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Abstract: Antimicrobial resistance related to the misuse of antibiotics is a well-known current topic.
Their excessive use in several fields has led to enormous selective pressure on pathogenic and
commensal bacteria, driving the evolution of antimicrobial resistance genes with severe impacts on
human health. Among all the possible strategies, a viable one could be the development of medical
features that employ essential oils (EOs), complex natural mixtures extracted from different plant
organs, rich in organic compounds showing, among others, antiseptic properties. In this work, green
extracted essential oil of Thymus vulgaris was included in cyclic oligosaccharides cyclodextrins (CD)
and prepared in the form of tablets. This essential oil has been shown to have a strong transversal
efficacy both as an antifungal and as an antibacterial agent. Its inclusion allows its effective use
because an extension of the exposure time to the active compounds is obtained and, therefore, a more
marked efficacy, especially against biofilm-producing microorganisms such as P. aeruginosa and S.
aureus, was registered. The efficacy of the tablet against candidiasis opens their possible use as a
chewable tablet against oral candidiasis and as a vaginal tablet against vaginal candidiasis. Moreover,
the registered wide efficacy is even more positive since the proposed approach can be defined as
effective, safe, and green. In fact, the natural mixture of the essential oil is produced by the steam
current method; therefore, the manufacturer employs substances that are not harmful, with very low
production and management costs.

Keywords: red thyme; essential oil; antibacterial assay; antifungal assay; Candida albicans; C. glabrata;
Staphylococcus aureus; Pseudomonas aeruginosa; Klebsiella pneumoniae

1. Introduction

Antimicrobial resistance linked to the misuse of antibiotics in the modern era is a
well-known topic. Their excessive use in several fields, such as intensive farming and
medicine, has led to enormous selective pressures on pathogenic and commensal bacteria,
driving the evolution of antimicrobial resistance genes [1–3] with severe impacts on human
health. In fact, bacteria are able to overcome antibiotic effects thanks to the expression
of antibiotic-resistance genes employing an efflux pump or enzymatic deactivation of
antibiotic molecules and chemical modification of their cellular targets [4]. The direct
consequence is that the therapeutical efficacy of antibiotic drugs [3] has decreased over
time, and it is set to get even worse. It is assumed that by 2050, 10 million victims per year
will occur due to drug-resistant pathogens.

In this context, a list of six human pathogenic bacteria, typically associated with nosoco-
mial infections, was identified with the acronym ESKAPE: Enterococcus faecium, Staphylococcus
aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter
species [5,6]. These bacteria are identified as ESKAPE since they are able to “escape” the antibiotic
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activity. For example, according to the document of the European Centre for Disease Prevention
and Control (ECDC) (https://www.ecdc.europa.eu/sites/default/files/documents/surveillance-
antimicrobial-resistance-Europe-2019.pdf (accessed on 9 November 2021)), in 2019, more than
33% of the K. pneumoniae isolates showed resistance to at least one of the antibacterial
groups under surveillance and often were characterized by a combined resistance to dif-
ferent antimicrobial groups. In several European countries, K. pneumonia and P. aeruginosa
showed percentages of carbapenem resistance above 10%, reaching over 35% in Italy. More-
over, methicillin-resistant S. aureus (i.e., MRSA) is also considered an important pathogen
in European countries, showing combined resistance to other antimicrobial groups. It
is necessary to develop new drugs for these species, as proposed by the World Health
Organization (WHO) [7].

Moreover, yeasts, such as Candida spp., cause infections localized in the mouth, skin,
and vagina that can also become systemic. These infections lead to more than 3.6 million
healthcare visits each year in the U.S., and the estimated direct medical costs amount to
USD 3 billion [8]. Most candidiasis are caused by Candida albicans, a yeast with lower
antibiotic resistance features; other species, such as C. glabrata and C. auris, are frequently
more resistant and deadly [9]. Azoles and polyenes are the two groups of drugs specially
used against yeasts, but now these molecules are not always successful due to the resistance
developed by the Candida sp. strains.

It, therefore, becomes crucial to implement alternative strategies both in terms of
scientific biomedical research and the socio-political and economical perspectives. Among
all the possible strategies, a viable one could be the development of medical features
that employ natural products [10] since they overcome many limitations of synthetic
pharmaceutics (i.e., the environmental impact of chemical syntheses and the high economic
costs of processes) [10,11]. If properly investigated, they could be competitive regarding
clinical performance.

Among natural products, essential oils (EOs) extracted from different plant organs,
such as leaves, flowers, fruits, seeds, roots, buds, stems, and wood [12] represent a good
resource as they are complex natural mixtures of organic compounds showing, among
others, antiseptic properties. In fact, their inhibitory activities against fungal and bacterial
pathogens are reported in the literature [13–17], especially for EOs with high concentrations
of phenols. While the properties of EOs extracted from medicinal plants (such as oregano
and winter savory) are well documented in the literature [15,17], those of thyme have
been little investigated. On the contrary, the antimicrobial effect of red thyme has been
scarcely reported in the literature [18–20]. The natural EOs’ antiseptic performances against
bacterial and fungal strains mimic those of antibiotics applied in clinical routine [15,17,21].
Unfortunately, despite these effective bioactive properties, their oily nature, especially high
volatility, and low aqueous solubility pose serious limitations both in their employment as
medical devices and in their potential therapeutic application [22].

