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Abstract: Gadoxetate, a magnetic resonance imaging (MRI) contrast agent, is a substrate of organic-
anion-transporting polypeptide 1B1 and multidrug resistance-associated protein 2. Six drugs, with
varying degrees of transporter inhibition, were used to assess gadoxetate dynamic contrast enhanced
MRI biomarkers for transporter inhibition in rats. Prospective prediction of changes in gadoxe-
tate systemic and liver AUC (AUCR), resulting from transporter modulation, were performed by
physiologically-based pharmacokinetic (PBPK) modelling. A tracer-kinetic model was used to es-
timate rate constants for hepatic uptake (khe), and biliary excretion (kbh). The observed median
fold-decreases in gadoxetate liver AUC were 3.8- and 1.5-fold for ciclosporin and rifampicin, respec-
tively. Ketoconazole unexpectedly decreased systemic and liver gadoxetate AUCs; the remaining
drugs investigated (asunaprevir, bosentan, and pioglitazone) caused marginal changes. Ciclosporin
decreased gadoxetate khe and kbh by 3.78 and 0.09 mL/min/mL, while decreases for rifampicin
were 7.20 and 0.07 mL/min/mL, respectively. The relative decrease in khe (e.g., 96% for ciclosporin)
was similar to PBPK-predicted inhibition of uptake (97–98%). PBPK modelling correctly predicted
changes in gadoxetate systemic AUCR, whereas underprediction of decreases in liver AUCs was
evident. The current study illustrates the modelling framework and integration of liver imaging data,
PBPK, and tracer-kinetic models for prospective quantification of hepatic transporter-mediated DDI
in humans.

Keywords: gadoxetate; pharmacokinetics; hepatic transporters; modelling and simulation;
DCE-MRI; OATP1B

1. Introduction

Clinically relevant drug–drug interactions (DDIs) can result in potentiated or reduced
efficacy, that requires drug dose adjustment. In addition, DDIs can potentially increase
or reduce drug toxicity to liver or other tissues, and may arise via alterations in activities
of transport proteins that mediate uptake into hepatocytes and/or biliary excretion of
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drugs. For example, inhibition of the hepatic uptake transporter organic anion transporting
polypeptide 1B1 (OATP1B1), by a co-administered perpetrator drug, will affect hepatic
clearance of many statins and lead to elevated plasma and systemic tissue exposure,
thereby causing myotoxicity [1,2]. Conversely, interaction of perpetrator drugs with hepatic
transporters that mediate biliary excretion, may alter hepatocyte exposure to a victim drug
without causing a measurable effect on systemic plasma exposure (e.g., metformin DDIs
due to organic cation transporter 2 (OCT2) and multidrug and toxin extrusion protein
(MATE)1 and MATE2-K inhibition [3]).

Quantitative translation of in vitro data through in vitro–in vivo extrapolation (IVIVE),
can be undertaken via physiologically-based pharmacokinetic (PBPK) modelling, which
integrates in vitro transporter kinetic/inhibition data with relevant physiological param-
eters [4,5]. PBPK models simulate changes in both systemic and tissue exposure of the
victim drug, that arise because of changes in enzyme and/or transporter activity caused
by the perpetrator drug [6,7]. These methods are used routinely to support regulatory
submissions and drug labelling, and their value has been recognized in DDI and PBPK
regulatory guidance documents [8–10]. However, verification of the accuracy of PBPK sim-
ulations of tissue exposure is challenging, especially for transporter DDIs where changes
in drug exposure may occur within hepatocytes, but not in plasma (or not to the same
extent). In particular, clinical DDI studies are usually unable to detect interactions that arise
via inhibition of hepatobiliary efflux transporters, such as multidrug resistance-associated
protein (MRP)2, due to the lack of a measurable effect on systemic plasma exposure [6].

Hence there is a need for additional methods to quantify effects of test drugs on
transporter function in vivo. One promising approach is dynamic contrast-enhanced mag-
netic resonance imaging (DCE-MRI), using the contrast agent gadoxetate. Since magnetic
resonance imaging (MRI) is tomographic, concentrations of gadoxetate can be simultane-
ously determined in plasma, liver, kidney, bile, and other compartments. Gadoxetate is
administered intravenously (iv) and is eliminated exclusively via renal and biliary excre-
tion. It is a substrate of multiple hepatocyte uptake (OATP1A1, OATP1B1, OATP1B3, and
Na+-taurocholate cotransporting polypeptide (NTCP)) and efflux (MRP2, MRP3) trans-
porters [11–13], and has a high hepatic extraction ratio in rats. Uptake of gadoxetate in
healthy hepatocytes, enhances the regional T1-weighted magnetic resonance (MR) signal.
The opposite is seen in the presence of lesions from liver metastases (non-hepatic origin).
These properties have been exploited in clinical MRI, as gadoxetate is used routinely to
detect and characterize lesions in adults with known or suspected focal liver disease [14].

If MR is monitored dynamically during the uptake and washout of the contrast agent,
then regional gadoxetate pharmacokinetics can be derived, to probe hepatic transporter-
mediated DDI in human. Data from such DCE-MRI experiments are often analyzed using
multi-compartment tracer-kinetic models [6,15–20]. (An indicator is a detectable substance
that is introduced into a physiological system, yielding information about the system
itself. A tracer is a type of indicator chemically identical to a substance of interest but
separately detectable. Gadoxetate is an indicator, but not a tracer. However, it is a common
convention to refer to tracer-kinetic models as models for indicators that are not tracers,
such as gadoxetate [15].) These tracer-kinetic models, unlike PBPK models, do not assess
the mass balance in the whole body. Tracer-kinetic models use the systemic concentration
(e.g., in arterial and/or portal venous blood vessels) as input function to a compartmental
model describing only the organs or tissues of interest (e.g., the liver) [15].
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PBPK models have also been applied to DCE-MRI data, although not as commonly
as tracer-kinetic models [21,22]. We previously reported a PBPK model for gadoxetate in
rats, developed using a combination of bottom-up (i.e., based on IVIVE) and top-down
approaches. The PBPK model captured the blood, spleen, and liver gadoxetate DCE-
MRI profiles of both control and inhibitory phases, following the administration of an
intravenous rifampicin dose of 10 mg/kg bodyweight [23]. With the same DCE-MRI data,
we also developed a compartmental tracer-kinetic model giving the kinetic rate constants
for gadoxetate transport from the extracellular space into hepatocytes (khe), and from
hepatocytes into bile (kbh). The reproducibility of the assay, and the effect of rifampicin
10 mg/kg on khe and kbh, were also assessed [24]. The results of this previous work showed
promising use of gadoxetate as an imaging probe to investigate the effects of perpetrator
drugs on hepatic transporters in rats [23,24].

