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Abstract: Major Depressive Disorder (MDD), colloquially known as depression, is a debilitating
condition affecting an estimated 3.8% of the population globally, of which 5.0% are adults and
5.7% are above the age of 60. MDD is differentiated from common mood changes and short-lived
emotional responses due to subtle alterations in gray and white matter, including the frontal lobe,
hippocampus, temporal lobe, thalamus, striatum, and amygdala. It can be detrimental to a person’s
overall health if it occurs with moderate or severe intensity. It can render a person suffering terribly
to perform inadequately in their personal, professional, and social lives. Depression, at its peak, can
lead to suicidal thoughts and ideation. Antidepressants manage clinical depression and function
by modulating the serotonin, norepinephrine, and dopamine neurotransmitter levels in the brain.
Patients with MDD positively respond to antidepressants, but 10–30% do not recuperate or have
a partial response accompanied by poor life quality, suicidal ideation, self-injurious behavior, and
an increased relapse rate. Recent research shows that mesenchymal stem cells and iPSCs may be
responsible for lowering depression by producing more neurons with increased cortical connections.
This narrative review discusses the plausible functions of various stem cell types in treating and
understanding depression pathophysiology.

Keywords: depression; stem cells; molecular pathways; neurogenesis; cytokine hypothesis; monoamine
hypothesis; mesenchymal stem cells

1. Introduction

Major Depressive Disorder (MDD) is considered to be the most frequent psychiatric
disorder [1] and, according to the World Health Organization (WHO), the leading cause of
disability [2]. Low mood, diminished interest in daily activities, guilt, loss of pleasure, diffi-
culty concentrating, low self-esteem, trouble sleeping, and altered appetite are some of the
MDD symptoms. These issues can become chronic or recurrent, with severe consequences
on a person’s ability to carry out daily activities. At its worst, depression can lead to
suicidal thoughts [3]. Depression has been related to an increased chance of suffering from
other severe illnesses, such as cardiovascular disease [4], stroke [3], Alzheimer’s disease [5],
epilepsy [6], diabetes [7], and cancer [8]. Depressive symptoms are more commonly seen in
older people, but this is due to factors linked with ageing, including physical disability [9],
cognitive deficits, socioeconomic drawbacks, and other factors [10]. Treatment-resistant
depression (TRD) can be caused by continuous exposure to environmental stressors during
development [11].

Almost all antidepressants work the same way and effectively treat severe MDD across
the lifespan [12,13]. However, antidepressant therapy has a number of adverse side effects,
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including sedation, headaches, decreased blood pressure, insomnia, weight gain, indiges-
tion, feeling agitated, dry mouth, diarrhea, and sexual dysfunction [14]. This frequently
leads to poor patient compliance, resulting in a recurrence of depressive symptoms and a
higher risk of suicide [14].

Stem cells sustain the potential to help with tissue regeneration due to their capacity
to self-renew and differentiate into numerous other cell types. In this narrative review,
we explore the role of different stem cell types in managing, understanding, and treating
depression.

2. Neurochemistry of Depression: The Monoamine Hypothesis

Norepinephrine (NE), serotonin (5-hydroxytryptamine, 5HT), and dopamine (DA)
dysregulation are linked to the pathological changes seen in depression [15] (Figure 1).
According to the monoamine hypothesis of depression, NE, 5HT, and DA work in syn-
chrony to regulate emotions and mood [15]. In the depressed mood, the dysregulation of
these three monoamines is observed, along with extracellular 5HT levels being lower than
average. It has been reported that monoamines and metabolites are found to be lower in
the urine, blood, and cerebrospinal fluid (CSF) of patients with depression as compared to
age-matched controls [16].
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Figure 1. The monoamine hypothesis of depression. The reduced levels of serotonin, norepinephrine,
and dopamine have been observed and are understood as one of the main factors responsible for the
generation of depressive symptoms.

