractive methods
for precisely controlling the therapeutic activation and imaging probes both in vivo and
in vitro (Figure 8) [126,127], particularly the light-activated MOF-based therapeutic system,
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which not only offers imaging-guided or combination therapies but also improves the laser
penetration depth and targeting [128,129].
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Figure 8. (a) A diagram of the core–shell Au@ZIF-8/DOX synthesis process for in vivo chemo-
photothermal cancer treatment; (b) intravenous injections of Au@ZIF-8 or PBS solution followed
by in vivo infrared thermal imaging of MCF-7 tumor-bearing mice following activation with a
1 W/cm2 808 nm laser for 10 min; (c) a characteristic image of tumors removed from mice treated
in each group; (d) the nanostructure is made up of a cancerous cells membrane layer and a metal–
organic framework core coated in MnO2 nanosheets for MRI and fluorescence dual-mode imaging,
homologous targeting, and photodynamic therapy for the diagnosis and treatment of cancer cells.
Reproduced with permission from references [127,130].

A biodegradable and biocompatible MOF was created for effective drug loading and
controlled release by developing Au (gold nanorods) @ZIF-8 (crystalline zeolitic imidazolate
framework-8). A significant drug loading efficiency of roughly 37% was achieved by the
Au@ZIF-8 while loading doxorubicin. The ZIF-8 layer was swiftly destroyed by NIR
light or a mildly acidic environment, which led to an on-demand medication release at
the tumor location. More significantly, because of the synergistic effects of photothermal
treatments and chemotherapy, highly efficient cancer treatment was accomplished in both
in vitro cell experiments and in vivo tumor-generating naked mice experiments under the
irradiation of a near-infrared laser. The in vivo study also demonstrated Au@ZIF-8’s good
biocompatibility (Figure 8) [130].

The nanoparticle is made up of a cancer cell membrane shell and a metal–organic
framework core coated in MnO2 nanosheets (CM-MMNPs). The H2O2 and H+ responsive-
ness of the MnO2 layer allows it to generate O2, enhancing the generation of O2-mediated
singlet oxygen (1O2) for photodynamic therapy (PDT). Additionally, the resultant Mn2+

is a superior MRI contrast material. The CM-MMNPs are given cellular endocytosis that
occurs with strong stability and integrity and a dependable homologous cell-targeting
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capability by the addition of membrane proteins and cell membranes. This multifunctional
nanoparticle offers a new paradigm for targeted therapy, diagnosis, and treatment, and can
treat cancer cells’ hypoxia with PDT [127].

4.3.2. pH-Responsive Targeted Cancer Therapy by MOF Nanomaterials

Chemodynamic therapy (CDT), a new therapeutic, is described as the generation of cy-
totoxic •OH at tumor locations via a Fenton or Fenton-like reaction [131,132]. Because CDT
relies on the Fenton-type process, which primarily catalyzes endogenous hydrogen perox-
ide (H2O2) to produce •OH, the low H2O2 level in solid tumors will limit its usefulness.
Therefore, combining GOx-induced fasting therapy with CDT is a brilliant move that has
the potential to greatly boost synergistic therapeutic effects. A pH-responsive nanoplatform
was developed by encapsulating GOx and natural hemoglobin (HB) together in ZIF-8 via co-
precipitation to combine CDT and starvation therapy effectively [133,134]. Another study
revealed the creation of a biodegradable mesoporous Fe (III) polycarboxylate MOF exhibit-
ing the pH-sensitive and reversible aggregating ability to specifically target the pulmonary
for drug administration in order to efficiently suppress lung cancers (Figure 9) [135]. Using
a lung metastasis model, the nanoparticles were randomly aggregated in the capillaries
and subsequently disaggregated after 24 h, allowing the encapsulated medication to be
released. The pH-responsive property might not just facilitate the launching of medications
in the appropriate location within tumor cells but may also be used to synthesize MOFs
that disintegrate at a specific pH, resulting in rapid drug release [136].
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reversible aggregating activity was created. Within twenty-four hours, the nanoparticles were enabled
to autonomously aggregate at the pulmonary capillaries and then disaggregate again. Reproduced
with permission [135]. Copyright 2021, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