The use of inert solid carriers such as cyclic oligosaccharides cyclodextrins (CD),
able to incorporate hydrophobic substances into their cavity, can be a valid approach to
overcome these limitations [22,23]. The application of CD and their derivatives in phar-
maceutical preparations has a positive impact since they are non-toxic elements with
high biocompatibility and solubility in water [24,25]. A successful application of such an
approach was the inclusion of oregano and winter savory EOs of in beta-cyclodextrins
(b-CD), the most used natural cyclodextrins, obtaining a transfer of the EO liquid compo-
nents in a solid form [21].

This work has two main purposes. First, to go deeper into the chemical composition
and the biological activity against bacteria and yeasts of red thyme (Thymus vulgaris) EO and
second, to expand the study of the inclusion approach in solid carriers through an extensive
characterization of the obtained product in order to broaden the applicability of host–guest
inclusion complexes. In particular, red thyme EO was employed as an antimicrobial agent
and beta-cyclodextrins (b-CD) as a solid carrier.

https://www.ecdc.europa.eu/sites/default/files/documents/surveillance-antimicrobial-resistance-Europe-2019.pdf
https://www.ecdc.europa.eu/sites/default/files/documents/surveillance-antimicrobial-resistance-Europe-2019.pdf
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2. Materials and Methods
2.1. Thymus vulgaris Oil Embedding in b-CD Procedure

The T. vulgaris oil under investigation was purchased by Flora s.r.l. (Pisa, Italy).
The EO-b-CD complex synthesis was obtained using an ultrasound (Argolab DU-32,

Arezzo, Italy) with direct processing of 2 h at room temperature at the higher 5 power level.
The weight ratio was 500 mg of EO mixed with 750 mg of b-CD. After the treatment, the
solid-state materials were washed with 2 mL of deionized water (to remove unreacted
cyclodextrins) and dried under a ventilated hood for 48 h.

The obtained solid-state composite powder was obtained by embedding, in an agate
mortar, 20 mg of the EOs-b-CD powder in polyvinylpyrrolidone (PVP) (45 mg). Then,
a 1 cm diameter round tablet (5 mm thickness) was prepared by pressing for 1 min at
10 Ton/cm2 the composite powder obtaining A proto-pharmaceutical formulation.

2.2. FT-IR Analyses

Solid-state Fourier-Transformed (FT) InfraRed (IR) spectra were collected in dry KBr
1-cm pressed (10 tons per square centimeter) discs with a Thermo-Fisher Scientific Nicolet
iS50 spectrophotometer (1–3 mg of embedded solid-state samples; for the liquid EO, the
surface of a blank KBr disc was impregnated by 1 drop of the essential oil), at 2 cm−1

spectral resolution of the collected interferogram (100 averaged scansions). This parameter
was observed to be appropriate for detecting unambiguously the host–guest complexation
peak shifts correlated to the modified intermolecular forces, typically occurring in the
1–15 cm−1 energy intervals [21,26,27].

2.3. Thermo-Gravimetrical Analyses (TGA)

Thermo-Gravimetrical profiles of Red Thymus essential oil, b-CD, and reacted EO-
b-CD inclusion complexes were obtained with a Setaram labSys Evo instrumentation in
alumina crucibles under air (25 mL/min) at 5 ◦C/min heating ramp, in the 25–700 ◦C
thermal interval. In detail, for the EOs, 56.9 mg were analyzed, while for b-CD and
EO-b-CD, complex weighted samples were 38.4 and 44.7 mg, respectively.

2.4. Gas Chromatography-Mass Spectroscopy (GC-MS)

The chromatographic characterization was performed using the following:

- A Gas Chromatograph Finnigan Trace GC-Ultra;
- A mass spectrometer Trace DSQ;
- A capillary column Phenomenex ZB-WAX (30 m length, 0.25 mm I.D., 0.25 µm film

thickness);
- Inlet temperature of 250 ◦C;
- Splitless mode;
- He as the carrier gas (1.0 mL/min);
- Initial oven temperature of 45 ◦C and the in ramps reported in Table 1;
- Mass spectrometer transfer line temperature of 290 ◦C;
- MS signal acquired in El+ mode;
- Ionization energy 70.0 eV −;
- Source temperature of 290 ◦C;
- Solvent delay 6.50 min;
- Mass spectrometric detection 35–500 m/z (full-scan).

The thyme extracts were dissolved in CH2CL2 (50.00 mg/1.00 mL) filtered (PTFE
membrane, 0.20 µm) and analyzed after a 1:5 dilution in CH2CL2.
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Table 1. Oven temperature program for EO.

