
Citation: Guillem-Marti, J.; Vidal, E.;

Girotti, A.; Heras-Parets, A.; Torres,

D.; Arias, F.J.; Ginebra, M.-P.;

Rodriguez-Cabello, J.C.; Manero, J.M.

Functionalization of 3D-Printed

Titanium Scaffolds with Elastin-like

Recombinamers to Improve Cell

Colonization and Osteoinduction.

Pharmaceutics 2023, 15, 872.

https://doi.org/10.3390/

pharmaceutics15030872

Academic Editors: Anca

Oana Hermenean, Cornel Balta and

Oana-Maria Boldura

Received: 28 December 2022

Revised: 3 March 2023

Accepted: 6 March 2023

Published: 8 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

pharmaceutics

Article

Functionalization of 3D-Printed Titanium Scaffolds with
Elastin-like Recombinamers to Improve Cell Colonization
and Osteoinduction
Jordi Guillem-Marti 1,2,* , Elia Vidal 1,2,†, Alessandra Girotti 3,4 , Aina Heras-Parets 1,2, Diego Torres 1,2,‡,
Francisco Javier Arias 3,4 , Maria-Pau Ginebra 1,2,5 , Jose Carlos Rodriguez-Cabello 6,* and Jose Maria Manero 1,2

1 Biomaterials, Biomechanics and Tissue Engineering (BBT), Department of Materials Science and
Engineering (CEM), Universitat Politècnica de Catalunya—BarcelonaTech (UPC), 08019 Barcelona, Spain

2 Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de
Catalunya—BarcelonaTech (UPC), 08019 Barcelona, Spain

3 Smart Devices for NanoMedicine Group, Department of Biochemistry and Molecular Biology and Physiology,
University of Valladolid, 47011 Valladolid, Spain

4 Unidad de Excelencia Instituto de Biomedicina y Genetica Molecular (IBGM), Universidad de Valladolid and
Consejo Superior de Investigaciones Cientificas (CSIC), 47003 Valladolid, Spain

5 Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST),
08028 Barcelona, Spain

6 BIOFORGE (Group for Advanced Materials and Nanobiotechnology), Centro de Investigación Biomédica en
Red—Bioingeniería, Biomedicina y Nanomedicina (CIBER-BBN), University of Valladolid,
47011 Valladolid, Spain

* Correspondence: jordi.guillem.marti@upc.edu (J.G.-M.); roca@bioforge.uva.es (J.C.R.-C.)
† Current address: AMES Medical Prosthetic Solutions, 08620 Barcelona, Spain.
‡ Current address: AMES PM Tech Center, 08980 Barcelona, Spain.

Abstract: The 3D printing of titanium (Ti) offers countless possibilities for the development of
personalized implants with suitable mechanical properties for different medical applications. How-
ever, the poor bioactivity of Ti is still a challenge that needs to be addressed to promote scaffold
osseointegration. The aim of the present study was to functionalize Ti scaffolds with genetically
modified elastin-like recombinamers (ELRs), synthetic polymeric proteins containing the elastin
epitopes responsible for their mechanical properties and for promoting mesenchymal stem cell (MSC)
recruitment, proliferation, and differentiation to ultimately increase scaffold osseointegration. To this
end, ELRs containing specific cell-adhesive (RGD) and/or osteoinductive (SNA15) moieties were
covalently attached to Ti scaffolds. Cell adhesion, proliferation, and colonization were enhanced on
those scaffolds functionalized with RGD-ELR, while differentiation was promoted on those with
SNA15-ELR. The combination of both RGD and SNA15 into the same ELR stimulated cell adhesion,
proliferation, and differentiation, although at lower levels than those for every single moiety. These
results suggest that biofunctionalization with SNA15-ELRs could modulate the cellular response to
improve the osseointegration of Ti implants. Further investigation on the amount and distribution
of RGD and SNA15 moieties in ELRs could improve cell adhesion, proliferation, and differentiation
compared to the present study.