4.3.3. Magnetic-Field-Responsive Targeted Cancer Therapy by MOF Nanomaterials

A hybrid magnetic nanocomposite with a well-controlled size distribution, typically
100 nm, is produced by combining MIL-88B-NH2 MOF-structured Fe3O4 magnetic NPs
using tailored synthetic media, including F127 copolymer as a stabilizing agent and acetic
acid as a modifying agent. The nano MOF has also been used as a nanocarrier for controlled
medication release on demand and effective drug delivery. Carmustine and Mertansine,
two glioblastoma medications, were perfectly inserted into the MOF structure’s pores to
reduce their potent internal harmful effects, which restrict their clinical use. Moreover,
localized heating was caused as a result of the magnetic local minimum included in the MOF
NPs when a modified magnetic field was practiced on the magnetic nanocomposites loaded
with DM1 to accomplish controlled drug release. To verify the therapeutic effectiveness
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of the DDS on U251 glioblastoma cells, in vitro cytotoxicity experiments were performed
(Figure 10) [137].
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NPs with MIL-88B-NH2 structures, and these nanoparticles were used to deliver drugs using an
alternating magnetic field and localized heating effect; (b) a preassembled Fe2Mn(3-O) cluster was
used to create an FeMn-based ferromagnetic MOF that controlled drug release by dual stimulation,
ferromagnetic nature, and low toxicity. Reproduced with permission from references [137,138].

An Fe2Mn(3-O) cluster was used to create an FeMn-based ferromagnetic MOF. FeMn-
MIL-88B acquired its ferromagnetic properties with the addition of Mn. As a model drug,
5-Fluoruracil (5-FU) was entrapped in MOFs, and its regulated release that was responsive
to both pH and H2S stimuli was achieved. In tumor microenvironment (TME) simula-
tion media, FeMn-MIL-88B revealed an impressive capacity for loading 5-FU (43.8 wt%)
and the quick release of the drug. Additionally, the carrier’s cytotoxicity profile against
embryonic kidney cells of humans indicates no negative effects (100 g/mL). The low tox-
icity values (LD50; Mn = 1.5 g/kg, Fe = 30 g/kg, and terephthalic acid = 5 g/kg) of the
MOF’s basic components can be attributed to the less hazardous effect on the cell viability
(Figure 10) [138].

4.3.4. Redox-Responsive and Targeted Cancer Therapy by MOF Nanomaterials

The abnormal physiological properties of cancerous tissue are reflected in the presence
of distinct cellular microenvironments, such as reducing, acidic, and enzyme environ-
ments [139]. With significant reducing capacities, the reduction states and oxidation of
nicotinamide-adenine dinucleotide phosphate (NADPH) and glutathione (GSH) allowed
them to primarily manage the reducing environment of cancer cells [140]. In a reducing
environment, GSH that has a concentration greater than that of NADPH plays a crucial
function in microenvironment regulation. GSH fragments and forms disulfide (S-S) links
to regulate the cellular reducing environment. The intracellular tumor GSH concentra-
tion was higher than the extracellular tumor GSH concentration. Tumor tissues had four
times greater GSH concentration than normal tissues. To take advantage of these features,
numerous nanoscale drug delivery devices for monitoring the reducing environments
of cancerous tissue and triggering drug release by disulfide bond breakdown in GSH-
responsive nanomaterials have been constructed (Figure 11) [139,141]. Disulfide bonds
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have several important applications in MOF fashion, including the architecture of ligands
and the alteration of surfaces [142–144]. Zhao et al. described the fabrication of Mn-S-S,
a glutathione-responsive MOF system, using Mn2+ and dithiodiglycolic acid as ligands,
thus inserting the S-S link into the MOF ligand [143]. The disulfide bond was cleaved in
the existence of glutathione, which allowed for the medication (DOX) to be successfully
released from its encapsulation. In addition, the Mn2+ in Mn-SS@MOF showed an im-
proved T1 contrast in the medical diagnostic of magnetic resonance imaging (MRI). In
addition, Liu et al. designed an MOF that is both redox-sensitive and tumor targeting by
attaching folic acid and functional S-S anhydride to the organic linkages of UiO-66-NH2
MOFs [145]. Drugs in MOFs are released in response to redox stimuli, and this is achieved
by the overexpression of GSH in tumor cells, which causes an assault on the thiolate moiety
and cleaves the S-S bonds.
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4.3.5. Thermosensitive MOFs for Targeted Cancer Therapy