Rate (◦C/min) Temperature (◦C) Hold Time (min)
INITIAL 45.0 2.0
RAMP 1 3.0 100.0 0.1
RAMP 2 5.0 135.0 0.1
RAMP 3 8.0 250.0 12.0

2.5. Calibration Procedure

The most intense compounds identified both in EO and in the included samples
EO-b-CD were quantified.

The considered analytes were eucalyptol (Cas n◦ 470-82-6), linalool (Cas n◦ 78-70-6),
(−)-trans-caryophyllene (Cas n◦ 87-44-5), thymol (Cas n◦ 89-83-8), and carvacrol (Cas n◦

499-75-2). All the standards were purchased from Sigma Aldrich (Milan, Italy).
Calibration curves were calculated by the injection of a multi-analyte standard at

different concentrations, namely 1.00, 5.00, and 10.00 mg/L, and analyzed using the same
method employed for the real sample analyses.

The inclusion percentages were calculated as the ratio between the amount per gram
obtained in the EO characterization and the amount obtained in the EO-b-CD sample.

2.6. Antifungal and Antibacterial Activity Assays

The antifungal and antibacterial activity of T. vulgaris essential oil and the tablet was
assessed with agar disc diffusion following the methods previously published [14–17].

2.6.1. Antifungal Assay

Candida albicans ATCC 14,053 and C. glabrata ATCC 15,126 reference strains were
employed to assess the antifungal activity. Clotrimazole (10 µg) antifungal effects of EO
and EO-b-CD were evaluated as reported in the Clinical and Laboratory Standards Institute
Standard M44-A. Mueller–Hinton Agar (VWR chemicals, Milan, Italy) added with 2%
Glucose and 0.5 µg/mL Methylene Blue Dye (GMB) was used as medium. Briefly, strain
suspensions (106 CFU ml−1) were swabbed on the medium surface, filter paper discs
(diameter of 6 mm) were placed on the surface and added with 10 µL of the EO. The
positive control was clotrimazole (10 µg). Negative controls were 1,4 Dioxane (Sigma-
Aldrich, St. Louis, MO, USA; 10 µL) and organic linseed oil (10 µL) discs. Triplicate
experiments were performed by incubating plates at 37 ◦C for 48 h. The sensitivity test
for the extract is considered positive if the inhibition halo is higher than that induced by
clotrimazole (positive control ≥ 100%).

2.6.2. Antibacterial Assay

The reference strains Staphylococcus aureus NCTC6571, Pseudomonas aeruginosa ATCC27853,
and Klebsiella pneumoniae ATCC13883 were used to test the antibacterial activity of EO.
Vancomycin, imipenem, and meropenem effects were evaluated according to the EUCAST
Disk Diffusion Method for Antimicrobial Susceptibility v. 7.0. Extract biological activity
was assessed with the diffusion method. Suspensions of the different strains (0.5 McFarland)
were swabbed on Mueller–Hinton agar medium. Filter paper discs were placed on the
medium surface and added with 10 µL of EO suspension. 1,4 Dioxane (10 µL) and organic
linseed oil (10 µL) discs were used as negative controls, while vancomycin, meropenem,
and imipenem were considered as the positive control. Plates were incubated at 37 ◦C
for 24 h. All experiments were performed in triplicate. The halos were measured in mm
using calipers. The extract was evaluated as active when the measured halo was equal to
or higher than the positive control (positive control ≥ 100%).
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2.6.3. Statistical Analysis

The disk diffusion results were statistically analyzed using one-way ANOVA followed
by Tukey’s HSD multiple comparisons of means using R (v. 3.5.1) [21]. Data are presented
as boxplots. Differences were considered significant for p-values < 0.05.

3. Results and Discussion

The EO-b-CD complex was synthesized using ultrasound with direct processing at
ambient temperature employing a molar ratio slightly higher than 1:1 (in favor of the b-CD).
Consequently, the molar ratio in the reactive mixture is slightly higher than 1:1 (in favor
of the b-CD), potentially also allowing the formation of b-CD:EO 2:1 complexes involving
the higher terpenes, however, minor constituents. Moreover, this massive ratio already in
the past [21] with other oils has guaranteed an effective and extensive encapsulation of
the substantial totality of the oil, considering that in EOs, the bulk of the formulation is
monoterpenes and sesquiterpenes.

3.1. Essential Oil and Complex Characterisation

All precursors and yielded complexes were exhaustively characterized by Fourier-
Transformed Infrared (FT-IR) spectrophotometry, thermogravimetric analysis (TGA), and
GC-MS.

