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Abstract: Mycotoxins such as aflatoxin B1 (AFB1) are secondary fungal metabolites present in food
commodities and part of one’s daily exposure, especially in certain regions, e.g., sub-Saharan Africa.
AFB1 is mostly metabolised by cytochrome P450 (CYP) enzymes, namely, CYP1A2 and CYP3A4.
As a consequence of chronic exposure, it is interesting to check for interactions with drugs taken
concomitantly. A physiologically based pharmacokinetic (PBPK) model was developed based on the
literature and in-house-generated in vitro data to characterise the pharmacokinetics (PK) of AFB1.
The substrate file was used in different populations (Chinese, North European Caucasian and Black
South African), provided by SimCYP® software (v21), to evaluate the impact of populations on AFB1
PK. The model’s performance was verified against published human in vivo PK parameters, with
AUC ratios and Cmax ratios being within the 0.5–2.0-fold range. Effects on AFB1 PK were observed
with commonly prescribed drugs in South Africa, leading to clearance ratios of 0.54 to 4.13. The
simulations revealed that CYP3A4/CYP1A2 inducer/inhibitor drugs might have an impact on AFB1
metabolism, altering exposure to carcinogenic metabolites. AFB1 did not have effects on the PK of
drugs at representative exposure concentrations. Therefore, chronic AFB1 exposure is unlikely to
impact the PK of drugs taken concomitantly.

Keywords: PBPK; aflatoxin B1; mycotoxins; IVIVE; DDI; food contaminants

1. Introduction

Mycotoxins are secondary metabolites produced by fungi that are frequently present
in food commodities. Mycotoxins cause major health problems in both humans and an-
imals [1]. Aflatoxin B1 (AFB1) is a human carcinogenic, hepatotoxic and immunotoxic
mycotoxin, produced by Aspergillus flavus and Aspergillus parasiticus, and it is classified as
Group 1 by the International Agency for Research on Cancer (IARC) [2–5]. Figure 1 repre-
sents the metabolic pathway of AFB1 in the human liver. AFB1 is metabolised mainly by
CYP1A2 and CYP3A4 [6–9]. CYP1A2 facilitates the formation of both aflatoxin M1 (AFM1),
classified as Group 2B by IARC as potentially carcinogenic to humans, and aflatoxin-
endo/exo-8,9-epoxide (AFBO), carcinogenic metabolites with aflatoxin-exo-8,9-epoxide
being the more potent carcinogenic metabolite [2,6–9]. The metabolite AFBO is carcino-
genic since the reactive epoxide can form adducts with DNA [6,10]. Aflatoxin P1 (AFP1),
considered less toxic than AFB1, is formed by CYP2A3, CYP2A13 and CYP321A1 [7,11].
CYP3A4 facilitates the formation of aflatoxin Q1 (AFQ1), a detoxification product with less
toxicity than AFB1, and carcinogenic AFBO metabolites [12].
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Figure 1. Schematic representation of the hepatic metabolic pathway of aflatoxin B1 (AFB1) in 
humans. AFB1 = aflatoxin B1; AFB2a = aflatoxin B2a; AFBO = aflatoxin-endo/exo-8,9-epoxide; AFH1 
= aflatoxin H1; AFL = aflatoxicol; AFM1 = aflatoxin M1; AFP1 = aflatoxin P1; AFQ1 = aflatoxin Q1; 
NADPH reductase = nicotinamide-adenine-dinucleotide-phosphate reductase. 

Nicotinamide-adenine dinucleotide phosphate (NADPH) reductase is responsible 
for the formation of aflatoxicol (AFL), a detoxification product of AFB1 [11,13]. Both AFQ1 
and AFL can be further metabolised into AFH1 [14]. Aflatoxins (AFs) are found in cereals, 
spices, soybeans, crude vegetable oils, seeds, rice, dried fruits, maize and nuts [15]. In 
certain regions of the world, mycotoxin prevalence is endemic, e.g., sub-Saharan Africa. 
A humid and warm climate promotes fungal growth [16]. Stress situations (e.g., drought, 
rises in temperature or humidity) further cause the fungi to produce mycotoxins [17]. 
Besides a higher mycotoxin prevalence on the African continent, there is also a lack of 
mycotoxin regulation legislation and/or implementation thereof [18]. This is partly related 
to food shortages, cultural habits, informal markets and subsistence farming. Another 
major reason for higher mycotoxin exposure is the lack of mycotoxin awareness. This 
results from both a lack of public awareness and a lack of awareness from the actors in the 
food and feed chain [19]. In 2004, 2005 and 2006, mycotoxin outbreaks caused by AFs led 
to hundreds of deaths in Kenya [20,21]. In Tanzania, both children and elderly people died 
after consuming AF-contaminated homegrown foods in 2016 [22]. In 2019, 8 out of 53 cases 
died from a mycotoxin outbreak, again due to AFs [23]. Repeated exposure to mycotoxins 
not only leads to severe health effects but might also lead to interactions with drugs, 
influencing plasma concentration and altering mycotoxin exposure. Because of the 
carcinogenicity of AFB1, human in vivo trials are not considered ethical. A solution is to 
perform in silico simulations of the mycotoxin–drug interactions using physiologically 
based pharmacokinetic (PBPK) modelling, allowing us to predict the outcomes of 
concomitant intake without having to perform clinical trials. 