The aim of the present study was to further evaluate the imaging biomarker gadoxetate,
for investigation of hepatic transporter mediated DDI, using DCE-MRI data. To that end,
two modelling approaches, PBPK and tracer-kinetic models, were investigated, using
gadoxetate–drug interaction data obtained with six test drugs in rats. The drugs were
selected for having variable in vitro potency of OATP1B inhibition and/or drug-labeling
for potential to cause drug-induced liver injury (DILI), namely ciclosporin, rifampicin,
bosentan, ketoconazole, asunaprevir, and pioglitazone. Appropriate doses for all the six
drugs were selected by pharmacokinetic modelling and simulation. The translational
modelling capabilities of the previously developed gadoxetate PBPK model [23], were
assessed by comparing the prospective bottom-up prediction of the hepatic transporters
DDI, with the observed gadoxetate DCE-MRI systemic and liver data in the inhibitory
phases. In parallel, a tracer-kinetic model [24] was evaluated by quantifying the effect of
the six drugs investigated, on gadoxetate hepatic volume transfer constant (Ktrans), and
rate constants khe and kbh.

2. Materials and Methods
2.1. Source of Test Chemicals

All drugs were obtained locally, from the following suppliers: Rifampicin (Eremfat®

300 mg, Riemser Pharma GmbH, Greifswald, Germany), ciclosporin (Sandimmun® 50 mg/mL,
Novartis Pharma GmbH, Nuremberg, Germany), ketoconazole (HRA 200 mg, HRA Pharma
Deutschland GmbH, Wiesbaden, Germany), bosentan (Sigma-Aldrich, St. Louis, MO,
USA), asunaprevir (asunaprevir, MedChemExpress, Monmouth Junction, NJ, USA), and
pioglitazone (pioglitazone, Merck & Co., Inc., Rahway, NJ, USA repository).

2.2. Review of Inhibitory Potency and Model-Based Dose Selection for Drugs

In vitro inhibition constants (Ki) and half maximum inhibitory concentrations (IC50)
of the six drugs for human transporters OATP1B1, OATP1B3, NTCP, and MRP2 and their
rat homologues (rOatp1a4, rOatp1b2, rNtcp, and rMrp2), were collated from literature
sources and in-house measurements.

For all the selected drugs, compartmental pharmacokinetic models were developed to
inform dose selection in the DCE-MRI studies. The one-compartment, two-compartment,
or three-compartment pharmacokinetic models, following intravenous and oral adminis-
tration, were fitted to published pharmacokinetic data for these drugs in rats. The models
assumed linear pharmacokinetics of the six drugs investigated, to allow identification of
the model parameters with the limited available rat pharmacokinetic data. Subsequently,
simulations with the empirical compartmental models were undertaken, to identify doses
that would result in free plasma concentrations in rats, during the timescale of the MRI,
that were within the range of free steady-state plasma concentrations achieved following
oral therapeutic drug dosing in humans. The model equations, sources of pharmacokinetic
data, parameters estimates, and criteria for the dose selection for all the drugs are reported
in the Supplementary Material, Section S1.
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2.3. Animal Handling and In Vivo Study Design

In vivo studies were undertaken at three sites (D, E, G1 + G2) at two different field
strengths, 4.7 T (D, G2) and 7 T (E, G1). Details of the equipment used are given in [25].
Animal procedures were compliant with directive 2010/63/EU or Institutional Animal
Care and Use Committee (IACUC), for studies performed in the European Union or United
States, respectively. Male Wistar rats, approximately 250 g body weight at the time of
ordering, were locally obtained from Charles River Laboratories, allowed to acclimate for one
week prior to study initiation, socially housed in 12 h light/dark cycles, and were provided
standard rat chow and water ad libitum. All studies were performed between April 2018 and
November 2019. Table 1 summarizes the drugs, dose, number of animals, and the time of dosing
prior to the gadoxetate injection for each site. Details of vehicle formulation and preparation of
drugs for intravenous injection are listed in Supplementary Material, Section S2, Table S8. No
formal sample size calculation was performed: group sizes of 4–6 were chosen, consistent
with previous work, balancing reduced animal use with the ability to detect substantial
treatment effects. No blinding or randomization was performed.

Table 1. Summary of gadoxetate imaging studies with six selected drugs in rats.

Drug Dose Number of
Animals

Dose Staggering
Time a (min) Site (Field Strength) b

Rifampicin 2 mg/kg 4 60 G2 (4.7 T)
Asunaprevir 5 mg/kg 6 30 E (7 T)

Bosentan 2 mg/kg 6 60 G1 (7 T)
Bosentan 4–6 mg/kg c 4 c 60 G1 (7 T)

Ciclosporin 5 mg/kg 6 60 G2 (4.7 T)
Ketoconazole 3 mg/kg 6 30 D (4.7 T)
Pioglitazone 0.4 mg/kg 6 30 E (7 T)

a Time delay between dose of drug and administration of gadoxetate, informed by pharmacokinetic analysis and
modelling of plasma concentration-time profiles of drugs investigated (see Supplementary Material, Section S1).
b Sites are aligned with [25]; c higher dose of bosentan was explored but not tolerated well, therefore the study
was discontinued, in accordance with ethics, due to adverse effects.

Drug administration and MRI acquisition were performed on animals anesthetized by
inhalation of isoflurane in an air mixture, approved by each institution’s animal committee,
and maintained using approximately 2% isoflurane in the air mixture. Animals were
monitored for respiratory rate and temperature, and a heating source, to maintain body
temperature, was provided by each site. MRI was acquired in all animals on two separate
days, which were separated by a washout interval of 48 h. On the first occasion, rats
were dosed with vehicle (Table S8) via a tail vein catheter, using a drug-dose equivalent
volume. After a drug-dependent interval (Table 1), rats were given gadoxetate (Primovist®

or Eovist®, Bayer AG, Berlin, Germany), diluted 1:5 in saline and administered at 0.5 mL/kg
(25 µmol/kg) over 30 s via the tail vein. On the second occasion, the procedure was repeated
with a drug.