An MOF contains organic linkers that are synthesized utilizing NbO-type Zn2+, which
contains two structurally identical tetracarboxylate ligands with pyrazine or pyridine
moieties. The trivalent europium ion (Eu3+) and the pyridinium hemicyanine dye 4-
p-(dimethylamino)styryl]-1-methylpyridinium (DSM), both of which have cationic red-
emitting units, were embedded in various composites, and their potential as ratiomet-
ric temperature probes was assessed. These dual-emitting composites’ temperature-
responsive luminescence was examined, along with their characteristic features of tempera-
ture resolution, relative sensitivity, spectral repeatability, and luminous color change. The
Eu3+@ZnPZDDI and Eu3+@ZJU-56 exhibit good sensor temperature ranges and high rela-
tive sensitivities, indicating that the composites can be extensively designed by integrating
the guest and host units (Figure 12) [146].

By post-synthetic modifying, a copolymer comprising N-isopropyl acrylamide and
acrylic acid was utilized to cover the MOF. The additional molecules can be released in an
“on-off” fashion thanks to the polymer’s quickness as well as the transition from a reversible
coil to a globule, which is pH- and temperature-responsive. When the polymer assumes
a coil shape at low temperatures (25 ◦C) or a high pH of 6.86, the additional molecules
are quickly freed from the MOF. The release of the attached molecules is blocked when
the polymer takes on the shape of a globule with a pH of 4.01 and/or warm temperatures
of over 40 ◦C. Even once the release has begun, it can be stopped by adding external
stimulation (Figure 12) [147].
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utilizing UiO-66-P (NIPAM-AA); (c) procaine amide’s sequential release and halt exhibited by UiO-
66-P/NIPAM-AA in water are time-dependent and affected by pH. Reproduced with permission
from references [146,147].

4.4. MOF-Based Bionic Immune for Targeted Cancer Therapy

The immune system is a sophisticated biological architecture crucial for recognizing
and removing invading invaders, destroying abnormal cells, and preventing the develop-
ment of tumors [148–150]. Therefore, immune cell therapy presents significant opportuni-
ties for treating diseases such as cancer, autoimmune diseases, inflammation, and infections.
There are many different kinds of immune cells, each of which performs a specific function
and has the potential to be used as a live treatment for a variety of disorders [151]. To
optimize pharmacokinetics and degradation, a bionic nanoplatform can deliver drugs to
the immune system (Figure 13). These techniques have strengthened drug bioavailability
by providing extra protection and targeting, encouraging the enhancement and evolution
of bionic solutions [152–154]. In expanding the variety of medications that can be loaded,
Gong et al. came up with the innovative idea of developing a hybrid coating made up
of macrophage and tumor-cell membranes. This coating combined the characteristics of
both kinds of cells [155]. These cells targeted particular homogeneousness and metastasis,
and also aggregated in inflammatory areas. Thus, this combination offers promise for
nanobionic architecture. However, the bionic system of cancer cell membranes needs to be
improved and made more open to innovation.
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4.5. MOF-Based Nanotherapeutics as Gene Delivery for Targeted Cancer Therapy

The genetic advancements cleared the door for the introduction of genetic engineer-
ing, and, since 1980, gene therapy has become an increasingly prominent topic in cancer
research. The three primary categories of gene therapy approaches are immunomodulatory,
corrective, and cytoreductive [156]. Immunomodulation is the process of boosting the
body’s immune barrier to effectively identify and destroy cancer cells. An important goal
of corrective gene therapy is to restore the normal function of a gene whose mutation con-
tributes to the development of cancer. Suicide gene therapy, in which a gene is inserted into
cells that codes for an enzyme that converts a harmless prodrug into its toxic metabolite, is
also being studied extensively as a means of treating cancer. It has been hypothesized that
nucleic acids incorporated into MOF nanocarriers might be stabilized against degradation
and taken up by cells more quickly. In addition, the steric and electrostatic impediment to
aggregation could be enhanced by the surface configuration of an MOF with nucleic acids,
resulting in an improved colloidal consistency. MOFs have found widespread application in
the administration of drugs, the transport of siRNA, and the encapsulation of DNA/RNA,
proteins, and polysaccharides, as well as in prokaryotic and eukaryotic organisms [157,158].
As an example, ICG@ZIF-8 was used by Liu et al. as a means of electrostatically adsorbing
siRNA (ICG@ZIF-8@siRNA) to promote siRNA diffusion under laser control [159].