Figure 1. Schematic representation of the hepatic metabolic pathway of aflatoxin B1 (AFB1) in
humans. AFB1 = aflatoxin B1; AFB2a = aflatoxin B2a; AFBO = aflatoxin-endo/exo-8,9-epoxide;
AFH1 = aflatoxin H1; AFL = aflatoxicol; AFM1 = aflatoxin M1; AFP1 = aflatoxin P1; AFQ1 = aflatoxin
Q1; NADPH reductase = nicotinamide-adenine-dinucleotide-phosphate reductase.

Nicotinamide-adenine dinucleotide phosphate (NADPH) reductase is responsible for
the formation of aflatoxicol (AFL), a detoxification product of AFB1 [11,13]. Both AFQ1
and AFL can be further metabolised into AFH1 [14]. Aflatoxins (AFs) are found in cereals,
spices, soybeans, crude vegetable oils, seeds, rice, dried fruits, maize and nuts [15]. In
certain regions of the world, mycotoxin prevalence is endemic, e.g., sub-Saharan Africa. A
humid and warm climate promotes fungal growth [16]. Stress situations (e.g., drought, rises
in temperature or humidity) further cause the fungi to produce mycotoxins [17]. Besides a
higher mycotoxin prevalence on the African continent, there is also a lack of mycotoxin
regulation legislation and/or implementation thereof [18]. This is partly related to food
shortages, cultural habits, informal markets and subsistence farming. Another major reason
for higher mycotoxin exposure is the lack of mycotoxin awareness. This results from both
a lack of public awareness and a lack of awareness from the actors in the food and feed
chain [19]. In 2004, 2005 and 2006, mycotoxin outbreaks caused by AFs led to hundreds of
deaths in Kenya [20,21]. In Tanzania, both children and elderly people died after consuming
AF-contaminated homegrown foods in 2016 [22]. In 2019, 8 out of 53 cases died from a
mycotoxin outbreak, again due to AFs [23]. Repeated exposure to mycotoxins not only leads
to severe health effects but might also lead to interactions with drugs, influencing plasma
concentration and altering mycotoxin exposure. Because of the carcinogenicity of AFB1,
human in vivo trials are not considered ethical. A solution is to perform in silico simulations
of the mycotoxin–drug interactions using physiologically based pharmacokinetic (PBPK)
modelling, allowing us to predict the outcomes of concomitant intake without having to
perform clinical trials.
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PBPK models describe the body using physiologically meaningful compartments that
are interconnected through the circulating blood system. Within each compartment, drug-
dependent, body-dependent and trial-dependent factors are incorporated dynamically.
PBPK modelling is fully embedded in the pharmaceutical industry across the different
drug discovery and preclinical/clinical development stages. When mechanistic PBPK
models are validated against clinical conditions, they can be used to extrapolate or to
predict certain situations beyond the clinical studied scenarios. One of the strengths of
PBPK is drug–drug interaction (DDI) predictions that are frequently used to guide dosing
recommendations to manage DDIs. Additionally, some intrinsic and extrinsic factors, such
as disease state, ethnicity, and age-related factors, which can be challenging to address
in clinical studies due to ethical or practical reasons, can be taken into account. Since
PBPK models are commonly used to predict DDIs clinically, they could also play a role in
the prediction of food contaminant–drug interactions. Currently, the presence or absence
of food (fasted/fed status) is considered in clinical trials and simulations, but the food
components are generally not taken into account. Chronic food contaminants may have
an impact on the PK or PD of drugs and should be considered. However, in contrast to
drugs, these contaminants are often present in much lower quantities, making it likely that
drugs might have an impact on the PK of the food contaminants rather than vice versa.
PBPK models and physiologically based toxicokinetic (PBTK) models have previously
been built for mycotoxins, such as for the T-2 toxin (T-2) in a chicken PBPK model [24],
and deoxynivalenol (DON) in a human PBPK model [25]. A PBK model was developed
for AFB1 based on in vitro–in silico by Gilbert-Sandoval et al., 2020 [26]. The mentioned
models were developed to simulate exposure to a certain mycotoxin. In this paper, a PBPK
substrate file of AFB1 is developed using published physicochemical data and in-house-
generated enzyme kinetic data and is verified against in vivo PK in a Chinese population.
Subsequently, the PK differences in North European Caucasian, Chinese and Black South
African populations are assessed. Finally, the interactions between AFB1 and commonly
prescribed drugs in South Africa are evaluated.

2. Materials and Methods

The PBPK model of AFB1 was developed in the SimCYP® population-based simulator
(SimCYP Ltd., a Certara company, Sheffield, UK, version 21). A stepwise bottom-up
approach was applied while building the PBPK model and is represented in a flowchart
(Figure 2). The input parameters and references are shown in Table 1. Physicochemical
properties, absorption, metabolism and excretion parameters and interaction and transport
data were retrieved from the literature and from computations. The distribution in the
PBPK model was represented by the Rodgers et al. model [27] and by incorporating sub-
cellular distribution (Method 3 in the SimCYP® simulator version 21). The final PBPK
model was evaluated by comparison with human in vivo PK data [28].
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Figure 2. Flowchart of the bottom-up approach for building a PBPK model for substrate aflatoxin 
B1 and its applications [28]. PBPK = physiologically based pharmacokinetics; PK = 
pharmacokinetics; AFB1 = aflatoxin B1; DDI = drug–drug interaction; CYP = cytochrome P 450. 