2.4. Gadoxetate DCE-MRI Data Acquisition and Elaboration

When gadoxetate is co-administered with the vehicle, the contrast agent is rapidly
taken up from blood plasma into liver parenchyma, then is effluxed via bile into the
gastrointestinal tract. The DCE-MRI data enable quantitative analysis of time-dependent
alterations in gadoxetate concentrations in the blood and liver [26]. The imaging setup
and acquisition were identical to that reported previously [24]. The DCE-MRI sequence
was acquired using a T1-weighted spoiled gradient echo sequence [17,27], with contrast
agent administered after five baseline images had been acquired. Retrospective respiratory
gating was employed during DCE-MRI data acquisition. On each occasion, 30 consecutive
DCE-MRI measurements, including the five baseline images, were collected, at a 58 s
temporal resolution, to capture the wash-in and wash-out of gadoxetate from the liver.
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The derivation of DCE-MRI liver profiles employed the software PMI (Platform for
research in Medical Imaging) v3.1 [28] at all the sites. DCE-MRI plasma profiles were also
derived from data acquired from the spleen. Regions of interest (ROI), covering whole liver and
spleen, were selected manually, as shown in Supplementary Material, Figure S10. Area under
the curve (AUC0-t) for the ∆R1-time profiles for plasma and liver were calculated for each
individual profile by using trapezoidal rule, integrating between the time of gadoxetate
administration (t = 0) and the time of the last DCE-MRI measurement, where R1 ≡ T−1

1 .

2.5. PBPK Modelling and Prospective Hepatic Transporters DDI Prediction

A previously developed reduced PBPK model of gadoxetate [23] was used in the
current study. The PBPK model (Figure 1) is composed of seven compartments: blood,
spleen, splanchnic organs, liver interstitial space, hepatocytes, rest of the body (ROB)
vascular, and extravascular space. In the ROB compartment, muscles, fat, bones, and skin,
among others, are represented.
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Figure 1. Structure of the reduced gadoxetate PBPK model. Continuous arrows represent the mass
exchange within the system, while dashed arrows represent gadoxetate elimination. Subscripts co,
rob, spl, splan, h, and r, represent cardiac output, rest of the body, spleen, splanchnic organs, hepatic
and renal, respectively. CL, Q, and PS, represent the clearance processes, the blood flows, and the
permeability surface product, respectively. Reproduced from [23] under CC-BY license.

A permeability-limited liver model [29] was applied to describe the gadoxetate active
uptake into the hepatocytes, as per Equation (1).

Vliv,extr
dcliv,extr

dt = inputsplan + inputart − Qh
cliv,extr

Kliv, extr−b
− CLuptake· cliv,extr − CLpassive(cliv,extr−

fu,liv, cell cliv,cell)

Vliv,cell
dcliv,cell

dt = CLuptake cliv,extr + CLpassive(cliv,extr − fu,liv, cell cliv,cell)− CLbiliary fu,liv,cell cliv,cell

(1)

cliv,extr, cliv,cell [µmol/L] and Vliv,extr, Vliv,int [L] are the gadoxetate concentrations (c)
and volumes (V) of the liver extracellular space and hepatocytes, respectively. Considering
the liver fenestrated capillaries, and that gadoxetate does not distribute into red blood cells,
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Vliv,extr was defined as the sum of liver plasma and interstitial volumes. Qh [L/h] is the sum
of the portal vein and hepatic artery blood flow; CLuptake, CLpassive, and CLbiliary [L/h] are
the active and passive uptake clearances across the hepatocyte sinusoidal cell membrane,
and the excretion clearance from the hepatocytes to the bile, respectively; fu,liv,cell is the
unbound fraction of gadoxetate in the hepatocytes; Kliv, extr−b is the extracellular liver to
blood partition coefficient; inputsplan and inputart [µmol/h] are the portal vein and hepatic
artery inputs to the liver, respectively. The model assumes no enterohepatic recirculation
of gadoxetate following hepatobiliary excretion. Details of the model development, re-
lations between concentrations in PBPK compartments and measured ∆R1, parameters
identification, and performance were described previously [23].

The inhibition of CLuptake and CLbiliary were prospectively predicted according to
Equation (2) [30].

CLtransporter,inh =
CLtransporter

1 + cu,p(t)/IC50
(2)

CLtransporter and CLtransporter,inh are the non-inhibited (baseline) and inhibited trans-
porter intrinsic clearance (either CLuptake or CLbiliary); cu,p(t) is the plasma unbound con-
centration of the perpetrator at a given time t, simulated with the pharmacokinetic models
(Supplementary Material, Section S1); IC50 is the in vitro measure of the potency of the
perpetrator in inhibiting the respective hepatic transporter (rOatp1b2 for active uptake, and
rMrp2 for biliary efflux). IC50 and Ki data were collated from the literature and in-house
measurements. When multiple sources were available, the prospective predictions used
the lowest values of either IC50 or Ki to account for the worst-case scenario. Due to paucity
of inhibition data for some of the drugs investigated for rat transporters, data obtained for
the respective human transporters (OATP1B1 and MRP2) were used as a surrogate where
necessary. The renal excretion clearance of gadoxetate (CLr) was assumed to be unaffected
by the test drugs. The performance of the prospective prediction using the PBPK modelling
was evaluated by comparing the simulated gadoxetate AUC ratios (AUCR) in the plasma
(derived from spleen compartment) and liver with the observed values. The AUCR is
defined as shown in Equation (3).

AUCRτ =
AUCτ,∆R1,treated

AUCτ,∆R1,control
(3)

AUCτ,∆R1,control is the AUC of the gadoxetate ∆R1 in tissue τ when administered alone,
while AUCτ,∆R1,treated is the equivalent when gadoxetate is administered following a given
perpetrator. The AUCs were calculated from the administration of gadoxetate (t = 0 min)
until the end of the experiment (t = 25 min).

When applied to CLbiliary, Equation (2) assumes that the unbound concentration of
drug at the site of inhibition of hepatobiliary efflux transporter on the canalicular, is equal to
the unbound concentration of the drug in plasma (cu,p). Previous reports have shown that
some of the drugs investigated here accumulate in hepatocytes (e.g., rifampicin, ciclosporin).
Therefore, for selected drugs, an alternative inhibition model was explored, taking also
into account their unbound concentration ratio between hepatocyte and plasma (Kpuu)
(Supplementary Material, Section S4).



Pharmaceutics 2023, 15, 896 7 of 25

2.6. Tracer-Kinetic Model and Ktrans, khe, and kbh Calculation

The tracer-kinetic model was developed to enable estimation of rate constants of
hepatobiliary efflux from DCE-MRI profiles in individual animals. In this approach, the
liver was assumed to consist of two compartments, the extracellular space (e) and the
hepatocytes (h). Since water exchanges rapidly between those spaces, the change in
relaxation rate was a weighted average (Equation (4)) [31,32].