FT-IR spectra are reported in Figure 1. The EO pattern is peculiar for a complex
mixture of organic terpenoid and volatile compounds, with a plethora of sharp peaks in
the diagnostic regions related to aliphatic (and a few aromatic) normal vibrational modes
of isoprenoid architectures. Oxygenated moieties can be observed in the strong, broad
bands at 3480 and 1630 cm−1, the latter indented at higher wavenumbers as a consequence
of different carbonyl C=O modes (i.e., aldehydes, ketones, and carboxylic groups). The
b-CD IR profile is reported, typically consistent with a carbohydrate assembly (large, broad
signals mainly due to the oxygenated polar functions). For the EO-b-CD complex, the
FT-IR spectrum nearly resembles a combination of the two former profiles, although it is
not superimposable. In general, broader bands, accompanied by both moderate frequency
shifts (higher than the applied 2 cm−1 spectral resolution in measurements) and a change
in relative intensities, can be observed. These comprehensive vibrational phenomena
have been observed in yielded inclusion complexes in cyclodextrins for the modified
intermolecular environment after host–guest supramolecular recognition [21,26,27].
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In detail, the two sharp peaks at 1165 and 1153 cm−1 of EO coalesce in one broad at
1155 cm−1; similarly, for the two EO 1061 and 1053 cm−1 peaks, in one broader EO-b-CD
at 1057 cm−1; the EO peak 1506 cm−1 enhances its relative intensity in the b-CD complex;
the weak EO peak at 1260 cm−1 hampers further its relative intensity in the complex;
the spectral shoulder at 1214 cm−1 of the EO band at 1232 cm−1 is not observed in the
broad peak profile of the corresponding b-CD complex signal; the EO peak at 1129 cm−1

is red-shifted at 1124 cm−1 in the related complex, whilst the EO signal at 1114 is broader
and hampered at 1110 cm−1 in the complex; 1089 cm−1 EO peak red-shifts at 1082 in the
complex, and its spectral shoulder originally at 1082 cm−1 is lost in the latter; the strong
EO band at 970 cm−1 (in the diagnostic aromatic out-of-plane bending gamma-C-H modes)
is not observed in the related complex; similarly for 920 and 839 cm−1 EO peaks (minor or
difficult inclusion of aromatic hosts inside the lipophilic pocket of b-CD may well account
for this spectral effect); finally, the scarce aromatic C-H stretching signals above 3000 cm−1

cannot be observed in the EO-b-CD-complex; in the bCD TR EO complex (albeit merged
with the imposing O-H IR absorption of the host cage). Notably, these latter comprehensive
hampering spectral features of the strongly lipophilic groups in obtained complexes can
be associated with supramolecular recognition phenomena, in which molecular guests
penetrate the cyclodextrin lipophilic pocket by specular insertion of their most lipophilic
moieties, surrounding and folding their vibrational activity.

In Figure 2, the FT-IR profile of the EO-b-CD complex embedded in the PVP excipient
matrix is reported. A few diagnostic pics of the complexed OE emerge in the large, broad
signal of the PVP pattern.
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Figure 2. FT-IR profile of the EO-b-CD complex embedded in the PVP excipient matrix.

In Figure 3, the diagnostic TGA profiles of the essential oil (A), b-CD (B), and EO-b-CD
complex (C) are reported. As expected, the essential oil is highly volatile, and a complete
weight loss is observed just above 200 ◦C. The cyclodextrin pattern after carbohydrate
dehydration results is stable up to 300 ◦C (highlighted by the red ellipse), as previously
reported by Abarca et al. [28] and de Santana et al. [29]. The b-CD-EO complex (C) is not a
mere superposition of the two parent profiles. Actually, in the 100–300 ◦C stability zone
range of cyclodextrin, a progressive weight loss can be observed due to the more stable
inclusion of EO components in the CD lipophylic pocket.
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These results support the previous FT-IR findings in assessing the host–guest actual
complexation (highlighted by the red ellipse).

The essential oil (EO) and the EO-b-CD complex were also characterized with gas
chromatographic analysis coupled with mass spectrometry (GC-MS).

Table 2 reports the list of molecules identified with GC-MS and the characteristics of
each compound in terms of chemical classes with respect to the class to which they belong
and the information present in the literature on biocidal capabilities. The volatile profile of
T. vulgaris is very rich and complex, as more than seventy compounds have been identified.
Among these, a very large number have been reported to have biological activity against
bacteria and fungi.

Table 2. Compounds identified by GC-MS method.

CAS n◦ RT [a] Compound Chemical Class EO EO + bCD Info

17699-16-0 7.29 (E)-Sabinene
hydrate Monoterpene X - -

138-86-3 7.85 Limonene Monoterpene X -

Antimicrobial activities [30].
Anti-proliferative activities [31].

Antioxidant and
anti-inflammatory effects [32].

470-82-6 8.07 Eucalyptol Monoterpenoid X X Anti-inflammatory, antioxidant
activities [33].

99-87-6 10.13 p-Cymene Monoterpene X X

Antimicrobial, anticancer,
antioxidant, anti-inflammatory,
antinociceptive, and anxiolytic

properties [34,35].
586-62-9 10.54 Terpinolene Monoterpene X X Sedative activity [36].

na 17.10 Epoxyterpinolene Monoterpene X -

78-70-6 20.63 Linalool Monoterpenoid
alcohol X X Anti-tumor, anti-cardiotoxicity

activity [37].