Table 1. Physicochemical properties, blood-binding, absorption, distribution, elimination, 
interaction and transport information for AFB1. 

Physicochemical Properties and Blood Binding 
Parameter Model Input Value Reference 

Mw (g/moL) 312.27 [29] 
LogPo:w 1.60  [29] 
Compound type neutral [29] 
ECCS Class 2 [30] 
B:P 1.03 Predicted * 

fu,p 0.17 [26] 

Absorption 
fa 0.99 Predicted * 
ka 2.39 Predicted * 
Peff,man (10−4 cm/s)  5.47 predicted * 
Ptrans,0 (10−6 cm/s) 135.8 Predicted * 

Absorption and Metabolism (ADAM) Model 
Formulation—Diffusion Layer Model—Aqueous Phase Solubility—Solid State 1  

S0 1.24 Predicted * 
Distribution 

Full PBPK model 
Vss (L/kg) 0.33 prediction method 3  

Tissue: plasma partition coefficients/Kp scalar = 1 
Adipose 0.44 predicted * 

Figure 2. Flowchart of the bottom-up approach for building a PBPK model for substrate aflatoxin B1
and its applications [28]. PBPK = physiologically based pharmacokinetics; PK = pharmacokinetics;
AFB1 = aflatoxin B1; DDI = drug–drug interaction; CYP = cytochrome P 450.

Table 1. Physicochemical properties, blood-binding, absorption, distribution, elimination, interaction
and transport information for AFB1.

Physicochemical Properties and Blood Binding

Parameter Model Input Value Reference

Mw (g/moL) 312.27 [29]

LogPo:w 1.60 [29]

Compound type neutral [29]

ECCS Class 2 [30]

B:P 1.03 Predicted *

fu,p 0.17 [26]

Absorption

fa 0.99 Predicted *

ka 2.39 Predicted *

Peff,man (10−4 cm/s) 5.47 predicted *

Ptrans,0 (10−6 cm/s) 135.8 Predicted *
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Table 1. Cont.

Physicochemical Properties and Blood Binding

Parameter Model Input Value Reference

Absorption and Metabolism (ADAM) Model

Formulation—Diffusion Layer Model—Aqueous Phase Solubility—Solid State 1

S0 1.24 Predicted *

Distribution

Full PBPK model

Vss (L/kg) 0.33 prediction method 3

Tissue: plasma partition coefficients/Kp scalar = 1

Adipose 0.44 predicted *

Bone 0.15 predicted *

Brain 0.55 predicted *

Gut 0.36 predicted *

Pancreas 0.26 predicted *

Heart 0.37 predicted *

Kidney 0.36 predicted *

Liver 0.44 predicted *

Lung 0.33 predicted *

Muscle 0.23 predicted *

Skin 0.28 predicted *

Spleen 0.44 predicted *

Elimination

Enzyme kinetics

CYPs Recombinant

CYP3A4 Km 49.60 µM Experimental [31]

CYP3A4 Vmax 88.10 pmol/min/pmol CYP Experimental [31]

CYP3A4 ISEF 0.50 Experimental [31]

CYP1A2 Km 58.20 µM Experimental [31]

CYP1A2 Vmax 199.00 pmol/min/pmol CYP Experimental [31]

ISEF 1.42 Experimental [31]

Interaction

CYP1A2 Ki 10.2 µM Experimental [31]

Transport

Using permeability limited liver model

CLPD
(mL/min/million hepatocytes) 0.05 derived from [32]

fu,IW 0.35 predicted *

fu,EW 0.17 predicted *
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Table 1. Cont.

Physicochemical Properties and Blood Binding

Parameter Model Input Value Reference

Drug concentration for passive permeability: unbound (ionized and unionized)
Sinusoidal: Efflux: ABCC3 (MRP3)

Jmax (pmol/min/million cells) 180.00

[33]Km (µM) 0.19

fu,inc 1.00

RAF/REF 2.50 [34]
* Predicted using SimCYP. Mw = molecular weight; logPo:w = logarithm of the octanol–water partition coefficient;
ECCS = Extended Clearance Classification System; B:P = blood to plasma ratio; fu,p = fraction unbound in plasma;
fa = fraction absorbed, available from dosage form; ka = first-order absorption rate constant; Peff,man = human
jejunum permeability; Ptrans,0 = intrinsic transcellular permeability; S0 = solubility; PBPK = physiologically based
pharmacokinetics; Vss = volume of distribution at steady-state; Kp = tissue:plasma partition coefficient; CYPs: cy-
tochrome P450 enzymes; Km = Michaelis–Menten constant; Vmax = maximum reaction velocity; ISEF = intersystem
extrapolation factor; Ki = inhibitor constant; CLPD = passive diffusion clearance; fu,IW = fraction unbound in
intracellular water; fu,EW = fraction unbound in extracellular water; MRP3 = multidrug resistance-associated
protein 3; Jmax = in vitro maximum rate of transporter-mediated efflux; fu,inc = fraction unbound in the incubation;
RAF/REF = relative activity factor/relative expression factor.

SimCYP® has an available pilot Black South African population file (SouthAfrican_
Population FW_Custom), later named Black South African population, that was built from an
already available North European Caucasian population (Sim-NEur Caucasian population).