∆R1(t) = r1,e·ve·ce(t) + r1,h·vh·ch(t) (4)

The proportionality constant, r1,τ

[
L · mmol−1 · s−1

]
, is the relaxivity of the contrast

agent for the compartment τ (extracellular space, e or hepatocytes, h) at the respective field
strength, while vτ [mL/mL tissue] is the volume fraction of the compartment τ. Previously
measured ex vivo r1,tau values for gadoxetate were used in this work [32], as per [23]. The
underlying assumptions of the PBPK and tracer-kinetic models, relating to physiological
volumes and perfusion, are consistent, despite different parameterizations according to the
purpose of each model. For example, Vliv,extr in the PBPK model is defined as an absolute
volume (units = L; sum of liver plasma and interstitial volumes), while in the tracer-kinetic
model, ve is a volume fraction (dimensionless), defined as Vliv,extr/Vliver, where Vliver is
the total liver volume. While some analogy can be drawn between CLactive and khe, and
CLbiliary and kbh, the interpretations are distinct. For example, the operating concentrations
of the PBPK parameters CLactive and khe, and CLbiliary are the unbound concentrations of
gadoxetate in plasma and hepatocytes, while the tracer-kinetic model is parameterized
with respect to the total concentration of gadoxetate.

Since ce(t) is the input to the hepatocytes, and no backflux from hepatocytes to
extracellular space is assumed, Equation (5) can be derived.

vh·ch(t) = e−
t

Th ∗ khe·ce(t) (5)

where Th is the mean transit time of gadoxetate in the hepatocytes [min], and * is convo-
lution. The extracellular space is assumed to be in equilibrium with the blood pool and
therefore the concentration ce(t) is proportional to the concentration cp(t) in the plasma of
the feeding artery, i.e., ce(t) = (1 − E)·cp(t), where E is the extraction fraction of gadoxetate in
the liver. Combining this assumption with Equations (4) and (5), and using (1 − E)·khe = E·Fp,
with Fp being the apparent plasma flow into the liver [mL/min/mL tissue volume], gives
Equation (6), the operational equation for gadoxetate DCE-MRI in the liver.

∆R1(t) = (1 − E)·ve·r1,p·cp(t) + E·Fp·r1,h ·e−t/Th ∗ cp(t) (6)

Sensitivity analyses demonstrated that, with data sampled at 1 min time intervals,
the amplitudes of both terms could not be measured separately, and therefore the fitted
parameters were E and Th, whereas ve and Fp were fixed to literature values. The rate
constants were derived as Ktrans = E·Fp, khe = E·Fp/(1 − E), and kbh = vh/Th, with a liter-
ature value for vh. The plasma concentrations cp(t) were not reliably measured in small
animals due to the small diameter of the main vessels compared to the resolution of the
measurement. Therefore, spleen data were used in some instances, as a substitute (as
per PBPK analysis), but these were found to be unreliable when applied for tracer-kinetic
modelling in this study (not shown). Therefore, the source term cp(t) was derived from a
two-compartment pharmacokinetic model for gadoxetate (see Supplementary Material,
Section S5), and a step function as input in the blood compartment. The parameters kbh
and khe were fitted to the liver data using a model implementation in Python [33]. For each
rat considered in these studies, the rate constants Ktrans, khe, and kbh were calculated, in
both control and inhibitory phases. The rate constants of the control and inhibitory phases
were compared via calculation of simple (unstandardized) effect sizes (i.e., simple effect
size = µcontrol − µtreatment, where µ is the mean average of all subjects) at the 95% confidence
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level. Statistical significance was assessed through a two-sided paired t-test, with p < 0.05
considered significant.

3. Results

In the current study, an integrated framework of in silico study design and model-based
analysis was applied for gadoxetate DCE-MRI evaluation of hepatobiliary DDI in rats (Figure 2).

1 
 

 

Figure 2. Framework for gadoxetate dynamic contrast enhanced magnetic resonance imaging (DCE-
MRI)-based evaluation of hepatobiliary drug–drug interactions (DDI). The framework embeds
modelling and simulation techniques, including physiologically-based pharmacokinetic (PBPK) and
tracer-kinetic (TK) modelling throughout the study, from study design through to data analysis.

3.1. Drug Inhibitory Potency and Model-Based Dose Selection

In vitro inhibition data (e.g., IC50 and Ki) from the literature, for rat hepatobiliary
transporters rOatp1a4, rOatp1b2, rNtcp, and rMrp2 are summarized in Table 2, while
the corresponding data for human OATP1B1, OATP1B3, NTCP, and MRP2 transporters
are summarized in Table 3. In vitro inhibition data in rats were available for rifampicin
and ciclosporin, but were scarce for the other drugs, whereas data were available in most
cases for the human transporters. For the limited number of transporters where in vitro
inhibition potencies were reported in both rat and human, data were generally consistent,
with the exception of the ciclosporin IC50 for rOa1p1a4 and rOatp1b2, which were higher
than reported values for this drug with the human OATP1B transporters.

The published OATP1B1 and/or OATP1B3 IC50 values of bosentan, pioglitazone,
asunaprevir, and ketoconazole were lower than the unbound plasma concentrations
achieved at steady state following oral therapeutic administration of the drugs in hu-
mans. As there were no data for rOatp1 transporters for these drugs, no OATP1B DDI
was anticipated. Conversely, based on in vitro data, rifampicin and ciclosporin were ex-
pected to inhibit rOatp1/OATP1B, supported also by clinical evidence of OATP1B mediated
DDIs [30,34]. Two drugs (ciclosporin and pioglitazone) also exhibited similar potencies of
NTCP inhibition (Table 3).
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Table 2. In vitro inhibition constants (Ki [µM]) and half maximal inhibitory concentrations (IC50

[µM]) for selected drugs, against a range of rat hepatic uptake and biliary efflux transporters. Data
were extracted from published literature [35–42].

Drug Ki (µM)
rOatp1a4

IC50 (µM)
rOatp1a4

IC50 (µM)
rOatp1b2

IC50 (µM)
rOatp1b2

IC50 (µM)
rNtcp

IC50 (µM)
rMrp2

Rifampicin 2.9 1.3 0.79 0.6–1.1 NA 20–53
Asunaprevir NA NA NA NA 0.6 11

Bosentan NA NA NA NA 0.4 NI
Ciclosporin NA 3–30 1.2 NA 1.5 5–15

Ketoconazole NA NA NA NA NA NA
Pioglitazone NA NA NA NA NA NA

NA—no data available; NI—reported not to inhibit the transporter.