586-82-3 21.40 α-Terpineol Monoterpenoid
alcohol X -

Antioxidant, antiinflammatory,
anticonvulsant, antimicrobial,

anticarcinogenic properties [38].
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Table 2. Cont.

CAS n◦ RT [a] Compound Chemical Class EO EO + bCD Info

87-44-5 21.81 Caryophyllene Bicyclic
sesquiterpene X X

CB2 receptor agonist [39] and
shows anti-cancer, antioxidant,

and antimicrobial properties [40].

10198-23-9 21.96 β-Terpinyl
acetate Monoterpenoid X

138-87-4 23.23 β-Terpineol Monoterpenoid
alcohol X X Plant metabolite, volatile oil

component, and fragrance [41].

124-76-5 24.22 Isoborneol
Bicyclic

monoterpenoid
alcohol

X X Antioxidant and antiviral
properties [42,43].

673-84-7 24.62 Allo-Ocimene Monoterpene X X

Activate defense genes and
induceresistance against Botrytis

cinerea in Arabidopsis
thaliana [44].

4584-65-0 24.70 5-Methyltropolone Cyclic ketone X X

80-26-2 25.03 α-Terpinyl
acetate

Monoterpenoid
ester X X Potential antioxidant and

anti-amyloidogenic activities [45].

10482-56-1 25.15 (−)-α-Terpineol Monoterpenoid
alcohol X X Aroma compound [46].

586-81-2 25.26 γ-Terpineol Monoterpenoid
alcohol X X

527-60-6 25.81 Mesitol Aromatic alcohol X -
Probe compound shown to react

mainly with organic matter
(3DOM) [47,48].

3304-28-7 26.05 5-Methyl-2-(1-methylethylidene)-
4-hexenal Aldehyde X -

523-47-7 26.64 β-Cadinene Cyclotherpene X -
106-22-9 27.10 (R)-(+)-Citronellol Monoterpene X X Anti-cancer activity [49].

106-25-2 27.88 Nerol Terpene alcohol X X

Triggers mitochondrial
dysfunction and induces

apoptosis via elevation of Ca2+

and ROS. Antifungal activity
[50,51].

55282-11-6 28.59 11-(1-Ethylpropyl)heneicosane Alkane 0 X

106-24-1 28.95 cis-Geraniol Monoterpenoid
alcohol X X

Anti-tumor, anti-inflammatory,
antioxidative, and antimicrobial
activities, and hepatoprotective,

cardioprotective, and
neuroprotective effects [52].

6994-90-7 29.90 (R-1,T-4)-4,8-Epoxy-p-menthan-1-
ol Alcohol X X

na 30.46 9-Oxabicyclo[3.3.1]non-6-en-3-
ylmethanol Alcohol X -

1139-30-6 30.96 Caryophyllene oxide Bicyclic
sesquiterpene X X Analgesic and anti-inflammatory

activity [53].

55090-55-6 31.31 Camphene hydrate-9-D Bicyclic
monoterpene X -

na 31.48 Diepicedrene-1-oxide Epoxide X -

122-03-2 31.59 Cuminaldehyde Aromatic aldehyde X -

A natural aldehyde with
inhibitory effects on

alpha-synuclein fibrillation and
cytotoxicity. Cuminaldehyde

shows anti-cancer activity [54].
135760-25-7 31.72 Ascaridole epoxide Epoxide X -

19888-34-7 32.08 Humulene epoxide ii Sesquiterpene
epoxide X -

87096-70-6 32.17 5-(1-Hydroxy-1-methylethyl)-2-
methyl-2-cyclohexene-1,4-diol Diol X -

23665-67-0 32.30
(2Z)-6,6-Dimethoxy-3-methyl-2-

hexenyl
acetate

Alkene X X

544-76-3 33.32 Hexadecane Alkane X X

1940-19-8 32.93 1-Vinylcyclohexanol Tertiary allylic
alcohol X -

na 34.06 3-Methyl-6-hydroxybenzo[C]-
dihydrofuran Isocoumarans X -

89-83-8 34.28 Thymol Monoterpene X X
Antioxidant, anti-inflammatory,

antibacterial, and antifungal
effects [55].

768-91-2 34.48 1-Methyladamantane Polycyclic alkane X -
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Table 2. Cont.

CAS n◦ RT [a] Compound Chemical Class EO EO + bCD Info

499-75-2 34.62 Carvacrol Monoterpenoid X X Antioxidant, anti-inflammatory,
and anti-cancer properties [56].

5875-45-6 35.80 2,5-di-tert-butyl-phenol Phenol X X Antioxidant [57].