4.6. MOF Multi-Targeted Response for Cancer Therapy

With self-amplified releasing and improved penetrating, a pH and ROS dual-sensitive
biodegradable MOF nanoreactor-based nanomaterial was created to provide GOx and 1-MT
together for combination oxidation/starvation treatment and IDO-blockade malignancies
immunotherapy (Figure 14a–c). The comprehensive in vivo and in vitro results validated
PCP-Mn-DTA@GOx@1-MT nanomaterial to not only proficiently strengthen immune sys-
tem activation with a decreased sensitivity by GOx-activated starvation/oxidation interven-
tion and IDO-blockade immunotherapeutic, but to also strategically overwhelm biobarriers
and increase the distribution efficiency through the mildly acidic tumor cells [160–162].

As a novel method for cancer therapeutic applications, a nanoscale MOF platform
will merge magnetic resonance imaging, photothermal therapy, and spatiotemporally pro-
grammable NO delivery. The MOFs are generated as a proof of concept using biodegradable
Mn-porphyrin and Zr4+ ions as linking ligands. Mn-porphyrin gives the NMOF a robust
T1-weighted MR contrast performance and a significant photothermal transformation for
effective PTT through the incorporation of paramagnetic Mn ions into porphyrin rings.
For heat-sensitive NO production, S-Nitrosothiol (SNO) is attached to the NMOF surfaces.
Additionally, a single NIR (near-infrared) light triggers both the PTT and regulated NO re-
lease concurrently for their effective synergistic therapy in a single step. The tumor-bearing
mice’s MR images reveal that NMOF-SNO exhibits effective tumor accumulation after
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intravenous injection. Tumors in mice given NMOF-SNO injections are fully suppressed
when applied by NIR laser, demonstrating the effectiveness of the drug [163].
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Figure 14. (a) Synthetic approach and graphical depiction of PCP-Mn-DTA@GOx@1-MT nanomaterial
for combination starvation, immunotherapy, and oxidation; (b) hemoglobin (HB) and oxygenated
hemoglobin (HBO2) photoacoustic recordings; (c) melanin signals in mouse tumor sites following
intratumoral injecting with PCP-Mn-DTA@GOx@1-MT and GOx for multiple time frames; (d) a plan
for creating MOF-SNO nanocomposite, releasing nitric oxide when exposed to NIR light, and using
photothermal therapy; (e) pictures of the tumors in each group following treatment. Reproduced
with permission from references [160,163].

5. Challenge of MOF Nanomaterials in Cancer Treatment
5.1. Toxicity and Biocompatibility

For application in biomedical and pharmaceutical applications, MOFs must present
toxicologically compatible characteristics. The cytotoxicity of several representative MOFs
was evaluated on zebrafish embryos. At 120 h after fertilization, it was discovered that
the viability of embryos that had been subjected to Co and Mg-MOF-74, UiO-66 and 67,
and MIL-100 and 101 was not significantly different from those without MOFs (the control
group), even at a concentration as high as 200 µM. On the contrary, the embryo viability
rate (EV) was significantly reduced by ZIF-7 and 8 and HKUST-1. At a concentration of
200 µM, ZIF-7 was marginally harmful, with EV= 79.2%, whereas ZIF-8 was more toxic,
with EV = 33.3%. NanoHKUST-1 was extremely hazardous even at a concentration of
20 µM (EV = 0%). It was highlighted that the absorption of solubilized metal ions had
a crucial role in determining the toxicity potential of MOFs [164]. Rats were used in the
experiment to evaluate both the toxicity of trimesic acid and iron trimesic MIL-100 (Fe).
MIL-100 and trimesic acid were administered intravenously at doses of approximately
220 mg/kg and 78 mg/kg, respectively, and the study revealed that weight growth and the
animal behavior of treated rats were completely normal when matched with the group that
served as the control. This led to the conclusion that the concerned ingredient is suitable
for drug delivery [165].