Table 3. In vitro inhibition constants (Ki) and half maximal inhibitory concentrations (IC50) for
selected drugs, against a range of human hepatic uptake and biliary efflux transporters and respective
maximum unbound drug plasma concentrations (Cmax,u) in humans. Data were extracted from
published literature [30,43–49], regulatory review and prescribing documents [50–55], and in-house
data from Merck & Co., Inc., Rahway, NJ, USA.

Drug Ki (µM)
OATP1B1 a

IC50 (µM)
OATP1B1 a

IC50 (µM)
OATP1B3

IC50 (µM)
NTCP

Ki (µM)
MRP2 a

IC50 (µM)
MRP2 a

Cmax (µM)
[Daily Dose] fu

Rifampicin 0.67
(0.22–17)

1.90
(0.24–120) 0.11 277 24.3

(7.9–40.6)
55

(14.7–144) 0.85 [600 mg] 0.2

Asunaprevir NA 0.55
(0.3–0.79) 0.65 NA NA 4 0.76 [200 mg] 0.012

Bosentan NA 6.6
(5.0–8.2) 5.2 18 NA >100 3.3 [250 mg] <0.02

Ciclosporin 0.014
(0.22–2.32)

0.50
(0.02–3.5) 0.032 0.37 4.7

(21–24)
2.7

(5.6–45.3) 1.5 [4 mg/kg] 0.1

Ketoconazole 50.7
(11.5–107.7)

15.4
(1.8–60.9) 3.9 202 NA >20 6.6 [200 mg] 0.01

Pioglitazone NA 5.09
(11.1–39.6) 3.41 4.04 NA >133 4.8 [30 mg] <0.01

a Key transporters for gadoxetate hepatobiliary disposition.

3.2. DCE-MRI Interaction Data

The majority of rats used in the procedures survived until the end of the study without
adverse effects. Higher doses of bosentan (4–6 mg/kg) were explored, but were not
tolerated well and therefore the study was discontinued, in accordance with ethics, due to
adverse effects. In this study, n = 3 animals received 4 mg/kg bosentan, and n = 1 received
6 mg/kg, and contributed data to the final analysis. An ROI could not be obtained for the
spleen in the animal that received 6 mg/kg. Data from two additional animals were not
analyzable (n = 1 from asunaprevir study; n = 1 from ketoconazole study) and therefore
did not contribute to the final analyses.

Ciclosporin and, to a lower extent, rifampicin (2 mg/kg) and ketoconazole were
associated with a decrease in maximum ∆R1 and AUC of gadoxetate ∆R1 in the liver
compared with the vehicle control, while no relevant changes were noted for any of
the other drugs (Figure 3). The plasma and liver gadoxetate AUCR for all the drugs
investigated in this study are reported in Table 4, including also data following a rifampicin
dose of 10 mg/kg, as reported previously [24]. Reduced active uptake of gadoxetate into
the liver in the presence of some of the inhibitors resulted in a corresponding increase in
gadoxetate exposure in the plasma (Figure 4). For example, ciclosporin caused a 1.94-fold
increase in gadoxetate plasma, AUC (1.57–3.38) and median fold decrease in gadoxetate
liver AUC of 3.85 (3.7–5). Similar results were obtained for rifampicin dosed at 10 mg/kg.
In contrast, rifampicin dosed at 2 mg/kg showed a weaker effect on both liver and plasma
AUCs. All the other drugs showed a marginal effect on gadoxetate plasma and liver AUCs,
with the exception of ketoconazole and a high dose of bosentan (4–6 mg/kg). Interestingly,
the study arm treated with ketoconazole showed a median AUCR for plasma and liver
equal to 0.68 (0.38–0.87) and 0.52 (0.47–0.84), respectively. Across all drugs and studies, the
AUCR had a moderate to high inter-individual variability, with a median (range) coefficient
of variation (%CV) of 33% (14–103%) and 26% (8–64%) for plasma and liver, respectively
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(Table 4). These results, with the exception of ketoconazole, are in agreement with the
inhibitory potency reported in the literature for these drugs, and the simulations of the
inhibited fraction by individual transporters performed with the empirical compartmental
model for the drugs (see Supplementary Material, Section S1).
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Figure 3. Observed gadoxetate liver profiles in control phase and following administration of drugs
(treatment) at different sites (D, E, G1, and G2). Symbols and error bars represent mean and standard
deviation (between 3 and 6 animals), respectively. Doses for each drug are listed in Table 1, where
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Figure 4. Observed gadoxetate plasma profiles in control phase and following administration of
drugs (treatment) at different sites (D, E, G1, and G2). Symbols and error bars represent mean and
standard deviation (between 3 and 6 animals), respectively. Doses for each drug are listed in Table 1,
where Bosentan_high refers to the 4–6 mg/kg doses of bosentan.
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Table 4. Observed and physiologically-based pharmacokinetic model (PBPK) based prediction of the
ratio of gadoxetate area under the curve, based on ∆R1, in the presence of investigated drugs relative
to the vehicle control (AUCR), in plasma and liver.

Site and Drug a

Plasma b Liver
Observed AUCR

Median (min, max)
[%CV; n c]

Predicted AUCR
Observed AUCR

Median (min, max)
[%CV; n c]

Predicted AUCR

D Ketoconazole
3 mg/kg

0.68
(0.38, 0.87) [30%; n = 5] 1.00 0.52

(0.47, 0.84) [26%; n = 5] 1.00

E Asunaprevir
5 mg/kg

1.12
(0.48, 4.66) [103%; n = 6] 1.01 1.01

(0.91, 1.26) [15%; n = 6] 1.00

E Pioglitazone
0.4 mg/kg

0.94
(0.6, 1.27) [25%; n = 6] 1.00 1.1

(0.55, 1.35) [26%; n = 6] 1.00

G1 Bosentan
2 mg/kg

1.09
(0.95, 1.33) [14%; n = 6] 1.00 1.1

(0.58, 1.32) [27%; n = 6] 1.00

G2 Bosentan
4–6 mg/kg

2.25
(0.92, 2.5) [45%; n = 4] 1.00 0.95

(0.88, 1.73) [40%; n = 4] 1.00

G2 Ciclosporin
5 mg/kg

1.94
(1.57, 3.38) [33%; n = 6] 3.39 0.26

(0.2, 0.27) [12%; n = 6] 0.38

G2 Rifampicin
2 mg/kg

0.92
(0.84, 1.6) [33%; n = 4] 1.15 0.68

(0.67, 0.78) [8%; n = 4] 0.98

D Rifampicin
10 mg/kg [24]

1.82
(1.44, 3.48) [48%; n = 3] 1.62 0.45

(0.35, 0.76) [41%; n = 3] 0.90

E Rifampicin
10 mg/kg [24]

2.06
(1.28, 2.35) [29%; n = 3] 1.62 0.4

(0.31, 0.97) [64%; n = 3] 0.90

G2 Rifampicin
10 mg/kg [24]

2.24
(1.24, 5.73) [70%; n = 4] 1.62 0.59

(0.49, 0.77) [20%; n = 4] 0.90

G1 Rifampicin
10 mg/kg [24]

1.45
(1.45, 4.93) [77%; n = 3] 1.62 0.38

(0.14, 0.45) [50%; n = 3] 0.90

a Letters indicate the site of the study, as detailed in [25]; b derived from DCE-MRI data acquired in spleen, see
methods. c Coefficient of variation (%CV) [standard deviation/mean] and number (n) of animals.