55044-09-2 36.07
1-Ethyl-3-(2-[2-(3-

ethylphenyl)ethoxy]ethyl)
benzene

Substituted benzene X -

646-31-1 36.92 Tetracosane Straight-chain
alkane - X

629-99-2 37.98 Pentacosane Straight-chain
alkane - X Anti-cancer activities [58].

na 38.04 2,5-Dimethylbicyclo[3.3.0]oct-6-
en-8-one Ketone X -

1928-30-9 38.52 2-Methyltricosane Straight-chain
alkane - X

na 38.68 6-Ethyl-5-hydroxy-2,3,7-
trimethoxynaphthoquinone Naphthoquinone - X

630-01-3 38.99 Hexacosane Straight-chain
alkane - X

59906-94-4 39.09 1-Methoxy-2-
mesitylacenapthylene

Polycyclic aromatic
ether X X

71697-85-3 39.17 5-(1-Bromo-1-methylethyl)-2-
methyl-2-cyclohexen-1-one Ketone X X

105314-84-9 39.26 3,9-Dimethoxy-11A-
methylpterocarpan

Isoflavonoids
derivative X -

na 39.40 1,4-Di(tert-butylethynyl)benzene Substituted benzene X -

54725-16-5 39.56 7a-Methyl-1,4,5,6,7,7a-hexahydro-
2H-inden-2-one Ketone X -

82849-65-8 39.62 5,6-C(13)(2)-1,5,9-Decatriyne Decatriyne - X

544-63-8 39.83 Myristic acid
Saturated

long-chain fatty
acid

- X

630-04-6 39.96 Hentriacontane Long chain alkane - X
93796-74-8 40.20 Ascomatic acid Dibenzofuran X -

1166-72-9 40.62 9-Thiocyanato-androst-4-en-11-ol-
3,17-dione Ketone X -

na 40.80 2-Hydroperoxy-2-(2-oxiranyl)-
adamantane Hydroperoxide X -

630-06-8 40.90 Hexatriacontane Long chain alkane - X

na 40.93
1-Oxa-2-oxo-3,8-dihydroxy-6-

methyl-acenaphthylo[4,5-B](1-oxa-
4,45-trimethyl-cyclopentane)

Naphthofuran X -

na 41.20

2-(3-Acetoxy-4,4,14-
trimethylandrost-8-en-17-yl)-

propanoic
acid

Steroid hormone
derivative - X Phytochemical compound [59].

502-52-3 41.26 1,3-Dipalmitoyl glycerol Glycerol - X

74199-04-5 41.53
4,5,6-Trimethoxy-3′ ,4′-

methylenedioxybiphenyl-2-
carbaldehyde

Carbaldehyde X -

57-10-3 41.79 Hexadecanoic acid Long-chain
saturated fatty acid - X Anti-cancer activity [60].

66205-02-5 42.70 1-n-Hexyl-7-n-butyl-1,2,3,4-
tetrahydronaphthalene

Naphthalene
derivative X -

124821-10-9 42.75

(+−)-cis-3,4,6,9-Tetrahydro-7,10-
dimethoxy-1,3,8-trimethyl-1H-

naphtho
[2,3-C]pyran-6,9-dione[(+−)-
ventilagone-7,10-dimethyl

ether]

Isochromanequinone X -

80893-74-9 42.88
2-Methoxy-6-(3′ ,5′-

dimethoxyphenyl)methylbenzoic
acid

Aromatic
compound X -

7683-64-9 43.35 Squalene Triterpene - X Antioxidant, potential anti-cancer
activities [61].

57-11-4 43.99 Stearic acid Long-chain fatty
acid - X Reduction of visceral adipose

tissue in athymic nude mice [62].

107971-21-1 44.96
11-

Methylbenzo[3,4]phenanthro[1,2-
B]thiophene

Thiophene
derivative X -
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Table 2. Cont.

CAS n◦ RT [a] Compound Chemical Class EO EO + bCD Info

71013-35-9 45.64 1,8-Dimethoxy-3-methyl-
anthraquinone Anthraquinone X X

33585-88-5 46.96 5,19-Cyclo-5β-androst-6-
ene-3,17-dione

Steroid hormone
derivative X -

1166-72-9 47.10 9-Thiocyanato-androst-4-
en-11-ol-3,17-dione

Steroid hormone
derivative X -

na 47.29 6,7-Dimethoxy-4H-
cyclopenta[DEF]chrysene

Polycyclic aromatic
hydrocarbon

derivative
X X

302-79-4 47.82 Retinoic acid Retinoid X X

Metabolite of vitamin A. Plays important
roles in cell growth, differentiation, and
organogenesis. Natural agonist of RAR

nuclear receptors [63–66].

105314-88-3 48.51

2,9-Dimethoxy-4B,9B-
dihydro-4B,9B-

dimethylbenzofuro[3.2-
B]benzofuran

Aromatic
heterocycle X -

[a] GC retention time.

3.2. Evaluation of the Inclusion

With the aim of completing the characterization of the produced materials, including
a quantitative evaluation, the five most intense compounds, namely eucalyptol, linalool,
(-)-trans-caryophyllene, thymol, and carvacrol identified both in EO and in the included
samples EO-b-CD were quantified. Calibration curves were obtained with the injection of a
multi-analytes mixture at different concentrations analyzed using the same GC-MS method
employed for the real sample analyses. Using the ordinary least square (OLS) method,
calibration curves were obtained with an R2 always greater than 0.9995. The model was
validated by performing an ANOVA procedure. The F value deriving from the regression
(FREG) was greater than the tabled F value (Fcrit), pointing out that the response linearity
was verified. Moreover, the performed F tests evidence that there is no lack of fit.