Keywords: 3D printing; elastin-like recombinamers; functionalization; osseointegration; titanium

1. Introduction

In recent decades, titanium (Ti) and its alloys have been widely used for bone im-
plant purposes due to their proper mechanical properties, good biocompatibility, and
high resistance to corrosion [1–3]. Recently, the incorporation of Ti in the growing 3D
printing industry has enabled the design of 3D-printed Ti scaffolds suitable for different
bone/orthopedic applications [4]. The design of 3D-printed Ti structures with customized
shapes and geometries, together with the possibility of controlling its porosity and pore
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size, has revolutionized the biomedical field by offering the possibility of tuning mechanical
properties and improving the biological response simultaneously [5].

In this regard, 3D-printed structures can be colonized by cells to promote bone tissue
ingrowth within the scaffold to obtain better tissue integration and mechanical stability.
However, the osseointegration and osteoconduction capacities of Ti are limited due to its
lack of bioactivity [6]. To overcome this limitation, different strategies have been adopted
in recent decades, mostly grouped into physical or chemical surface modifications. On
the one hand, physical surface modifications such as the alteration of nano- and/or micro-
roughness have produced significant advances in the osseointegration of Ti implants,
although they are difficult to apply to 3D-printed scaffolds. On the other hand, chemical
surface modifications, focused on tethering biomolecules to provide adhesive and/or
functional moieties at the implant surface [7–9], are more applicable for 3D-printed scaffolds.
Immobilization of these bioactive molecules on the surface may provide the cells with
signals for adhesion, differentiation, and, in the case of porous scaffolds, cellular migration
into the structure.

Several proteins from the extracellular matrix (ECM) have been used to accomplish
these functions, such as collagen [10], fibrinogen [11], and fibronectin [12]. Although they
demonstrate improved osseointegration capacities when immobilized onto biomaterials,
natural proteins are difficult to obtain or produce, which hampers their clinical transla-
tion [13]. In contrast, the use of synthetic recombinant protein fragments [14,15] or small
peptides [16] is a promising alternative since huge yields can be obtained, thus considerably
reducing the costs.

In this context, the use of genetic engineering methodologies enables the design of
highly complex functional proteins or polymeric proteins with several properties [17], such
as elastin-like recombinamers (ELRs), which are synthetic proteins whose sequences are
derived from certain peptides of natural elastin [18,19]. ELRs retain the elastin mechanical
properties, thermo-responsiveness, non-immunogenicity, and excellent biocompatibility
and present a strong tendency to self-assemble depending on the environmental con-
ditions [20]. Their sequence is based on the repetitions of the conserved pentapeptide
Val-Pro-Gly-X-Gly (VPGXG), where the guest X position can accommodate any natural
amino acid but proline. Interestingly, ELRs can be genetically engineered to include ad-
ditional amino acids or domains that tune their bioactivity without affecting the elastin
properties. For instance, the addition of RGDS or REDV, small adhesive peptides found in
different ECM proteins, into ELRs has been demonstrated to increase cell adhesion and col-
onization when immobilized onto different materials [21–23]. However, additional signals
are required to induce the differentiation of bone cells and, ultimately, bone regeneration.
The use of the small peptide SNA15 (DDDEEKFLRRIGRF) derived from the N-terminal
15-amino acid residue of statherin, for instance, has shown similar mineralization capacities
to the native protein when inserted into ELRs [24,25]. Statherin is a salivary protein that
plays a key role in the nucleation and growth of hydroxyapatite in the oral cavity by binding
calcium ions and hydroxyapatite on its N-terminal position [26]. However, the SNA15
peptide does not promote cell adhesion, hence requiring the presence of additional signals.
Noteworthy, in all cases, ELRs containing cell-adhesive and/or osteoinductive motifs were
immobilized onto 2D materials without considering the possible influence of 3D features.

The main objective of the present study was to Improve the osseointegration capacities
of 3D-printed Ti scaffolds by functionalizing their surfaces with genetically modified ELRs.
The novelty of this work relies on the fact that, to our knowledge, ELRs or genetically
modified ELRs have not been used before in 3D structures. To this end, we covalently
attached ELRs that were genetically engineered to incorporate in their sequence the fol-
lowing biomolecules: (i) a dodecapeptide peptide derived from fibronectin that included
RGD to promote cell adhesion; (ii) an SNA15 peptide from statherin to mediate hydrox-
yapatite nucleation; or (iii) both RGD and SNA15 sequences together for a synergistic
effect. Non-modified ELRs and a 3D-printed Ti scaffold with no ELRs were used as a
control. The main goal of the present study was to assess the effect of genetically modified
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ELRs functionalized onto 3D-printed Ti scaffolds in mesenchymal stem cell colonization,
differentiation, and mineralization.