3.3. Prospective Prediction of Gadoxetate Hepatic Transporter-Mediated DDIs with PBPK Model

Gadoxetate liver and plasma AUCR were prospectively predicted using the PBPK
model for this imaging biomarker, coupled with the pharmacokinetic models for all the
considered perpetrators. Comparison of predicted versus observed gadoxetate AUCR for
the plasma and liver are reported in Table 4 and in Figure 5, respectively. Predicted versus
observed ∆R1 profiles in plasma and liver are shown in Figure 6.
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Figure 6. Predicted versus observed ∆R1-time profiles for different sites (D, E, G1, and G2) and per-
petrators (asunaprevir, bosentan, ciclosporin, ketoconazole, pioglitazone, and rifampicin) in plasma
(Panel A) and liver (Panel B). Predictions using the gadoxetate physiologically-based pharmacokinetic
model considered inhibition of both CLuptake and CLbiliary, assuming unbound plasma concentrations
to drive inhibition of each transporter parameter. Doses for each drug are listed in Table 1; “Bosentan
High” refers to the 4–6 mg/kg doses of bosentan.

The PBPK model predicted well the gadoxetate ∆R1 plasma profiles in the control
phase (Figure 6A). The between-site variability was limited and therefore the mean profile
simulated with the PBPK model was sufficient to capture the systemic gadoxetate phar-
macokinetics. When gadoxetate was co-administered with ciclosporin and rifampicin,
the inhibition of gadoxetate liver uptake clearance was accompanied by an increase in
∆R1 in the terminal phase of the plasma profile, which was predicted successfully by the
PBPK model (Figure 6A). The PBPK model coupled with the perpetrators compartmental
models, predicted reasonably well the change in gadoxetate plasma AUC for ciclosporin,
and lack of change in AUC for asunaprevir, pioglitazone, and bosentan. This approach
also captured the effect of rifampicin as a function of the dose: for a 2 mg/kg dose the
model correctly predicted a lack of interaction (AUCR < 1.25) and increase in the DDI at
10 mg/kg, although the magnitude was under-predicted (predicted AUCR = 1.62 vs. 1.89;
average of four studies, Table 4).

Gadoxetate liver profiles in the control phase showed a high between-site variability,
in agreement with previous reports [24]. As a result, PBPK modelling either slightly
underpredicted or overpredicted the control liver profiles (Figure 6B), depending on the
observed data used for comparison. PBPK modelling was able to distinguish negative
controls from the OATP1B inhibitors, e.g., it predicted correctly a strong inhibition and
change in gadoxetate liver AUC in the presence of ciclosporin and no inhibition in the
case of asunaprevir, pioglitazone, and bosentan. Conversely, for ketoconazole, the PBPK
model predicted no effect on gadoxetate liver AUC, in contrast to the observed decrease
in the liver AUC (Figure 5). For rifampicin, the PBPK model tended to underestimate the
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extent of the effect on gadoxetate liver AUC, as the predicted liver AUCR was between
1.4- and 2.4-fold higher than the median of those observed. A similar tendency, but to a
lower extent, was noted for ciclosporin, where a 1.5-fold difference was seen between the
predicted and observed AUCR.

3.4. Tracer-Kinetic Model Based Analysis

The effects of the six drugs on Ktrans, khe, and kbh of gadoxetate in rats in vivo, as
estimated via the tracer-kinetic modelling, are shown in Figure 7. Simple effect sizes
calculated from these values are shown in Table 5.

Following administration of ciclosporin, a marked and statistically significant de-
crease was observed on average in gadoxetate Ktrans (−89%, p < 0.001), khe (−96%,
p = 0.006), and kbh (−59%, p = 0.002). To a lesser extent, statistically significant decreases in
gadoxetate parameters were observed following administration of rifampicin, with changes
in Ktrans (−57%, p < 0.001), khe (−90%, p = 0.01), and kbh (−43%, p = 0.008). In the case of
ketoconazole, decreases in Ktrans (−46%, p = 0.009) and khe (−65%, p = 0.006) were apparent,
whereas no significant changes were detected in kbh (p = 0.39). Statistically significant
reductions were also observed in kbh following dosing to rats of pioglitazone (p = 0.01) and
asunaprevir (p = 0.04), however this was not observed in Ktrans or khe for these drugs.

No statistically significant effects on either Ktrans or kbh were detected following
administration of either of the bosentan doses. This trend was also evident for khe follow-
ing administration of the bosentan high dose. A firm conclusion could not be obtained
regarding changes in khe following administration of the bosentan 2 mg/kg dose, as physi-
ologically plausible values over both control and treatment days were only obtained for
one animal (khe > 37 mL/min/mL for all other animals).

Table 5. Absolute effects of drugs on hepatic plasma clearance (Ktrans), hepatic uptake (khe), and
biliary efflux (kbh) of gadoxetate as estimated using the tracer-kinetic model. Any statistically
meaningful changes (where zero falls outside of the 95% CI) are marked using bold font.