For the age distribution, a Weibull function was selected. For both males and females,
an alpha (α) value, a shape parameter, of 1.47 was used. For the beta (β) value, a scale
parameter, 30.17 was used for males and 32.8 for females. The α—and β values were chosen
based on the best fit with the observed data provided by SimCYP®. The age–height and
weight–height relations were overpredicted for the Black South African population, starting
from the Sim-NEur Caucasian population [35]. New values were inserted by SimCYP®, as
shown in Table 2.

Table 2. Height–weight parameters for the Black South African population for both males and females.

Height

MALE FEMALE

C0 161.780 C0 155.376

C1 0.359 C1 0.207

C2 −0.00429 C2 −0.00268

CV (%) 7.33 CV (%) 5.83

Weight

MALE FEMALE

C0 2.97 C0 3.19

C1 0.007 C1 0.007

CV (%) 21.1 CV (%) 26.38
C0, C1 and C2 = coefficients for the dependence of body weight on height (no units); CV (%) = coefficient of
variation for the dependence of weight on height in percentage.

The body surface area (BSA) estimates using the DuBois and DuBois equation are
lower than the observed values for Black South African subjects [36]. Therefore the Nwoye
formula (Equation (1)) was applied based on coating and planimetry measurements on a
male, 18- to 55-year-old, non-obese, Nigerian population of 20 subjects [37].

BSA (m2) = weight−0.2620 × 0.001315 × height1.2139 (1)
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New equations were implemented by SimCYP® to estimate the glomerular filtration
rate (GFR) in the Black South African population for males with serum creatinine (Scr) levels
lower than 80 µmol/L (Equation (2)) and higher than 80 µmol/L (Equation (3)) and females
with serum creatinine (Scr) levels lower than 62 µmol/L (Equation (4)) and higher than
62 µmol/L (Equation (5)). For Black males, a factor of 163 was implemented instead of
141 for White males; for Black women, a factor of 166 was implemented instead of 144 for
White women [38].

GFR = 163 × (
Scr
80

)−0.411 × 0.993Age (2)

GFR = 163 × (
Scr
80

)−1.209 × 0.993Age (3)

GFR = 166 × (
Scr
62

)−0.329 × 0.993Age (4)

GFR = 166 × (
Scr
62

)−1.209 × 0.993Age (5)

A Lua Code was used for scripting in the user-defined GFR function in SimCYP®. It
is important to note that AFB1 is not renally cleared, so the GFR will not impact the PK
of AFB1.

CYP abundances and phenotype frequency for eight CYP450 enzymes and the selected
parameters are listed for the Black South African population, Sim-NEur Caucasian population
and the Sim-Chinese healthy volunteer population (Table 3) [39].

Since AFB1 is classified as Group 1 by IARC as carcinogenic to humans, it cannot
be administered to humans during in vivo trials [2]. However, there is one available
in vivo trial conducted on four healthy Chinese volunteers (age range 32–65 y/o, 25%
female) following 30 ng of 14C-labelled AFB1 orally in a fasted state; the pharmacokinetic
parameters of AFB1 are reported by Jubert et al. (2009) [28]. The PBPK model developed
for AFB1 from this study (as mentioned in the previous section) was used in the SimCYP®

Sim-Chinese healthy volunteer population to predict the plasma concentration (Cp) versus
time profile, as presented in the work of Jubert et al. (2009), allowing a comparison between
the predicted and observed Cp-time curves [28]. For the PBPK model trials, a population
size of 100 was selected, consisting of 10 trials with 10 subjects per trial. For the whole
population, a fasted prandial state was selected. An age range of 32–65 y and a proportion
of females of 25% were selected. A single dose of 30 ng of AFB1 was used, as in the in vivo
trial by Jubert et al. (2009) [28]. The predictions were to be considered successful and the
model considered verified if the predicted PK parameters fell within a twofold range of
the in vivo values [40]. The average fold error (AFE) and the absolute average fold error
(AAFE) were calculated for all plasma concentrations over time, based on Equations (6)
and (7), respectively, to evaluate model performance on plasma concentration predictions
of AFB1, as simulated in the healthy Chinese volunteers [41].

AFE = 10[
∑ log 10( predicted

observed )

number of observations ] (6)

AAFE = 10[
∑ ABS(log 10( predicted

observed ))

number of observations ] (7)

Since several enzyme abundance and physiological parameters in Black South African,
Caucasian and Chinese populations were different, which may affect the AFB1 disposition
in those populations, an inter-ethnic PK comparison was performed by simulating the
PK of AFB1 in the Black South African population, Sim-NEur Caucasian population and
Sim-Chinese healthy volunteer population, following a 30 ng AFB1 single dose in a fasted
state. For each population, a trial was performed with 5,000 subjects. The proportion of
females was 50%, and the age range within each virtual population was between 20 and
50 years old.



Pharmaceutics 2023, 15, 894 8 of 17

Table 3. A summary of CYP450 abundances and phenotype frequency for eight CYP450 enzymes and of selected parameters in the Black South African population,
Sim-NEur Caucasian population and Sim-Chinese healthy volunteer population.