The sympathetic nervous system’s primary neurotransmitter, NE, is produced in the
locus coeruleus (LC) and is capable of sending projections all over the CNS. Research on
depression began with a focus on the noradrenergic system, starting with introducing the
“motor activation deficit” hypothesis [16]. Patients with depression and victims of suicidal
behavior have been seen to show deficits in the noradrenergic system in the LC compared
with healthy individuals [17]. Furthermore, some genetic changes in norepinephrine trans-
porters (NETs) are highly plausible to be associated with psychiatric diseases [18,19]. It has
been discovered that heterogeneously projecting neurons from the LC can separately lead
to modulation of fear and learning, emphasizing that an imbalance in the activation of these
neuronal groups may be linked with post-traumatic stress disorder (PTSD) and depression
in rats [15]. Another monoamine neurotransmitter, DA, is well known to play an essential
role in motivation, concentration, reward, psychomotor speed, and emotional response [15].
Notably, changes in DA functioning have also been linked to depression-related fatigue
symptoms [20]. Depressed patients have lower DA metabolites in their CSF, which supports
this hypothesis [21]. Pharmacologically, increased dopamine binding and availability of
the dopamine transporter (DAT) in the striatum have been observed to improve depression
symptoms in humans [22]. Furthermore, ropinirole, a dopaminergic targeting drug, has
improved antidepressant treatment responsiveness in refractory patients [23].
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Serotonin is synthesized in the dorsal raphe nucleus from tryptophan (via a 5-OH-
tryptophan intermediate). The dorsal raphe nucleus sends projections to the whole CNS
including, remarkably, the brain areas that are vulnerable to stress, such as the hippocampus.
Serotonin is a widely distributed neurotransmitter that also acts as a neuromodulator [24–26].
Ever since its discovery, 5HT in the brain has been linked to circadian rhythms, sleep, cognitive
abilities, appetite, motor activities, and many more biological functions [27]. Furthermore,
5HT involvement in response to stress [28] and psychiatric disease [29] has received a lot of
attention. A decrease in serum 5HT [30] and plasma tryptophan [31] levels and alterations in
metabolite levels of 5HIAA (5-hydroxyindoleacetic acid) in CSF have been observed in patients
with a depressive illness [31]. Serotonin and its metabolites however have not been found
to be a persistent biomarker of depression [26]. The function of 5HT receptors (particularly
autoreceptors) and 5HT transporters is also being studied in patients with depression [26].

3. Growth Factors Involved in Depression

There are several biological factors associated with depressive symptoms, as shown
in Figure 2. It has been investigated that stress-induced epigenetic changes can lead to
depression [32,33]. Two meta-analyses of studies examining temporal lobe structures in
MDD indicated that patients with recurrent depression have a smaller hippocampus [34,35].
Synaptic plasticity in neural circuits associated with depressive behaviors is regulated
by the brain-derived neurotrophic factor (BDNF) [36–38]. Interestingly, stress-induced
impairments in the brain structure and synaptic plasticity may be reversed by BDNF
upregulation, leading to flexibility in cognition and an elevated capacity to acclimatize to
environmental changes that might stimulate depressive episodes. According to current
research, in depressed subjects, BDNF levels in the blood are lower, and they increase with
antidepressant treatment [39]. Additionally, elevated BDNF plasma levels have been linked
to better treatment outcomes regardless of the medication used [40].
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Figure 2. Biological factors and clinical manifestations associated with depression. There are multiple
biological causes at molecular, genetic, epigenetic, cellular, and systems levels. These causes result in
clinical depression and can have a plethora of symptoms that may vary in different individuals.

Furthermore, anxiety, depression risk, neuroticism, and serotonergic neurotransmis-
sion have all been linked to altered serum BDNF levels and BDNF gene polymorphism [2].
Lithium augmentation refers to the addition of lithium to an antidepressant in the acute
treatment phase of depression [41,42]. Antidepressant augmentation with lithium is a well-
studied augmentation therapy for patients with depression who have not been responding
well to antidepressant therapy [41]. Moreover, lithium augmentation has the ability to
increase BDNF concentrations in the serum [40].
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The reduced levels of nerve growth factor (NGF) are involved in the pathophysiology
of depression. Fluoxetine and lithium are known to treat depression by upregulating NGF
protein levels in the hippocampus [43]. Neurotrophin-3 (NT-3) is responsible for neuron
proliferation, differentiation, and survival. NT-3 also promotes the growth of axons and
dendrites. Clinical data from post-mortem research showed that people with depressive
disorders have lower NT-3 levels in their parietal brain [44,45]. The decreased glial cell
line-derived neurotrophic factor (GDNF) in the serum is correlated with the development
of depressive symptoms. GDNF has a crucial role in the survival and maintenance of
monoaminergic neurons. It has been reported that reduced GDNF levels abnormally
regulate serotonergic neurons and reduce post and pre-synaptic serotonin receptors in
patients with depression [46]. Fibroblast growth factor-2 (FGF-2) is another growth factor
associated with depression [47]. Recent research has suggested that BDNF may signal via
the Akt and GSK3 pathways [48].