2. Materials and Methods
2.1. Printing of Scaffolds

Cylindrical shape scaffolds with cubic internal pores obtained by a 0-90º pattern,
where the filaments in each level are placed perpendicularly to the level beneath them,
were selected among other possible geometries (Figure 1). This geometrical design allows
for a more open structure with higher porosities compared to other common structures (e.g.,
honeycomb), although sacrificing to some extent their mechanical behavior. In addition, this
design allows for highly interconnected pores whose dimensions can be easily controlled
by the strut dimensions and the distance between the filaments.
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Figure 1. Schematic diagram of the 3D printing process of Ti scaffolds. Figure 1. Schematic diagram of the 3D printing process of Ti scaffolds.

The 3D Ti scaffolds were fabricated as previously described [27]. Briefly, Ti powders
(Alfa Aesar, Haverhill, MA, USA) were mixed with 30% Pluronic F-127 (Sigma-Aldrich,
St. Louis, MO, USA) in water using a SpeedMixer DAC 150.1 FVZ (FlackTek Inc., USA)
asymmetric centrifugal mixer system at 3500 rpm for 5 min (Figure 1). The obtained ink
was extruded through a 410 µm diameter nozzle syringe (Smooth Flow Tapered Tips,
Nordson EFD, Westlake, OH, USA) using a DIW device (BCN3D printer + Paste cAster,
Fundació CIM, Barcelona, Spain). The cubic geometry of the internal pores was designed
using the SolidWorks software (SolidWorks Corp., Waltham, MA, USA), and the printing
parameters were adjusted using the Slic3r free software (http://slic3r.org/, Accessed on 24
May 2022). The nozzle diameter defines the diameter of the printed strut. The layer height
was set to 350 µm, the infill density was 45%, and the infill speed was 15 mm/s. The infill
density is related to the density of the 3D-printed scaffold. Increasing this value implies
a higher density of the scaffold. An infill of 45% was set as the optimal balance between
the low-density structure and the achievement of an architecture capable of supporting
its own weight. Using these parameters, scaffolds of 75% porosity were obtained after
sintering with pores in the range of 316–332 um [27], which are in the optimal range for cell
colonization [28] and osteointegration [29]. The samples were designed to obtain 13 mm
diameter and 5 mm height scaffolds containing a total of 12 alternated filament layers.

After printing, the Pluronic F-127 was removed by a thermal treatment at 280 ◦C in
an oven. Subsequently, the scaffolds were sintered in a tubular furnace (Carbolite, Hope
Valley, UK) under high-vacuum conditions (10−5 mbar). The temperature was raised at a
constant rate of 2.5 ◦C min−1 until 1350 ◦C, sintering the scaffolds for 3 h.

2.2. Synthesis and Characterization of Elastin-like Recombinamers

The ELR genes were synthesized following recombinant DNA technologies, and
the protein recombinamers were produced using the Escherichia coli expression system
as previously described [30,31]. The ELRs were purified from the bacterial biomass by
several cycles of temperature-dependent reversible precipitation [32]. Finally, the ELRs

http://slic3r.org/


Pharmaceutics 2023, 15, 872 4 of 16

were dissolved and dialyzed against ultrapure water at 4 ◦C, sterilized by filtration, and
freeze-dried. The ELRs’ purity grade was determined by dodecyl sulfate polyacrylamide
gel electrophoresis (SDS-PAGE), nuclear magnetic resonance spectroscopy (NMR), and
Fourier-transform infrared spectroscopy (FT-IR), as described elsewhere [33].