Black South African Sim-NEur Caucasian Sim-Chinese Healthy Volunteer

CYP450 Enzyme Abundance
(pmol/mg Protein)/CV

Phenotype Frequency Abundance
(pmol/mg Protein)/CV

Phenotype Frequency Abundance
(pmol/mg Protein)/CV

Phenotype Frequency
EM PM EM PM EM PM

CYP1A2 52/67% 1 0 52/67% 1 0 42/50% 1 0

CYP2B6 6.9/122% 0.85 0.15 21.6/68% 0.40 0.10 6.7/63% 0.52 0.07

CYP2C9 73/ 54% 0.98 0.02 77.7/64% 0.66 0.019 87.6/55% 0.93 0.003

CYP2C19 14/106% 0.96 0.04 4.4/52% 0.42 0.023 4.4/52% 0.40 0.13

CYP2D6 8/61% 0.97 0.03 9.4/65% 0.57 0.08 10.47/65% 0.60 0.003

CYP3A4 137/41% 1 0 137/41% 1 0 120/33% 1 0

CYP3A5 71/78% 0.82 0.18 103/65% 0.17 0.83 82.3/68% 0.42 0.58

CYP3A7 35.4/61% 0.12 0.88 35.4/61% 0.12 0.88 14/71% 0.12 0.88

parameter parameter value CV (%) parameter value CV (%) parameter value CV (%)

LV (L) 1.924 12 1.651 12 1.403 12

MPPGL (mg/g) 39.79 N.A. 39.79 N.A. 39.45 N.A.

LD (g/L) 1080 N.A. 1080 N.A. 1080 N.A.

Hematocrit (%) (male) 43 6.51 43 6.5 45.3 9.5

Hematocrit (%) (female) 38 7.13 38 7.1 40.5 10.9

AGP (g/L) (male) 0.811 15 0.739 23 0.683 23

AGP (g/L) (female) 0.791 13 0.715 24 0.575 24

HSA (g/L) (male) 50.34 10 50.34 10 50.34 10

HSA (g/L) (female) 49.38 10 49.38 10 49.38 10

Weibull α (male) 1.47 N.A. 5.47 N.A. 1.5 N.A.

Weibull β (male) 30.17 N.A. 66.5 N.A. 19 N.A.

Weibull α (female) 1.47 N.A. 5.22 N.A. 4.48 N.A.

Weibull β (female) 32.8 N.A. 68.57 N.A. 53.4 N.A.

CYP450 = cytochrome P 450; CV (%) = coefficient of variation; EM = extensive metaboliser; PM = poor metaboliser; LV = liver volume; MPPGL = microsomal protein per gram liver;
N.A. = not applicable; LD = liver density; AGP = α1-acid glycoprotein; HSA = human serum albumin.
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An insight into the currently used drugs in South Africa was provided by the South
African Essential Medicine List of the World Health Organization (WHO), containing
192 drugs [42]. A selection was made based on the CYP450 enzymes (CYP3A4/CYP1A2
involvement). Drugs that are a CYP3A4 and/or CYP1A2 substrate, inhibitor or inducer
in the SimCYP® library were used in the simulations since AFB1 is metabolised by those
CYP450 enzymes. Drugs that are clinically administered in low doses were chosen since
AFB1 exposure is considered low dose, and, therefore, the possible impact of AFB1 on
drugs could be observed. Table 4 shows the list of drugs used in the interaction simulations
in the Black South African population when AFB1 is a substrate and an inhibitor. A trial
design of 30 days was chosen, with a daily intake of both the drug (common administered
dose) and AFB1 (30 ng). In the virtual population, 10 trials of 10 subjects were performed,
with a proportion of females of 50% and with an age range of 20–50 years. The consumption
of 30 ng AFB1 was based on the in vivo trial by Jubert et al. (2009), where 30 ng equals one-
twentieth of the US maximum limit of 20 µg/kg AFs in a 30 g peanut butter sandwich [43].
In the EU, the maximum limit for AFs in peanut products is 15 µg/kg [44].

Table 4. Selection of the South African Essential Medicines list from WHO, used in SimCYP®

simulations with AFB1, the drug administration dose (mg), the CYP3A4/CYP1A2 substrate/inhibitor
or inducer and the drug class.

Drug Dose (mg) QD CYP3A4/CYP1A2
Substrate/Inhibitor/Inducer Drug Class

artemether 20 CYP3A4 substrate antimalarial

atazanavir 200 CYP3A4 substrate
CYP3A4 inhibitor protease inhibitor

carbamazepine 200 CYP3A4 substrate
CYP3A4 inducer anticonvulsant

ciprofloxacin 250 CYP1A2 inhibitor quinolone antibiotics

efavirenz 600 CYP3A4 inducer non-nucleoside reverse
transcriptase inhibitor

ethinylestradiol 0.035 CYP3A4 substrate
CYP1A2 inhibitor estrogen

phenobarbital 100 CYP3A4 and CYP1A2 inducer barbiturate

phenytoin 100 CYP3A4 and CYP1A2 inducer anticonvulsant

fluconazole 50 CYP3A4 inhibitor triazole antifungal

fluoxetine 20 CYP3A4 inhibitor selective serotonin reuptake inhibitor

midazolam 5 CYP3A4 substrate benzodiazepine

nifedipine 20 CYP3A4 substrate calcium channel blocker

rifampicin 600 CYP1A2 inducer
CYP3A4 inducer antimycobacterial

ritonavir 600 BID CYP3A4 substrate
CYP3A4 inhibitor protease inhibitor

simvastatin 20 CYP3A4 substrate statins

QD = quaque die; CYP = cytochrome P 450 enzymes; BID = bis in die.