Further, it has been seen that erythropoietin impacts neuroplasticity and could be
used to treat depression in the future. A study by Miskowiak et al. recruited 40 patients
with a bipolar mood disorder and 40 patients with TRD. The patients received either a
weekly intravenous infusion of erythropoietin or saline. It was observed that a single dose
of erythropoietin (Eprex; 40,000IU) could improve cognitive functioning and reduce the
neurocognitive processing involved in negative emotional information in normal versus
people with depression in a way that is similar to antidepressants’ effects [49]. In the limited
research conducted on unipolar depression, inositol, a component of the intracellular
phosphatidyl-inositol second-messenger system, has also been shown to be effective [50].
Finally, peripheral VGF (nonacronymic) showed a reduced expression in MDD patients,
and recombinant VGF administration causes antidepressant effects in rats [50].

4. Depression as a Neurodegenerative Disorder

Neurodegenerative disorders are conditions in which the central nervous system cells
stop functioning or die [51–53]. The majority of neurodegenerative diseases are incurable
and often worsen with time [54,55]. Patients suffering from depression have been shown to
have a reduced cortical thickness in the right superior temporal, left inferior temporal lobe,
and right pars orbitalis in comparison to healthy controls [56]. Temporal and prefrontal
cortex structural alteration has also been reported in people with both depression and
anxiety. The atrophy seen in the prefrontal and temporal cortices may be a typical pattern
of cortical and subcortical changes [57]. The hippocampus, one of the most explored limbic
structures, is thought to be the integrator of emotional response and cognition. It is involved
in the development of new memories and guides our behavioral response by comparing
new stimulatory inputs with the memories which have been previously stored [58]. On the
other hand, caudate nucleus volume alteration may indicate anxious depression, which
can be used to differentiate anxious from non-anxious depression [56]. Many studies have
used neuroimaging methods, particularly magnetic resonance imaging (MRI), to identify
structural changes in the brain linked with MDD in recent years.

High-resolution structural imaging, which shows grey matter thickness and brain
morphology; diffusion tensor imaging (DTI), which can record the white matter and its
microstructures; and functional MRI (fMRI), which shows the neuronal activity in specific
brain areas, are all MRI scan sequences that researchers commonly use. MRI studies have
previously revealed that patients with MDD have significant impairments in numerous
brain regions. The frontal and parietal lobes, thalamus, caudate, pallidum, putamen, and
temporal lobes have shown regional grey matter changes (e.g., the hippocampus and
amygdala) in these patients [57]. The frontal lobe is considered the most typical region
showing anatomic abnormalities in depression [59]. Studies have shown that the thickness
of the prefrontal region is reduced, and these changes are linked with poor clinical outcomes
in depression [56]. Moreover, depression shows some of the same pathological features as
seen in neurodegenerative disorders such as Alzheimer’s disease [60]. In both depression
and neurodegenerative disorders, neuroinflammation is observed. The monoamine oxidase
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pathways are implicated in depression, Parkinson’s disease, and Alzheimer’s disease [60].
Therefore, several monoamine oxidase inhibitors are used to treat neurodegenerative
disorders and depression. Furthermore, hypothalamus–pituitary axis dysfunction is seen
in both neurodegenerative disorders and depression [60].

5. Stem Cells: An Insight

Undifferentiated, pluripotent cell types known as stem cells are found in the embry-
onic, fetal, and adult stages of almost all organisms. They have the ability to develop into
different types of differentiated cells as per the spatial and temporal distribution. These
cells can be classified based on differentiation and origin. The stem cells that are specific
for tissues are found in organs, which have been differentiated in the postnatal and adult
lifespans and have an essential role in organ repair after injury. Self-renewal, clonality, and
potency are crucial features of stem cells [60].

Embryonic stem cells are derived from the zygote and blastocyst to create the three
germ layers: endoderm, mesoderm, and ectoderm. The germ layers mature into a specific
organ. Tissue stem cells can be present in bone marrow, bone, liver, brain, etc., since certain
progenitor cells that contributed to organogenesis do not differentiate terminally [61]. Since
they inevitably lead to differentiated cells and specialized cells of the tissue or organ, tissue
stem cells are also known as progenitor cells. These cells may be quiescent within the
tissue, but they will multiply in the case of an injury [62]. In the 1950s, the first trials of
bone marrow transplants in animal models led to the start of contemporary medicine’s
studies with stem cells and organ repair [63]. These pioneering experiments paved the
way for human bone marrow transplantation, which is a common treatment for a variety
of blood diseases, and established a unique therapeutic method for tissue regeneration
with the use of stem cells. Regenerative medicine is a significant focus of research, not
just in terms of seeking solutions but also in terms of understanding basic biology and
disease causation [64]. Regenerative medicine links and combines various fields, including
engineering, technology, biology, and medicine, intending to restore tissue homeostasis by
repairing or replacing damaged cells, tissues, or organs [65]. Despite the fact that research
into stem cells has raised a number of ethical concerns, advances in stem cell isolation
and development have allowed scientists to identify culture-specific cell types for tissue
repair in several disorders [66]. Stem cells have the ability to treat depression; a schematic
shown in Figure 3 briefly elucidates the mechanism of some of the types of stem cells to
treat depression.
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Figure 3. Shows the role of mesenchymal stem cells (MSCs) and neural stems cells (NSCs) in the
management of depression. The reduction in the depressive symptoms in the mice animal model
has been observed due to administration of MSCs and NSCs. The MSCs and NSCs have the ability
to upregulate the BDNF signaling pathway, which is usually downregulated in patients suffering
from depression. The upregulation of the BDNF signaling pathway helps in the stimulation of
neurogenesis. Neurogenesis is one of the major biological factors responsible for the development of
depression; the increase in neurogenesis helps in relieving the symptoms associated with depression.
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6. Intranasal Route for Stem Cells Administration