2.3. Scaffold Functionalization

Figure 2 shows a schematic diagram of the process followed to functionalize the
scaffolds. The scaffolds were cleaned and activated by an oxygen plasma treatment for
5 min at 12 MHz in a Femto low-pressure plasma equipment (Diener Electronic, Ebhausen,
Germany). Samples were then immersed in 0.5 M (3-chloropropyl)triethoxysilane (CPTES)
and 0.05 M diisopropylethylamine (DIEA) in anhydrous toluene for 1 h at 70 ◦C under
agitation in a nitrogen atmosphere to avoid the incorporation of water in the solution. The
samples were ultrasonically cleaned with anhydrous toluene; washed with toluene, ethanol,
isopropanol, distilled water, and acetone; and finally dried with nitrogen. Afterward, the
samples were incubated overnight in a solution of 0.05 mg/mL ELR containing 0.5 mM
Na2CO3. After incubation, the samples were rinsed thrice in a phosphate-buffered saline
(PBS) and blocked with 1 w/v% bovine serum albumin (BSA) in PBS for 30 min. Before
cellular assays, the samples were sterilized in 70% ethanol for 30 min and washed with PBS
three times. Non-functionalized Ti scaffolds were used as the control.
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2.4. Characterization of ELR Functionalization

The presence of ELRs functionalized onto the Ti scaffolds was inspected by fluores-
cence visualization. To this end, the HRGD was fluorescently labeled with FITC in a
molar ratio of 3:1 FITC to ELR and using an amine-reactive derivative of fluorescein dye
(NHS-Fluorescein, Thermo Fisher Scientific, Waltham, MA, USA). Briefly, HRGD and FITC
were dissolved in a DMF-DMSO mixture (1:1 v/v) at room temperature for 6 h. The FITC
solution was slowly poured into the ELR solution and incubated for 24 h. Afterward, the
reaction was precipitated in diethyl ether (Honeywell, Wabash, IN, USA), washed twice
with acetone (Scharlab, Sentmenat, Spain), and allowed to dry under a vacuum at room
temperature. The ELRs were dissolved in water at 4 ◦C and dialyzed against ultrapure
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water, sterilized by filtration, and freeze-dried. After functionalization, the scaffolds were
immersed in liquid nitrogen and longitudinally crushed. The distribution of fluorescently
labeled HRGD was assessed by visualization of the scaffolds using an MVX10 Research
Macro Zoom Microscope (Olympus, Tokyo, Japan).

2.5. Cell Culture and Maintenance

Rat mesenchymal stem cells (rMSCs) were isolated from the tibias and femurs of
young Lewis rats and expanded in Advanced DMEM medium supplemented with 10%
fetal bovine serum (FBS), 2 mM L-glutamine, penicillin/streptomycin (50 U ml−1 and
50 µg ml−1, respectively), and 20 mM HEPES buffer solution, all from Thermo Fisher
Scientific (USA). The cells were maintained at 37 ◦C in a humidified atmosphere and 5%
CO2. In all the experiments, the cells from passage 4 were used and seeded at a density of
50 × 103 cells/sample in a serum-free medium.

2.6. Cell Adhesion and Proliferation

Cells were quantified after 4 h of adhesion or allowed to proliferate for 7, 14, 21, and
28 days after replacing the medium with a complete medium containing 10% FBS. No
osteogenic medium was used. After each incubation period, the medium was removed,
and the cells were washed and lysed using 300 µL of Mammalian Protein Extraction
Reagent (M-PER; Thermo Fisher Scientific). The number of cells at each specified time was
quantified using the Cytotoxicity Detection Kit (LDH) (Roche Applied Science, Penzberg,
Germany) following the manufacturer’s instructions. The measurements were obtained
spectrophotometrically at 492 nm using a Synergy HTX multi-mode microplate reader
(Bio-Tek Instruments, Winooski, VT, USA), and the cell numbers were extrapolated using a
calibration curve with decreasing numbers of cells. The tolerance for the peak absorbance is
±3 nm while the tolerance for the optical density alignment is ±0.015 AU in this equipment.
The error in the last test performed was ±0.007 AU in the optical density measurement,
and the repeatability of results showed a deviation of ±0.001 AU.