Simple Effect Size (95% CI) [mL/min/mL Liver] a

Site and Drug b Ktrans khe kbh

D Ketoconazole
3 mg/kg c 0.35 ** (0.20, 0.49) 1.27 ** (0.81, 1.74) 0.02 (−0.02, 0.06)

E Asunaprevir
5 mg/kg c 0.24 (−0.01, 0.48) 2.34 (−0.92, 5.60) 0.09 * (0.03, 0.14)

E Pioglitazone
0.4 mg/kg 0.13 (−0.05, 0.32) 1.21 (−0.10, 2.51) 0.05 ** (0.03, 0.08)

G1 Bosentan
2 mg/kg d 0.28 (−0.32, 0.88) −54.22 (−197.97, 89.53) 0.07 (0.03, 0.12)

G2 Bosentan
4–6 mg/kg 0.07 (−0.12, 0.26) 1.07 (−1.13, 3.26) 0.02 (−0.02, 0.07)

G2 Ciclosporin
5 mg/kg 0.83 ** (0.70, 0.97) 3.78 ** (2.16, 5.4) 0.09 ** (0.06, 0.11)

G2 Rifampicin
2 mg/kg 0.64 ** (0.56, 0.71) 7.20 * (4.49, 9.91) 0.07 ** (0.05, 0.10)

** p < 0.01; * p < 0.05; a positive value indicates a decrease in the parameter compared with control; b letters
indicate the site of the study, as detailed in [25]; c subject 1 excluded from calculations due to issues with data
quality during treatment; d subjects 3, 4, and 6 excluded from calculations due to computational fitting errors.
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4. Discussion

A major challenge for prediction of transporter-mediated clinical DDIs is poor trans-
lation between in vitro transporter inhibition data and in vivo functional effects. In such
instances, plasma DDI data, or interaction data with endogenous biomarkers for trans-
porters of interest, have been used to refine PBPK model parameters [34,56]. However,
verification of the predicted changes in tissue exposure as a result of transporter modulation
remains a challenge. The current study effectively incorporated modelling and simulation
techniques into the design and data analysis of gadoxetate DCE-MRI experiments to enable
quantification of the effects of multiple tests-drugs on the function of hepatic OATP1B and
MRP2 transporters in vivo (Figure 2).

4.1. Data Analysis and Endpoints for Transporter Interaction Assessment with Imaging Data

The application of imaging modalities for evaluation of tissue exposure and local
pharmacokinetic measurement (e.g., in liver, brain, and tumors), has shown promising
results [23,57–62]. In the current study, an assessment of drug effects on gadoxetate was
performed, using both non-compartmental analysis (i.e., AUCR of ∆R1 profiles in liver
and plasma), and tracer-kinetic modelling. Alternatively, integration plot analysis may be
applied for analysis of kinetic imaging data, but this approach has a number of limitations,
including (i) the need for imaging data from the bile duct or intestine (not measured in
current study), (ii) the very rapid uptake phase of gadoxetate in the liver and elimination
from plasma (Figures 3 and 4), and (iii) an inability to differentiate roles of blood flow and
transporter activity with respect to hepatic uptake. The tracer-kinetic and PBPK models
applied in the current study overcame these limitations.

Assessment of changes in the victim drug AUC (AUCR), is a standard endpoint for
evaluation of the magnitude of DDI in drug development, representing the net effect of
the interaction on the exposure in the plasma [63,64] (Figure 8). AUCR (either clinically
observed or predicted by PBPK modelling) is often used to inform dosage adjustment
(or contraindication) recommendations for clinical practice, involving the specific pair of
co-administered drugs. In the current study, the PBPK predictions of AUCR, based on
IVIVE of in vitro transporter inhibition data, tended to under-predict the magnitude of
gadoxetate interactions when compared with the in vivo data in the liver, but showed
reasonable predictive performance for plasma data (Figure 5). A limitation of net-effect
parameters, such as plasma or liver AUCR, is that the perturbations of specific processes
(e.g., uptake and efflux) may not be readily delineated from the analysis of the observed
data. In contrast, PBPK and tracer-kinetic modelling of the DCE-MRI data can estimate
drugs’ effects on both transporters mediated uptake (i.e., khe or CLactive) and efflux (kbh
or CLbiliary). As an example, the median decrease in gadoxetate liver AUC, by 74%, was
noted in the presence of ciclosporin compared to the control (Table 4). The uptake rate
(khe) was estimated to decrease by 96% using the tracer-kinetic model (Table 5), while
IVIVE-PBPK simulations predicted between 97% and 98% inhibition of CLactive during the
gadoxetate DCE-MRI period. Therefore, for the purpose of quantifying the perturbation
effects of inhibitor drugs on specific transport processes, model-based analysis of imaging
data is recommended.
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4.2. Integrative Approach Needed to Interpret Imaging Data

In this work, the PBPK model, coupled with the drugs’ pharmacokinetic models,
predicted the changes in gadoxetate plasma AUC, following coadministration of the six
drugs investigated in this study, with reasonable accuracy. In the case of liver, the model
could distinguish the negative controls from the OATP1B inhibitors. The exception was
ketoconazole which caused a decrease in gadoxetate AUC compared with control both
in plasma (1.5-fold) and in the liver (2-fold). The in vitro OATP1B1 IC50 (>2 µM; Table 3)
for ketoconazole is relatively high compared with its plasma exposure (unbound Cmax
~0.07 µM), and hence in vivo inhibition of hepatic uptake transport was not expected for
this drug. rNtcp/NTCP was also reported to transport gadoxetate; inhibition of rNtcp
by ketoconazole is also unlikely, considering the high IC50 for NTCP (202 µM, Table 3).
Plausible explanations of the unexpected gadoxetate AUC observations with ketoconazole
include instrument or signal-to-∆R1 errors, an altered volume of interstitial space in the
spleen (which was used to derive the plasma DCE-MRI profile) between the two phases of
the study, or dosing error in either of the two occasions. An acute dose of ketoconazole is not
expected to affect renal function parameters, such as glomerular filtration rate. Although
some inhibitory interaction with rOatp4c1 in the kidney (expressed on the apical membrane
of rat kidney [65]) could be speculated, there is no evidence to support it. The tracer-kinetic
model estimated a 46% decrease in gadoxetate Ktrans for ketoconazole, and when applied
to the extended clearance concept paradigm [66], this decrease in Ktrans should cause
an increase in plasma AUC, the opposite to the observed data. This apparent paradox
is likely explained by the use of a population mean two-compartment pharmacokinetic
model for gadoxetate as input function for the tracer-kinetic model. As such, in the case
of ketoconazole, it is unlikely that the estimated decrease in Ktrans and khe is reflecting a
true inhibition of rOatp1b transporter activity, highlighting the importance of a holistic
approach to interpretation of imaging data, considering the interplay of biological and
technical systems.
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4.3. Biological Relevance of Interaction Effects on Ktrans, khe, and kbh

Quantifying the effects on uptake and efflux transporters could provide valuable
insights into DDI affecting drugs whose pharmacology targets are expressed within hepa-
tocytes, e.g., statins. Insight can also be attained on the effects on bilirubin clearance that
are not due to overt liver injury, or inhibition of glucuronidation. When normalized to
the same units and reference concentrations, transport rate parameters in the PBPK and
tracer-kinetic models were within 4-fold of one another, indicating reasonable consistency
at the quantitative level (Table S11). Rifampicin and ciclosporin markedly inhibited gadox-
etate uptake activity in vivo, based upon khe in the control and inhibitory phases (Figure 7
and Table 5), in agreement with clinical OATP1B-mediated DDIs [6]. Ketoconazole has
well-reported hepatotoxicity [67], but was not expected to result in OATP1B-mediated
interaction in vivo [68] (Table 3).