Stem cells therapy has crucial clinical properties in the treatment of disorders associ-
ated with CNS. One of the major obstacles in the delivery of stem cells or any type of drug
into the CNS is the blood brain barrier (BBB) [67,68]. The use of stereotactic or intrathecal
injections is usually necessary for stem cell therapy in the brain. The invasive procedure
restricts the use of stem cell transplantation in the treatment of neurological conditions [67].
Numerous studies have shown that an intranasal application (INA) can circumvent the
BBB and transfer small molecules and macromolecules to the CNS. Furthermore, INA is
less invasive and more reliable than stereotactic brain injections and intrathecal injections.
INA has no disease specificity, but it also demonstrates the benefits of its broad use across
a range of neurological disorders. INA is preferable over the intravenous administration
in a number of ways: (1) it delivers therapeutic agents to the CNS to a large extent; (2) it
manages to avoid first-pass metabolism; (3) it is noninvasive and simple to use, allowing
for repeated administration if required; and (4) its side effects are reduced since no other
healthy organs are exposed to the therapeutic agent [67]. The intranasal injection of neural
stem cells (NSCs), mesenchymal stem cells (MSCs), and induced pluripotent stem cells
(iPSCs) have been used in the treatment of various neurological disorders [68]. The INA
of MSCs have been widely used in the research and treatment of glioma, neurodegenera-
tion, and brain injury. The INA iPSCs have also been used for studies related to chronic
inflammation. In INA, substances accumulate in the nasal cavity’s epithelial cell layer
and go straight to the brain parenchyma along the olfactory or trigeminal nerves or via
the cerebrospinal fluid system. The intracellular and paracellular transport channels can
transfer the substances to the CNS once they have arrived at the targeted site [67].

7. Utilizing the Induced Pluripotent Stem Cells (iPSCs) to Understand
Depression Pathophysiology

Adult somatic cells have been transformed genetically to an embryonic stem (ES)
cell-like state through enforced genetic expression and proteins crucial for preserving the
defining traits of ES cells, resulting in iPSCs [68]. Human iPSCs (hiPSCs) allow for the
recreation of cellular phenotypes, typically in depression and the search for new antidepres-
sant treatments. Moreover, hiPSCs are used for the verification of existing antidepressant
efficacy, and to provide new information about depression etiopathogenesis [69]. Hedgehog
signaling irregularities have been reported in the hiPSCs of people with bipolar depression,
indicating that this aberration can be potentially linked to depression [69]. Despite the
monoaminergic hypothesis’ oversimplification, depression’s recent pharmacological treat-
ment relies on medications that primarily target the monoamine neurotransmitter systems.
This has a delayed efficacy with a lag duration of several weeks to months before exhibiting
clinical improvement [70]. Psychiatry, on the other hand, is going through a fascinating
period. The hiPSC technology, when combined with current breakthroughs in genome
editing tools, offers innovative and distinct options in disease modeling and medication
discovery. For many psychiatric diseases, this technique has enabled the creation of new
disease-relevant patient-specific in vitro models [71]. These models promise to improve
our understanding of the pathophysiology of patients with MDD while also addressing
many of the known practical constraints of animal and post-mortem models [72]. Interest-
ingly, Marcatili et al. used the hiPSC technology-based TRD model to study ketamine’s
mechanism of action as an antidepressant, which might contribute to customized and less
hazardous new treatments [70]. Furthermore, two distinct research groups have advanced
iPSC research, allowing this technology to be applied to the field of depression study by
using the iPSC technique to generate serotonergic neurons. In vitro studies of neurons are
therefore now possible. Previously, only animal models were used to study neurotrans-
mission [73]. In two recent papers [74,75], serotonergic neuron generation by harnessing
iPSCs has been reported. Antidepressants, notably SSRIs such as fluoxetine, sertraline,
citalopram, paroxetine, and escitalopram, target serotonergic neurons that are dysregulated
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in depression. Serotonergic neurons may therefore be studied now using new techniques
in patients with depression [73].