2.7. Cell Colonization and Morphology

After 4 h or 7, 14, 21, and 28 days of incubation, the cells were fixed with 2.5%
glutaraldehyde solution in phosphate buffer (PB) for 1 h at 4 ◦C. The samples were sub-
sequently immersed in osmium tetroxide solution for 1 h and rinsed with distilled water.
Then, the scaffolds were dehydrated by immersion in an ethanol series (50%, 70%, 90%, and
96%) and completely dehydrated in hexamethyldisilazane for 15 min. Dried samples were
cut horizontally down the mid-section after immersion in liquid nitrogen, and cell pene-
tration into the scaffolds was visualized by Zeiss Neon 40 scanning electron microscopy
(SEM; Carl Zeiss, Jena, Germany) using 5 kV voltage. The percentage of the area occupied
by cells on filaments four and five (from the top, where cells were seeded downwards)
was quantified in each condition using the ImageJ software (National Institute of Health,
Bethesda, MD, USA).

2.8. Cell Differentiation and Mineralization

Cell differentiation into the osteoblastic lineage was evaluated by measuring the
alkaline phosphatase (ALP) activity as a differentiation marker. For this purpose, the same
extracts obtained in the cell proliferation assay were used for quantifying the ALP activity
with a SensoLyte pNPP Alkaline Phosphatase Assay Kit (AnaSpec Inc., Fremont, CA, USA).
Enzymatic activity was evaluated spectrophotometrically at 405 nm for each specified time
point using a Synergy HTX multi-mode microplate reader (Bio-Tek Instruments, USA),
and the results were normalized versus their corresponding cell number obtained in the
proliferation assay. Mineralization was assessed after culturing the cells for 28 days on
scaffolds. Then, the cells were fixed in 4% paraformaldehyde solution in PBS for 15 min and
rinsed with distilled water. Calcium deposits were stained with 500 µL/scaffold of 40 mM
Alizarin Red S (Sigma-Aldrich, USA) for 20 min by gentle shaking. Excess dye was removed
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by several washings with distilled water, and the staining was extracted by incubation
in 10% cetylpyridinium chloride with 10 mM NaH2PO4. Supernatants were measured
spectrophotometrically at 570 nm using a Synergy HTX multi-mode microplate reader
(Bio-Tek Instruments, USA), and the results were normalized versus their corresponding
cell number obtained in the proliferation assay.

2.9. Statistical Analysis

Data are presented as mean values ± standard error of the mean. Experiments were
performed in triplicate using three replicates per group. Statistically significant differences
between the groups (p-value < 0.05) were analyzed by the Kruskal–Wallis non-parametric
test followed by the Mann–Whitney U test with Bonferroni correction using SPSS statistics
software (IBM, Armonk, NY, USA).

3. Results and Discussion
3.1. ELR Synthesis and Characterization

The recombinamers studied in this work were based on the repetitions of the elastin
pentapeptide containing isoleucine (I) or lysine (K) as guest amino acids, VPGIG, and
VPGKG. The lysine-free γ-amino groups were used for functionalization through their
interaction with CPTES. This basic sequence involved the ELR as a control, coded as IK.
Moreover, modified versions of this basic ELR were synthesized, containing different
bioactive moieties: (i) a peptide derived from statherin (SNA15), which is involved in the
nucleation of hydroxyapatite (H3); (ii) the RGD peptide of human fibronectin involved in
cellular adhesion (HRGD); and (iii) the combination of both bioactive peptides into one
ELR (H4R4). The different ELRs’ compositions and molecular weights (MWs) are shown
in Table 1.

Table 1. Amino acid sequences of the different ELRs. The hydroxyapatite nucleation and the adhesion
sequences are highlighted in bold and underlined.