The biocompatibility testing of MOF building blocks is necessary before MOFs can
be used in biomedical applications because some forms may have a harmful influence
due to the degradation of MOFs within cells [166]. Additionally, it is also essential to
examine the biocompatibility of MOFs with different types of cells since the outcomes
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may differ. In vitro analyses were conducted to study the biocompatibility of three distinct
metal systems of MIL-100 MOFs (Fe, Al, and Cr). Even at high doses, they did not produce
in vitro cell toxicity in the liver (HepG2) and lung (Calu-3 and A549) cell lines. Only the
toxicity of MIL-100(Fe) was seen in the Hep3B cell line [167]. However, the other research,
observing the biocompatibility of ZIF-8 concerning six distinct cell cultures, each one
representing a different part of the human body (skin, breast, blood, kidneys, bones, and
connective tissues), showed that ZIF-8 at concentrations higher than the threshold level of
30 µg/mL exhibited cytotoxicity [168]. This might be related to the influence of liberated
Zn2+ on the generation of mitochondrial reactive oxygen species. Despite the tremendous
amount of research conducted in the field of nanomedicine and enhanced nanocarrier
therapeutics directly attacking cancer, the process of bringing medication from the research
lab to the industry is frequently intermittent and highly slow. Most of the issues can be
traced back to the lack of rigorous monitoring of the safety and effectiveness-by-design
strategy for nanomedicines.

5.2. Drug Release before Reaching the Target Cancer

The performance and safety of MOFs are significantly impacted by their chemical
stability. The stability of MOFs is affected by several variables, including pH, temperature,
humidity, solvents, metal ions, and biological molecules. Different stability levels may
be needed depending on the application. For instance, MOFs must be able to survive
the stomach’s acidity and the intestine’s alkalinity when given orally. MOFs must be
resistant to metal ions and tear fluid for ocular administration [169]. The stability of MOFs
for drug delivery has been improved through the development of several methods: the
addition of protective layers such as polymers; the selection of more stable metal nodes
or organic ligands; and the addition of functional groups or linkers to MOF structures or
compositions [170]. The porosity, loading capacity, release kinetics, biocompatibility, and
toxicity of MOFs may also be impacted by these tactics. Hence, for each application, a
careful balance between stability and functionality needs to be struck [171].

Because of their modifiable surface, tunable size, high active ingredient loading, good
biocompatibility, and, most importantly, their capacity to be selectively distributed in tumor
cells via an increased retention and permeability, MOFs made up of bridging ligands and
metal attachment sites were investigated as a new innovative system for the enhanced
treatment and diagnosis of cancer. However, the following points need to be studied more
deeply. However, controlling drug release during cancer cell targeting is quite important.

The body typically experiences severe adverse responses as a result of chemotherapy
medications. Therefore, it is critical to increase the targeted drug delivery system’s stability
to prevent both medication leakage outside of the tumor and significant detrimental effects
on the body. Cell-membrane-coated biomimetic approaches are already common; however,
they have more expensive material needs. The development of an MOF-based DDS suited
for clinical applications, from synthesis to in vivo process monitoring, and quality control
still needs to be carried out [116].

5.3. In Vivo Studies and Applications

Despite the unparalleled benefits, more focus needs to be placed on in vivo investi-
gations of MOFs, such as the toxicity and biocompatibility. More information is required
to fully comprehend the metabolic and mechanical operations of MOFs in the body since
they degrade. Numerous research studies on the cytotoxicity of MOFs in vitro have been
recently published. However, cell models do not reveal the same biocompatibility of MOFs
in the body, despite the good biosafety at a given dose. The majority of research on the toxi-
city and metabolism of MOFs-based DDS have been limited to their anti-tumor activities in
experimental animals.

The Fe3O4@C@PMOF metabolism in nude mice was studied in breast cancer nude
mice. Fluorescent in vivo imaging with the nanoparticles is possible. The presence of
fluorescent dots in the lymph and liver nodes proved that NPs could take part in both
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lymphatic and blood circulation. The tumor region then expanded to form the tissue with
the maximum fluorescence intensity. The NPs were expelled from the body through stool
after 8 days. The mice who received the injections acted normally, and their weight did not
significantly drop. The primary organs of mice did not exhibit any pathological changes
eight days after injection, and there was good biocompatibility [172].

The toxicity of a porphyrinic MOF nanosystem to the major organs, blood, and tissues
of mice was assessed as part of a study on in vivo biosafety. All indications were in the usual
range, proving the nanosystem’s high level of safety [173,174]. Iron (III) MOFs’ in vivo
toxicity was examined using markers such as serum, enzymes, and histology, all of which
were consistent with low toxic effects. The liver and spleen isolate the nanomembrane,
which is further biodegraded into carboxylic acids and iron and subsequently eliminated
directly in the feces or urine while still preserving iron homeostasis. This demonstrates that
iron (III) carboxylate MOF NPs are non-toxic and biodegradable [175].