In Table 3, the data obtained in the calibration step and the amount of the analyte
registered in the EO, in the included sample (EO-bCD), and in the tablet are shown.

Table 3. Quantitative GC analysis.

Compound RT [a]

(min)
Calibration

Curve
R2

Value
EO

(mg/g)
EO-bCD
(mg/g)

Incorporation
(%)

Active Molecules in
Tablet (mg/Tablet)

Eucalyptol 8.06 y = 66.402x − 38.233 0.9999 57.1 0.022 1.7 0.44
Linalool 20.62 y = 72.665x − 47.210 0.9996 71.4 0.018 3.9 0.36

trans-Caryophyllene 21.80 y = 96.497x − 64.083 0.9994 60.0 0.011 7.0 0.22
Thymol 34.26 y = 96.760x − 60.319 0.9995 60.0 0.161 6.4 3.22

Carvacrol 34.62 y = 115.694x − 74.025 0.9994 80.0 0.042 6.6 0.84

[a] = GC retention time.

The amounts obtained were then compared, taking into account the amount employed
in the synthesis to obtain the incorporation percentage. Such values are useful to explain
the data of the antifungal and antibacterial assays reported in the following.

3.3. Antifungal and Antibacterial Assays

Figures 4 and 5 show the antifungal activity assay results of red thyme oil and tablet.
In particular, the essential oil was the most effective in inhibiting the growth of both C.
albicans and C. glabrata. In fact, the essential oil produces an inhibition halo more than
double that of the positive control, while the tablet produces an inhibition halo similar to
the essential oil as regards C. albicans, while for C. glabrata, the activity is comparable to
that of the positive control (the antifungal drug), even if not statistically significant.
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Figure 4. Growth inhibition halo (disk diffusion test) induced by T. vulgaris on C. albicans and C. 
glabrata. (A) C. albicans negative control (1,4-dioxane); (B) C. albicans positive control (clotrimazole); 
(C) T. vulgaris essential oil against C. albicans; (D) Tablet against C. albicans; (E) C. glabrata negative 
control (1,4-dioxane); (F) C. glabrata positive control (clotrimazole); (G) T. vulgaris essential oil 
against C. glabrata; (H) Tablet against C. glabrata. 

Figure 4. Growth inhibition halo (disk diffusion test) induced by T. vulgaris on C. albicans and
C. glabrata. (A) C. albicans negative control (1,4-dioxane); (B) C. albicans positive control (clotrimazole);
(C) T. vulgaris essential oil against C. albicans; (D) Tablet against C. albicans; (E) C. glabrata negative
control (1,4-dioxane); (F) C. glabrata positive control (clotrimazole); (G) T. vulgaris essential oil against
C. glabrata; (H) Tablet against C. glabrata.

Figures 6 and 7 show the results of the antibacterial test against S. aureus, P. aeruginosa,
and K. pneumoniae. In this case, the essential oil showed comparable activity to the positive
control for all three bacteria, as well as the tablet. This is a very interesting result, especially
considering the efficacy demonstrated by the red thyme EO and the produced tablet
against P. aeruginosa, which is a very difficult bacteria and normally not sensitive to natural
compounds. Moreover, the tablet showed a complete inhibition halo suggesting that the
prolonged time of exposure, due to the necessary dissolution time of the tablet, increased
the efficacy of the active compounds. In the literature, red thyme essential oil is reported to
be applied in food conservation and not for clinical purposes [19,20].
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C. glabrata (B). C- = negative control (1,4-dioxane); C+ = positive control (clotrimazole); Oil = T. 
vulgaris essential oil; Tablet was produced adding T. vulgaris essential oil with cyclodextrin-powder. 
Different letters in the figure indicate significant differences between treatments at p < 0.05. 

Figures 6 and 7 show the results of the antibacterial test against S. aureus, P. 
aeruginosa, and K. pneumoniae. In this case, the essential oil showed comparable activity to 
the positive control for all three bacteria, as well as the tablet. This is a very interesting 
result, especially considering the efficacy demonstrated by the red thyme EO and the 
produced tablet against P. aeruginosa, which is a very difficult bacteria and normally not 
sensitive to natural compounds. Moreover, the tablet showed a complete inhibition halo 
suggesting that the prolonged time of exposure, due to the necessary dissolution time of 
the tablet, increased the efficacy of the active compounds. In the literature, red thyme 
essential oil is reported to be applied in food conservation and not for clinical purposes 
[19,20]. 