ELR Amino Acid Sequence MW Da

IK MESLLP[(VPGIG)2(VPGKG)(VPGIG)2]24V 51,980

H3 MESLLP{[(VPGIG)2(VPGKG)(VPGIG)2]2 DDDEEKFLRRIGRFG
[(VPGIG)2(VPGKG)(VPGIG)2]2}3V 31,877

HRGD MGSSHHHHHHSSGLVPRGSHMESLLP{[(VPGIG)2(VPGKG)(VPGIG)2]2
AVTGRGDSPASS[(VPGIG)2(VPGKG)(VPGIG)2]2}6V 60,661

H4R4
MESLLP{[(VPGIG)2(VPGKG)(VPGIG)2]2 DDDEEKFLRRIGRFG
[(VPGIG)2(VPGKG)(VPGIG)2]2]4[[(VPGIG)2(VPGKG)(VPGIG)2]

2AVTGRGDSPASS[(VPGIG)2(VPGKG)(VPGIG)2]2]4}V
80,730

The purity of the different ELRs determined by SDS-PAGE was greater than 95%
(Figure 3A). However, the ELRs containing the statherin domain presented a partial degra-
dation. All ELRs showed electrophoretic mobility delay with respect to the theoretical
molecular weight. However, the migration of the ELRs was consistent with the expected
MW differences with respect to each other. This phenomenon is due to the high content
of hydrophobic amino acids of the synthetic protein polymers which results in a slow
migration of the ELRs and an apparently higher molecular weight, as previously observed
by other authors [34,35].

The degree of purity was also corroborated by the acquisition of the infrared spectra
(Figure 3B). The correspondence of the ELRs’ profiles was verified, and undesired contam-
inants were not detected. In addition, the proton NMR spectra (Figure 4) confirmed the
ELRs’ purity and identity by the determination of the relative amount (ratio) and absolute
content of amino acids [36].
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Pharmaceutics 2023, 15, 872 8 of 16

Pharmaceutics 2023, 15, x FOR PEER REVIEW 8 of 17 
 

 

The degree of purity was also corroborated by the acquisition of the infrared spectra 
(Figure 3B). The correspondence of the ELRs’ profiles was verified, and undesired 
contaminants were not detected. In addition, the proton NMR spectra (Figure 4) 
confirmed the ELRs’ purity and identity by the determination of the relative amount 
(ratio) and absolute content of amino acids [36]. 

 
Figure 4. Proton NMR spectra of the purified ELRs. 

3.2. Scaffolds Functionalization 
In previous works, we demonstrated that the use of silanes, specifically 3-

chloropropyltriethoxysilane (CPTES) or 3-aminopropyltriethoxysilane (APTES), enables 
the covalent immobilization of ECM proteins on plasma-activated Ti surfaces 
[10,14,15,37]. Herein, we verified that the same strategy could be applied to 3D-printed Ti 
scaffolds since, after crushing the sample, we observed fluorescently labeled HRGD 
distributed throughout the scaffold (Figure 5A). In high-magnification images, we 
observed that the HRGD was homogenously distributed along the Ti filaments (Figure 
5B). Since the linking mechanism between HRGD and CPTES silane is through the lysine 
in the elastin-like repetitions of the former, we assumed that all the different studied ELRs 
were also homogeneously distributed throughout the Ti scaffolds. 

Figure 4. Proton NMR spectra of the purified ELRs.

3.2. Scaffolds Functionalization

In previous works, we demonstrated that the use of silanes, specifically 3-chloropro
pyltriethoxysilane (CPTES) or 3-aminopropyltriethoxysilane (APTES), enables the covalent
immobilization of ECM proteins on plasma-activated Ti surfaces [10,14,15,37]. Herein, we
verified that the same strategy could be applied to 3D-printed Ti scaffolds since, after
crushing the sample, we observed fluorescently labeled HRGD distributed throughout
the scaffold (Figure 5A). In high-magnification images, we observed that the HRGD was
homogenously distributed along the Ti filaments (Figure 5B). Since the linking mechanism
between HRGD and CPTES silane is through the lysine in the elastin-like repetitions of
the former, we assumed that all the different studied ELRs were also homogeneously
distributed throughout the Ti scaffolds.
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3.3. Cell Adhesion and Proliferation