3. Results

The model was evaluated by plotting its predictions with the available plasma con-
centration versus the time profiles of the four healthy volunteers, as shown in Figure 3.
Figure 3 represents the plasma concentrations of AFB1 versus time, as predicted by the
PBPK model, and the observed data points in the four subjects from the in vivo trial [28].
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model are shown by the blue line, and the observed data points of the four subjects from the in vivo
trial are represented as coloured symbols (each colour represents a subject). The light blue area shows
the twofold prediction. The dashed blue lines give the 5th–95th percentiles of the predicted plasma
concentrations.

The observed data from Jubert et al. (2009) and from the predictions using the PBPK
model, i.e., Cmax, AUC0–24 h, and Tmax are listed in Table 5.

Table 5. Overview of the mean observed data from Jubert et al. (2009) [28] and the simulated
data in the Sim-Chinese healthy volunteer population. The prediction/observed ratio is given in the
right column.

Observed Data
(Mean ± SD)

Predicted Data
(Mean ± SD) Predicted/Observed Ratio

Cmax (pg/mL) 0.941 ± 0.154 1.02 ± 0.035 1.08
AUC0–24 h (pg/mL.h) 12.4 ± 1.8 9.87 ± 0.825 0.80
Tmax (h) 1.02 ± 0.31 h 1.64 ± 0.075 h 1.61
AFE on Cp 1.12
AAFE on Cp 1.35

Cmax = maximum plasma concentration; AUC0–24 h = area under the curve from 0–24 h; Tmax = time at which
Cmax is achieved; AFE = average fold error; Cp = plasma concentration; AAFE = absolute average fold error.

The simulated profile of AFB1 was comparable to the clinical data, and the predicted
mean Cmax, AUC0–24 h, and Tmax for AFB1 administrated to healthy Chinese volunteers
were within 1.08-fold, 0.80-fold and 1.61-fold of the observed values, respectively.

Figure 4 shows the simulated AFB1 Cp versus time profile in the Sim-Chinese healthy
volunteer population, the Sim-NEur Caucasian population and the Black South African popu-
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lation (5000 subjects per population) exposed to a single dose of 30 ng AFB1. The mean
Cmax (pg/mL), Tmax (h), AUC (pg/mL.h) and CL (L/h) are presented in Table 6.
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Figure 4. Systemic AFB1 concentration (pg/mL) versus time (h) curve in a Sim-Chinese healthy
volunteer population of 5000 subjects (grey line), in a Sim-NEur Caucasian population of 5000 subjects
(orange line) and in a Black South African population of 5,000 subjects (blue line) over a time span of
24 h.

Table 6. Summary of the predicted PK parameters for healthy Chinese volunteers, North European
Caucasians and Black South Africans by simulating 5000 virtual subjects.

Sim-Chinese
Healthy Volunteers

North European
Caucasian Black South African

mean Cmax (pg/mL) 0.967 0.740 0.755
mean Tmax (h) 1.92 1.67 1.64
mean AUC0–24 h
(pg/mL.h) 9.85 6.78 6.24

mean CL (L/h) 4.62 6.52 8.78
Cmax = maximum plasma concentration; Tmax = time at which Cmax is achieved; AUC0–24 h = area under the curve
from 0–24 h; CL = clearance.

As observed in Figure 4 and Table 6, outcomes can be different in populations exposed
to the same compound and dose. Clearance in the Black South African population is 1.90-fold
higher than the clearance in the Sim-Chinese healthy volunteer population. The clearance
values clearly show that different populations demonstrate differences in drug disposition.

Table 7 shows the predicted PK parameters of AFB1, following a once-daily dose
of 30 ng in the Black South African (10 trials of 10 subjects) population, with or without
commonly used drugs administration (daily single dose), over a time span of 30 days. Data
of the combinations (Table 4), where no difference in PK parameters was observed between
AFB1 alone and in combination, are not included in Table 7.



Pharmaceutics 2023, 15, 894 12 of 17

Table 7. Overview of Cmax, Tmax, AUC, Cmin and CL (D/AUC) (+mean error) for AFB1 alone and in
combination with other drugs.

AFB1 Alone
AFB1 + Drug Ratio of PK Parameters

(with Drug/without Drug)

ME +Atazanavir (200 mg) QD ME

Cmax (pg/mL) 1.19 0.076 1.69 0.12 1.39
Tmax (h) 0.96 0.055 1.09 0.07 1.14
AUC0-inf (pg/mL.h) 11.7 1.21 23.7 2.54 2.09
Cmin (pg/mL) 0.18 0.0091 0.55 0.0055 3.10
CL (L/h) 5.82 0.58 3.12 0.31 0.54

+carbamazepine (200 mg) QD

Cmax (pg/mL) 1.21 0.08 1.00 0.063 0.83
Tmax (h) 0.96 0.06 0.92 0.055 0.96
AUC0-inf (pg/mL.h) 12.09 1.24 8.92 0.91 0.74
Cmin (pg/mL) 0.19 0.00096 0.12 0.00048 0.62
CL (L/h) 5.69 0.57 7.28 0.72 1.28