Figure 5. Boxplots of the growth inhibition halo (mm) induced by T. vulgaris on
C. albicans (A) and C. glabrata (B). C- = negative control (1,4-dioxane); C+ = positive control (clotri-
mazole); Oil = T. vulgaris essential oil; Tablet was produced adding T. vulgaris essential oil with
cyclodextrin-powder. Different letters in the figure indicate significant differences between treatments
at p < 0.05.

As stated above, the most present compounds in the tablet are monoterpenes and
sesquiterpenes, eucalyptol, linalool, thymol, carvacrol, and caryophyllene. Some of them
are already reported in the literature to be active against bacteria, others not. For example,
thymol, as a critical component of T. vulgaris L. essential oil, is reported to combat P.
aeruginosa by intercalating DNA and inactivating biofilm [67] via the inhibition of quorum
sensing [68]. Carvacrol is reported to be active against biofilm formation of P. aeruginosa and
S. aureus [69]; carvacrol reduced the amount of biofilm by up to 91–100% for P. aeruginosa
and up to 95–100% for S. aureus [70]. Thymol is also reported to be effective against Candida
species [71].
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aeruginosa, and K. pneumoniae. (A) S. aureus negative control (1,4-dioxane); (B) S. aureus positive 
control (gentamycin); (C) T. vulgaris essential oil against S. aureus; (D) Tablet against S. aureus; (E) 
P. aeruginosa negative control (1,4-dioxane); (F) P. aeruginosa positive control (meropenem); (G) T. 
vulgaris essential oil against P. aeruginosa; (H) Tablet against P. aeruginosa; (I) K. pneumoniae negative 
control (1,4-dioxane); (J) K. pneumoniae positive control (meropenem); (K) T. vulgaris essential oil 
against K. pneumoniae; (L) Tablet against K. pneumoniae. 

Figure 6. Growth inhibition halo (disk diffusion test) induced by T. vulgaris on S. aureus, P. aerugi-
nosa, and K. pneumoniae. (A) S. aureus negative control (1,4-dioxane); (B) S. aureus positive control
(gentamycin); (C) T. vulgaris essential oil against S. aureus; (D) Tablet against S. aureus; (E) P. aerug-
inosa negative control (1,4-dioxane); (F) P. aeruginosa positive control (meropenem); (G) T. vulgaris
essential oil against P. aeruginosa; (H) Tablet against P. aeruginosa; (I) K. pneumoniae negative control
(1,4-dioxane); (J) K. pneumoniae positive control (meropenem); (K) T. vulgaris essential oil against
K. pneumoniae; (L) Tablet against K. pneumoniae.
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aeruginosa (B), and K. pneumoniae (C). C− = negative control (1,4-dioxane); C+ = positive control 
(gentamycin, meropenem, meropenem, respectively); Oil = T. vulgaris essential oil; Tablet was 
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figure indicate significant differences between treatments at p < 0.05. 

As stated above, the most present compounds in the tablet are monoterpenes and 
sesquiterpenes, eucalyptol, linalool, thymol, carvacrol, and caryophyllene. Some of them 
are already reported in the literature to be active against bacteria, others not. For example, 
thymol, as a critical component of T. vulgaris L. essential oil, is reported to combat P. 
aeruginosa by intercalating DNA and inactivating biofilm [67] via the inhibition of quorum 
sensing [68]. Carvacrol is reported to be active against biofilm formation of P. aeruginosa 
and S. aureus [69]; carvacrol reduced the amount of biofilm by up to 91–100% for P. 
aeruginosa and up to 95–100% for S. aureus [70]. Thymol is also reported to be effective 
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Figure 7. Boxplots of the growth inhibition halo (mm) induced by T. vulgaris on S. aureus (A),
P. aeruginosa (B), and K. pneumoniae (C). C− = negative control (1,4-dioxane); C+ = positive control
(gentamycin, meropenem, meropenem, respectively); Oil = T. vulgaris essential oil; Tablet was
produced adding Thymus vulgaris essential oil with cyclodextrin-powder. Different letters in the
figure indicate significant differences between treatments at p < 0.05.

4. Conclusions

In conclusion, our work demonstrates the strong transversal efficacy of red thyme
both as an antifungal and antibacterial agent.

The inclusion of the thyme oil in the b-CD appears to be very advantageous since the
tablets produced allow an extension of the exposure time to the active compounds and,
therefore, a more marked efficacy, especially against biofilm-producing microorganisms
such as P. aeruginosa and S. aureus. In addition, pure essential oil often can be irritating if
administered directly on the mucous membranes, while if administered in slow release, it
can give the effects of reducing the diffusion of the pathogenic agent without unwanted
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side effects. The efficacy of the tablet against candidiasis is also very interesting. Such
efficacy opens the possible use of this pharmaceutical product as a chewable tablet against
oral candidiasis and as a vaginal tablet against vaginal candidiasis.

Moreover, the registered wide efficacy is even more positive since obtained using a
very simple production method. In fact, the natural mixture of the essential oil is produced
by the steam current method; therefore, the manufacturer employs substances that are not
harmful and without high production costs, making the proposed approach effective, safe,
and green.
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