The number of rMSCS adhered to the scaffolds was higher on HRGD-functionalized
surfaces than the other functionalized scaffolds and the non-functionalized scaffolds
(Figure 6A). This enhancement in cell adhesion could be associated with the presence
of the RGD motif in the ELR sequence, which mediates cell adhesion through integrin
interaction [38]. However, in previous studies, it was observed that the addition of RGD in
ELRs did not increase the number of adhered cells compared to ELRs without the RGD
sequence [39–41], and this was interpreted as an indication that the cells were able to
selectively recognize and adhere to elastin-derived peptides, irrespective of the presence
of RGD [42]. Therefore, we hypothesize that there might be a synergistic effect between
HRGD and the roughness of the scaffold filaments, which was approximately 8 µm [37].
In contrast, the presence of the statherin motif in the RGD-containing ELR, i.e., H4R4,
decreased the adhesion of cells compared to HRGD-functionalized scaffolds. This might be
associated with the length of the H4R4 polymer, which implies a reduction in the amount
of RGD sequences in the same area compared to the HRGD ELR.

In addition, HRGD enhanced not only cell adhesion but also the proliferation of
rMSCs cultured on functionalized Ti scaffolds (Figure 6B). In previous studies, we demon-
strated that the presence of RGD in ELR stimulated the proliferation compared to the
non-functionalized samples or ELR-functionalized surfaces, i.e., IK [40,43]. The cells prolif-
erated adequately on all the other surfaces, although lower levels were observed for the
statherin-containing ELR-functionalized scaffolds, i.e., H3-functionalized Ti scaffolds.

3.4. Cell Colonization

To assess the penetration of cells throughout the Ti scaffolds, the cells were incubated
at different times, and scaffold cross-sections were observed by SEM. Cells adhered mostly
in the upper filaments of the functionalized and non-functionalized Ti scaffolds after 4 h of
incubation (Figure S1). It is noteworthy that more cells were observed on RGD-containing
ELRs-(HRGD and H4R4) functionalized Ti scaffolds compared to the other conditions
(Figure 7). It has been previously observed that the presence of RGD in ELRs stimulates the
adhesion of cells more rapidly compared to non-RGD ELRs [44,45].
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The cells were able to migrate through the entire Ti scaffolds from the upper to the
lower part over the incubation periods (Figures S2–S4), as the cells were observed even
on the surface of the bottom filaments at 28 days of culture (Figure S5). The scaffold pore
size, approximately 400 µm [37], allowed the successful penetration of the cells in the
present study. It has been previously described that pores from 300 to 600 µm in diameter
are required to allow the migration of cells into porous structures in in vitro studies [28].
Smaller pore sizes produce the accumulation of cells in external parts of scaffolds that are
detrimental not only to cell migration but also to oxygen and nutrient supply [46]. Of note,
the number of cells on the filaments in the lower part of the scaffolds (parallel filaments 4
and 5, from the top downwards) was larger for the ELR-functionalized compared to the
non-functionalized Ti scaffolds, especially with long incubation periods (Figure 8). Notably,
there were few differences between filaments 4 and 5 within each condition, demonstrating
that the cells could colonize the whole scaffold.
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3.5. Cell Differentiation and Mineralization