5.4. Quality Control from Laboratory Scale to Industrial Scale

Research on MOF’s biomedical efficiency is still being conducted in small-scale pro-
duction and laboratory testing at this time. When MOFs are produced in large quantities, it
can be challenging to control their quality, which can cause fluctuations in the pore size
and material size. Additionally impacted are the drug loading capacity and release rate.
Therefore, one of the most difficult issues is the construction of stable and manageable
MOFs (Table 3).

Table 3. Advantages and disadvantages of MOFs nanomaterial and example for cancer treatment.

Synthesis
Method MOF Advantages Shortcomings Ref.

Electrochemical Zr-MOF
Zn-MOF

High loading capacity and controlled release of
anticancer drugs.
Ability to accommodate imaging agents for
theranostic applications.
Selective targeting and enhanced permeability to
tumor sites.

Potential toxicity and biocompatibility
issues.
Complex synthesis and functionalization
procedures.
Limited clinical trials and regulatory
approvals.

[21,176]

Solvothermal
Zn-MOF-74
MIL-100 (Fe)
UiO-66

High purity and crystallinity.
Control over size and shape.
Ability to incorporate functional groups.

Long reaction time
Discontinuity of the process.
Inhomogeneity of heating.

[21,177,178]

Ultrasonic Cu-MOF
Fe-MOF

High surface area and porosity.
Flexible and tunable chemical structure and
architecture.
Ability to capture and degrade.
Ability to carry anticancer drugs and imaging agents.

Low mechanical and thermal stability.
Difficult to recycle and reuse.
Potential toxicity to living environments.
Possible immune reaction or poor
biocompatibility in the human body.

[179,180]

Diffusion Zr-MOF
MIL-100

Large surface area and porosity that can
accommodate various drugs and imaging agents.
High chemical stability and biocompatibility.
Easily functionalized and modified with different
ligands and nanoparticles.
Enable controlled drug release by external stimuli
such as pH, temperature, and light.
Enhance the therapeutic efficacy and reduce the side
effects of drugs by targeting specific cancer cells.

Low solubility and dispersibility in
biological fluids.
Induce immune responses or toxicity in
some cases.
Limited loading capacity or release rate
for some drugs.
Suffer from aggregation or degradation
in vivo.

[11,181]

6. Future Perspectives of MOF Nanomaterials in Cancer Treatment

Although the biofunctionalization of MOFs has been the subject of substantial inves-
tigation in the area of nanomedicine basic research, its use in clinical therapy still has a
long way to go. MOFs with good biocompatibility and non-toxicity or low toxicity re-
quire optimizing the preparation and synthesis of the nanomaterials such that they can
circulate for an extended period and are efficiently eliminated via metabolism. An ad-
ditional experiment is necessary to fully understand the biodegradability and stability
of MOFs in the body. There is a requirement for reinforcement in light of the effects of
MOFs nanomedicines on the physiological activities of organisms. Going forward, build-
ing dynamics on MOF-responsive biomaterials and responding to specific physiological
stimuli by the targeted and timed release of bioactive molecules have significant research
significance and application potential.
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7. Conclusions

Biomolecule–metal–organic framework composites have advanced substantially over
the past decade to become novel platforms for an extensive variety of solutions in the
identification and treatment of cancer. Here, we reviewed recent improvements in the
fabrication of biomolecule–MOF composites and their application in cancer treatment.
Integrating biomolecules into MOFs has been accomplished using a wide range of different
approaches, including surface adhesion, covalent bonding, pore encapsulation, in situ
synthesis, and bioengineering MOFs, and has led to significant progress in the development
of targeted therapy for cancer. Due to the advent of MOFs, it is now possible to overcome the
limitations of conventional cancer therapeutic approaches, such as vulnerability, inadequate
absorption, low aqueous solubility, low selectivity, high lethality, and multidrug resistance.
Although MOFs are gaining importance for cancer prevention and treatment, each inclusion
approach has advantages and disadvantages. Their promise as medication carriers in cancer
treatment is still in its infancy. In fact, a significant number of MOFs are now going through
clinical or preclinical testing in preparation for being approved and made accessible for
purchase. Global research on using nanostructured frameworks for the goal of generating
patient-specific drug delivery systems will assist the synthesis and development of MOF–
drug composites for real-world applications. With the assistance of future development
strategies of MOF-based materials for cancer therapy, it will be possible to reduce the cost
of cancer treatment while simultaneously increasing the patient survival and quality of life.
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