Differentiation of Ktrans and khe has been overlooked in previous applications of
tracer-kinetic modelling of gadoxetate DCE-MRI data in rats [17,27], but was important
to consider in the current study, where the aim was to quantify treatment effects on rate
constants, and (i) the establish biological relevance of the changes, and (ii) compare these
across drugs. In particular, the hepatic extraction ratio (E) for gadoxetate in rats can be high
in the absence of drugs (e.g., E > 0.95); in these cases, derived Ktrans values approach the
fixed liver perfusion rate and the system becomes perfusion-limited, making quantitative
estimation of drugs’ effects on hepatic uptake (khe) highly conditional on the assumed
value for liver perfusion. This scenario was evident for the bosentan 2 mg/kg dose, where
physiologically implausible values were observed for khe, highlighting the necessity to
consider both Ktrans and khe in data interpretation. The high extraction scenario limits
the ability to detect hepatic rOatp1b inhibition in rats for weaker inhibitors. In humans,
gadoxetate hepatic extraction is lower than in rats (approx. 20% [20,69,70]), and therefore
would be of less concern for gadoxetate-based detection of OATP1B/MRP2-mediated DDIs.
It is therefore recommended to consider both Ktrans and khe when considering the biological
relevance of treatment effects on rate constants in rats.

Quantifying the effects on rMrp2 could be especially valuable, since this could result
in concentrations of drugs and metabolites within the liver which differ with the ones in
plasma [6,59]. For all six drugs investigated here, the largest effects were observed on the
inhibition of active uptake. In addition to uptake parameters (Ktrans and khe), gadoxetate
DCE-MRI data, rifampicin and ciclosporin reduced kbh, suggesting inhibition of biliary
efflux, while asunapravir and pioglitazone were associated with only reduced kbh. As
expected, reduced Ktrans and khe were associated with decreased gadoxetate liver AUC
in the presence of rifampicin and ciclosporin. In contrast, while reduced kbh would be
expected to be associated with an increase in liver AUC [59], this was not the case for
asunaprevir (31% decrease in kbh, liver AUCR = 1.01) or pioglitazone (19% decrease in kbh,
liver AUCR = 1.1).

4.4. Imaging Data to Support PBPK-Based Quantitative Translation

The PBPK modelling predicted well gadoxetate liver and plasma AUCR in the pres-
ence of ciclosporin, but under-predicted the liver AUCR in the case of rifampicin, despite a
reasonable prediction in plasma (Figure 5). Possible contributing reasons for this mismatch
between the plasma and liver predictive performances for rifampicin include, model as-
sumptions such as the relaxivities and the assumption of fast water exchange, a pragmatic
approach to translation of in vitro transporter IC50 and Ki data for efflux transporters, and
the differential sensitivity of each tissue to uptake transporter inhibition.

In vitro measurements of IC50 and Ki are highly variable (e.g., Table 3), and are typ-
ically higher than corresponding model-based in vivo estimates [34,71]. Such trends are
consistent with underestimation of the magnitude of inhibition of CLactive and liver AUCR
noted for rifampicin (Figure 6B). Likewise, there are limited examples of translation of
in vitro inhibition data for hepatobiliary efflux transporters (e.g., MRP2). The assumption
that the inhibitory concentration affecting gadoxetate CLbiliary was equal to the unbound
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drug concentration in plasma, predicted < 25% inhibition of CLbiliary using the median
ciclosporin in vitro IC50 for MRP2 (Figure S11). Although commonly applied, such as-
sumptions for the operating inhibitory concentrations for hepatobiliary efflux transporters
have limitations, as these transporters do not face the plasma, highlighting a need for more
mechanistic inhibitor models, which was beyond the scope of the current work. Neverthe-
less, corresponding PBPK predictions of gadoxetate in the presence of ciclosporin were not
inconsistent with the observed data, and previous studies suggest that in vivo inhibition of
rMrp2/MRP2 by ciclosporin may be modest [30,72]. An attempt to simulate the inhibition
of CLbiliary using the estimated unbound concentration in the hepatocyte (considering in-
hibitor liver Kpuu) overestimated the degree of this interaction (75–82% inhibition), based
upon the gadoxetate DCE-MRI profile and the analysis using the tracer-kinetic model (59%
decrease in kbh) (Figure 7 and Table 5).

In the case of gadoxetate, plasma and liver are expected to have differential sensitivity
to rOatp1b2 inhibition. Whereas transporter-mediated uptake is the predominant contribut-
ing mechanism to gadoxetate uptake into hepatocytes [23], elimination of gadoxetate from
systemic circulation is by both hepatic and renal elimination. As such, the liver AUC will
be more sensitive to transporter inhibition compared with plasma. It is easier for a PBPK
model prediction to appear successful when AUCR is close to 1 (e.g., lack of DDI, as in
the case of plasma for 2 mg/kg rifampicin) [73]. Therefore, availability of liver imaging
data provided further insight into the under-prediction of inhibition of hepatic uptake
transport, which could not be obtained by an assessment of the DDI data in plasma alone.
This finding reinforces the advantage of the liver imaging data for evaluating predictions
of transporter DDIs. Upon translation to the clinical setting, imaging biomarker data can
hence facilitate future refinement of PBPK models of hepatobiliary transporter inhibitors,
to enhance the current paradigm of using a PBPK-projection of DDI magnitude in untested
scenarios to support clinical study design and labelling recommendations [10,63].

5. Conclusions

In the current work, gadoxetate DCE-MRI imaging biomarkers (Ktrans, khe, and
kbh) were demonstrated as promising for the detection and quantification of DDI via
rOatp1b/rMrp2, in a preclinical setting, to identify compounds for which clinical DDI
studies could be prioritized or deprioritized. Our preclinical studies show the potential to
integrate PBPK modelling and tracer-kinetic models of gadoxetate DCE-MRI data in the
framework of drug development (Figure 8).

Gadoxetate PBPK models (especially if extended to humans) are useful for translat-
ing in vitro transporters’ inhibition data of investigational new drugs, and prospective
prediction of DDI risks and modulation of liver exposure, in support of other existing
modelling tools/biomarkers. In future work, we will test and extend this integrative ap-
proach to humans, by analyzing clinical gadoxetate DCE-MRI profiles with both PBPK and
tracer-kinetic modelling approaches.
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