The results of the ALP activity indicated that all the surfaces induced differentiation of
rMSCs after 7 days, since the values obtained were significantly higher than those obtained
after 4 h of culture, where no ALP activity was detected (Figure 9A). It is important to
mention that a non-osteogenic medium was used in all the conditions. Remarkably, the
differentiation of rMSCs was found even in non-functionalized Ti scaffolds. This could be
attributed to two reasons. On the one side, it has been reported that geometrical effects
associated with the macro-structure of the 3D porous constructs may play a role in cell
differentiation [47]. On another side, the combined micro-/nano-roughness generated by
the 3D printing methodology itself and the sintering process [37] may also stimulate rMSCs
differentiation [48].
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Figure 9. Cell differentiation: ALP activity at 7, 14, 21, and 28 days (A) and quantification of calcium
deposits at 28 days (B) of rMSCs cultured on the different functionalized and non-functionalized (Ti)
scaffolds. At each time point, “a” indicates statistically significant differences compared to IK, “b”
indicates statistically significant differences compared to H3, “c” indicates statistically significant
differences compared to HRGD, and “d” indicates statistically significant differences compared
to H4R4.
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Noteworthily, the functionalization of scaffolds with the ELR containing the SNA15 pep-
tide fragment from statherin (H3) responsible for the nucleation of hydroxyapatite produced
an increase in ALP activity at 14 days compared to the other conditions (Figure 9A). This high
ALP activity correlated with the lower proliferation of rMSCs on the H3-functionalized Ti
scaffolds mentioned above. This is because precursor cells continuously divide until they
acquire a fully differentiated state, and terminal differentiation coincides with proliferation
arrest [49]. Although the exact process by which the bioactive peptide SNA15, present
on H3, stimulates osteoblastic differentiation is not fully understood, it was previously
speculated that the negative charges present at the N-terminal site of the SNA15 peptide
might mediate the binding of calcium phosphate ions [50]. It has been observed that the
accumulation of calcium phosphate ions induced by the statherin peptide sequence has an
osteoinductive effect on the MSCs cultured on H3 membranes [40]. In fact, the cells grown
on H3 scaffolds exhibited higher levels of mineralization in the present study (Figure 9B).
It is important to mention that the ELR containing both RGD and SNA15 (H4R4) did not
stimulate differentiation and mineralization to the same extent as the ELR containing only
SNA15 (H3). This particular behavior has been previously observed and is attributed to the
fact that the number of SNA15 epitopes in H3 is higher than the number exhibited in H4R4
for the same polymer weight [39,40]. Although mineralization was lower in H4R4 than in
H3 scaffolds, it was higher compared to HRGD and bare Ti (Figure 9B).

One of the main limitations of the current study is the use of one specific 3D structure
without considering other scaffold topologies. It is well known that several parameters
including the pore size and geometry [46], or the scaffold architecture [51], have a significant
effect on the cellular response and on osseointegration of the scaffold. As a proof of concept,
in the present study we functionalized the scaffolds of cubic internal pores because it allows
for a more open structure with higher porosities. Further experiments will demonstrate that
the method may be applied to other 3D structures. In addition, another limitation is that
the current work was performed in static conditions, while it is well known that dynamic
cultures strongly influence the behavior of cells [51]. The influence of dynamic culturing on
the MSCs’ response on ELR-functionalized scaffolds will be evaluated in further studies.

4. Conclusions

The functionalization of 3D-printed Ti with ELRs has been demonstrated to be a
promising strategy for tuning the interaction of MSCs with the filaments and colonization of
the scaffold. The modification of ELRs with adhesive and/or osteoinductive motifs has been
demonstrated to trigger different cell behaviors. The addition of RGD in the ELR sequence
stimulated the adhesion and spreading of cells and their migration and colonization of
scaffolds. In contrast, the presence of the hydroxyapatite nucleation fragment of statherin
promoted MSC differentiation into the osteoblastic lineage, even in the absence of an
osteogenic cell culture medium, although it decreased cell adhesion and proliferation.
Although the combination of both adhesive and osteoinductive motifs in the ELR improved
adhesion and proliferation compared to the statherin-containing ELR, the osteoinductive
potential was lower. Thus, the functionalization of 3D Ti scaffolds with this statherin-
containing ELR could be of interest in improving the osseointegration capacities of Ti
scaffolds. Further research exploring the in vivo behavior of the ELR-functionalized Ti
scaffolds will shed light on their osseointegration potential.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/pharmaceutics15030872/s1. Figure S1: Low- and high-magnification
SEM images of the different functionalized and non-functionalized Ti scaffolds showing attached cells
4 h after cell seeding; Figure S2: Low- and high-magnification SEM images of the different function-
alized and non-functionalized Ti scaffolds showing attached cells after 7 days of culture; Figure S3:
Low- and high-magnification SEM images of the different functionalized and non-functionalized Ti
scaffolds showing attached cells after 14 days of culture; Figure S4: Low- and high-magnification
SEM images of the different functionalized and non-functionalized Ti scaffolds showing attached

https://www.mdpi.com/article/10.3390/pharmaceutics15030872/s1
https://www.mdpi.com/article/10.3390/pharmaceutics15030872/s1


Pharmaceutics 2023, 15, 872 14 of 16

cells after 21 days of culture; and Figure S5: Low- and high-magnification SEM images of the different
functionalized and non-functionalized Ti scaffolds showing attached cells after 28 days of culture.
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