+ciprofloxacin (250 mg) QD

Cmax (pg/mL) 1.20 0.075 1.52 0.093 1.27
Tmax (h) 0.95 0.055 1.28 0.08 1.35
AUC0-inf (pg/mL.h) 11.8 1.22 17.42 1.68 1.47
Cmin (pg/mL) 0.19 0.00092 0.28 0.00188 1.51
CL (L/h) 5.86 0.58 3.21 0.31 0.55

+efavirenz (600 mg) QD

Cmax (pg/mL) 1.21 0.082 0.80 0.0053 0.66
Tmax (h) 0.95 0.06 0.71 0.045 0.75
AUC0-inf (pg/mL.h) 12.20 1.25 4.41 0.44 0.36
Cmin (pg/mL) 0.20 0.0090 0.03 0.00006 0.16
CL (L/h) 5.91 0.59 15.52 1.62 2.63

+phenobarbital (100 mg) QD

Cmax (pg/mL) 1.21 0.078 0.78 0.055 0.64
Tmax (h) 0.95 0.06 0.80 0.05 0.84
AUC0-inf (pg/mL.h) 12.1 1.25 5.39 0.56 0.45
Cmin (pg/mL) 0.20 0.009 0.05 0.00047 0.25
CL (L/h) 5.91 0.59 13.60 1.38 2.30

+phenytoin (100 mg) QD

Cmax (pg/mL) 1.21 0.08 0.95 0.063 0.79
Tmax (h) 0.96 0.06 0.89 0.055 0.93
AUC0-inf (pg/mL.h) 12.2 1.26 8.09 0.82 0.66
Cmin (pg/mL) 0.20 0.0095 0.11 0.00284 0.55
CL (L/h) 5.78 0.57 8.78 0.87 1.52

+fluconazole (50 mg) QD

Cmax (pg/mL) 1.20 0.064 1.35 0.07 1.13
Tmax (h) 0.95 0.06 1.00 0.06 1.05
AUC0-inf (pg/mL.h) 12.0 0.8 15.0 0.95 1.25
Cmin (pg/mL) 0.19 0.00113 0.267 0.00201 1.41
CL (L/h) 5.88 0.92 4.75 0.79 0.81

+rifampicin (600 mg) QD
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Table 7. Cont.

AFB1 Alone
AFB1 + Drug Ratio of PK Parameters

(with Drug/without Drug)

ME +Atazanavir (200 mg) QD ME

Cmax (pg/mL) 1.19 0.08 0.64 0.051 0.54
Tmax (h) 0.96 0.055 0.71 0.045 0.74
AUC0-inf (pg/mL.h) 11.7 1.21 3.02 0.31 0.26
Cmin (pg/mL) 0.18 0.0090 0.013 0.00001 0.07
CL (L/h) 5.82 0.575 24.03 2.47 4.13

+ ritonavir (600 mg) BID

Cmax (pg/mL) 1.21 0.078 1.95 0.15 1.56
Tmax (h) 0.95 0.055 1.10 0.07 1.16
AUC0-inf (pg/mL.h) 12.2 1.21 29.0 3.1 2.50
Cmin (pg/mL) 0.20 0.0090 0.75 0.078 3.75
CL (L/h) 5.91 0.575 2.78 0.27 0.47

ME = mean error; Cmax = maximal plasma concentration of the mean concentration time profile; Tmax = time at
which the maximal plasma concentration occurs in the mean concentration time profile; AUC0-inf = area under the
concentration curve from zero to infinity; Cmin = minimal plasma concentration of the mean concentration time
profile; CL = clearance; QD = quaque die; BID = bis in die.

4. Discussion

A PBPK model can be developed for every compound if enough high-quality data and
population information are available. In clinical phases in the development of a new drug,
PBPK modelling is often applied for a variety of purposes. It follows the 3R principle, and
it can be used to predict PK parameters by simulating trials in, e.g., human populations
that were not performed in real life. In vitro data on metabolism are required to unravel the
metabolic pathways and their importance next to enzyme involvement. In vitro–in vivo
extrapolation (IVIVE) is, therefore, the ultimate tool: by performing in vitro experiments
on human cells or microsomes, one can determine the metabolic parameters needed to
build a PBPK model. In this case, not much data were available for AFB1; therefore,
in vitro experiments were performed and certain parameters were predicted based on
the physicochemical characteristics of AFB1 [31]. The model was built using a bottom-
up approach without any fitting. IVIVE-PBPK is a very suitable approach to check for
potential interactions between compounds to which people are chronically exposed (such
as drugs, food contaminants etc.). Since mycotoxins, among other food contaminants,
are a part of the human diet, interactions need to be considered. Because of the low
concentration, in chronic exposure, mycotoxins will potentially not have an effect on the
PK of drugs, but drugs might have an impact on the PK of mycotoxins, leading to higher
exposure to the parent compound or higher exposure to metabolites, potentially leading
to increased or decreased toxicity. For compounds that cannot be experimentally tested
on humans, physiologically based mechanistic software tools such as PBPK modelling
are the go-to method. Since exposure to mycotoxins is largely unknown, instructions
might be given in case certain drugs are administered, and mycotoxin exposure is expected
based on the geographic region of the world (e.g., the African continent). Examples of
what to mention on the patient information leaflet of concerned drugs might be symptoms
of aflatoxicosis, or special attention might be drawn to mycotoxin awareness to avoid
homegrown, mouldy foods.

A PBPK model is verified if the predicted data are within twofold of the observed data.
Since the developed PBPK model seems to predict the PK parameters within 0.80–1.61-fold
(Table 5) of the scarce available in vivo data, the model can be considered verified as a
PBPK model. Of note is that the used MRP3 value from the literature comes from AFB1
metabolites and is used as a surrogate for AFB1. The results of the simulations run in three
different populations (Table 6), i.e., the Sim-Chinese healthy volunteer population, the NEur
Caucasian population and the Black South African population, indicate that it is necessary
and important to consider different populations. The PK parameters Cmax, Tmax and
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AUC0–24 h are slightly different between the different populations (fold differences of 1.28,
1.17 and 1.6 between the Black South African and Chinese healthy volunteer populations),
but it is clear that different populations have an impact on AFB1 CL, with a 1.90-fold CL
difference between the Black South African and Chinese healthy volunteer population.
Different regions in the world have different populations with a variety of genotypes and
phenotypes. The disposition of drugs can, therefore, be altered in different populations
and needs to be accounted for. It is relevant to further elaborate on this since there is still
a lack of granularity in how populations are subdivided, e.g., people from the African
continent are considered as one population, whereas in reality, different regions have
differing populations, leading to differences in the PK of compounds. A pilot Black South
African population has been built by SimCYP® using the scarce data that are available
and using information from other countries rather than South Africa alone (i.e., Nigeria).
More data on the different population components (i.e., liver, kidney, skin, GI tract, tissue
composition, tissue flow rates, tissue pore size, brain, lung, etc.) for the Black South African
population dataset should be retrieved to optimise this pilot population.

As mentioned in the Materials and Methods section, concomitant intake of AFB1 with
a drug (CYP1A2/3A4 perpetrators and substrates) was simulated using SimCYP® (version
21) and is shown in Table 7. The cases where AFB1 is selected as an inhibitor do not impact
the PK parameters of the tested drugs. AFB1 exposure is much lower compared to chronic
drug exposure, often daily dosed in milligrams. Thus, it can be stated that AFB1 will not
have a major impact on the PK of drugs at concentrations occurring in chronic exposure,
not even at high acute exposure concentrations. However, drugs can have an impact on the
PK of AFB1 and, potentially, other mycotoxins. Since the interaction between AFB1 and
certain drugs (carbamazepine, efavirenz, phenobarbital, phenytoin and rifampicin) can
lead to an increased clearance of AFB1 and lower AUC, up to 4.13 CL fold-difference and
0.26 AUC fold-difference with AFB1 alone, it indicates that more metabolites are formed. In
contrast, interactions between AFB1 and other drugs (atazanavir, ciprofloxacin, fluconazole
and ritonavir) lead to a lower clearance of AFB1 in the human body, consequently having
a higher AUC, up to 0.47 and 2.5 fold-difference with the intake of AFB1 alone, where
metabolites are less extensively formed. Carbamazepine induces both CYP1A2 and CYP3A4
and is itself a CYP3A4 substrate. Efavirenz is next to a CYP2B6 inducer/substrate, and
the CYP2C19 inducer is also a CYP3A4 inducer. Phenobarbital, phenytoin and rifampicin
are CYP1A2 and CYP3A4 inducers. Since CYP1A2 and CYP3A4 are responsible for the
formation of carcinogenic AFBO metabolites, it might be possible that people taking one of
these drugs are more exposed to carcinogenic metabolites of AFB1. In the case of rifampicin,
there is less danger since it is an antibiotic, mostly for acute use, while carbamazepine and
phenytoin are often chronically used and might cause higher exposure to AFBO in the case
of mycotoxin-contaminated diets. When AFB1 is co-administrated with CYP3A4 and/or
CYP1A2 inhibitors, there is a lower risk of being exposed to the AFBO metabolites of AFB1
in the case of a mycotoxin-contaminated diet.

5. Conclusions

It has been shown that CYP3A4/CYP1A2 inducer or inhibitor drugs have an impact on
the PK of AFB1, potentially leading to higher or lower exposure to carcinogenic metabolites
(AFBOs). With regard to the impact on risk assessment, there is the margin of exposure
(MOE) for genotoxic and carcinogenic compounds, which is the ratio of the exposure level
at which human health is not harmed and the estimated level of human exposure [45].
Consequently, it might turn out that the MOE needs to be reconsidered in the case of
co-exposure to certain drugs regarding the potential effect on the disposition of mycotoxins.
Furthermore, drugs that impact the PK of AFB1 should have the symptoms of aflatoxicosis
in the patient information leaflet, broadening the awareness on this topic and making
physicians and pharmacists aware of possible interactions between food and drugs. In
conclusion, IVIVE-PBPK is a valuable tool, especially in cases where no human in vivo
trials can be performed. It can be stated that mycotoxins will not likely have an impact on
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the PK of drugs regarding the differences in exposure/dosage. Drugs, on the other hand,
might have an impact on the metabolism of mycotoxins, potentially leading to more or less
toxicity, depending on the type of interaction (inhibition/induction) with enzymes and/or
transporters and depending on detoxification or bioactivation pathways.
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