8. Mesenchymal Stem Cells and Depression: A Therapeutic Mechanism

MSCs are a diverse kind of stromal stem cell that can be separated from a variety
of adult tissues [75,76], such as the umbilical cord, endometrial polyps, bone marrow,
adipose tissue, and others [77]. They can segregate into mesodermal lineage cells such
as osteocytes, adipocytes, chondrocytes, and some other embryonic lineages [75]. The
presence of MSCs has also been recently observed in other sources, such as menstrual
blood. These MSCs prove to be a noteworthy option for future clinical and experimental
applications, and there are likely more sources of MSCs yet to be discovered. One of the
most difficult tasks is to elucidate the mechanisms of MSC differentiation, mobilization,
and homing. MSCs’ multipotent properties make them a considerate option for clinical
application development [77]. Several studies have also observed the anti-inflammatory
activity of MSCs [78]. Notably, MSCs have the ability to downregulate the expression of the
proinflammatory cytokines IL-1β, IL-6, and TNF-α [79], which is one of the major reasons
that contribute to the development of depression, as discussed in the cytokine hypothesis.
Zhang et al. studied the antidepressant-like effect of human umbilical cord mesenchymal
stem cells (HUC-MSCs) on microglial polarization and depression-like symptoms asso-
ciated with myocardial infarction (MI). They concluded that injecting HUC-MSCs in the
seven-week-old male mice model significantly improves cardiac function and depression-
like behavior caused by MI. This was achieved through Jmjd3 level downregulation and
M1/M2 microglia polarization regulation. HUC-MSCs can bring more important benefits
to patients with depression and MI compared with typical antidepressants [79]. Most
antidepressants work on modulating monoamine transmission, yet numerous patients
experience low residual symptoms and remission rates. Recent research suggests that
glutamatergic abnormalities and glial pathology, as well as the monoaminergic system,
play a major role in the etiology and manifestation of symptoms associated with depres-
sion [80]. Altered levels of glutamate in plasma [81], serum [82,83], CSF [84], and brain
tissue were observed in suicide victims and people with mood disorders [85–87]. Animal
models of induced depression, such as the genetic mice model for depression, Flinders
Sensitive Line (FSL), show glutamatergic impairments. FSL mice also show increased
resting glutamate levels and glutamate transients in the prefrontal cortex [88]. Importantly,
the drop in glial numbers is a common neuropathological finding in MDD [77,88,89], which
has the potential to reduce neuronal plasticity. FSLs exhibit defective astrocytic regulation
of glutamate transmission in the hippocampus [90], including downregulation of the glial
excitatory amino acid transporter (EAAT) 1, a key member of the glutamate/neutral amino
acid transporter protein family [90]. Several glutamatergic drugs have been proposed as
potential antidepressants, while their sedative and psychotomimetic side effects may limit
their usage [91]. The study by Shwartz et al. found that when differentiating human MSCs
expressing high levels of EAAT1 and EAAT2 were administered via intracerebroventricular
injection in FSL mice, it showed a long-term depressive-like behavior attenuating impact on
these animals, affecting motivation, novelty exploration, and hedonia. In recent research,
nanoparticles (NPs) are being used as a theranostic tool for the treatment and diagnosis of
several neurological and mood disorders [92]. Using non-invasive, real-time imaging of the
gold nanoparticles (GNPs) that labelled the cells, followed by a quantitative analysis of gold
amounts in the brain regions, it was discovered that the majority of EAAT-positive MSCs
moved to the dentate gyrus of the hippocampus, and were identified in this region up to
one-month after transplantation, [93]. The behavioral effect of MSC-EAATs on FSLs appears
to follow a pattern similar to that of other pharmacological and non-pharmacological anti-
depressant treatments, with the strongest effect occurring within 2–3 weeks of treatment,
when a balance in the expression of depression-related receptors (e.g., dopamine and 5-HT)
is achieved [93]. Thus, treatment with MSC-EAAT may improve depressive-like behaviors
by restoring normal hippocampus glutamatergic transmission and BDNF levels. This idea
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was confirmed by a subsequent study conducted by Nibuya et al. that found defective
astrocytic glutamate regulation in the hippocampus of FSLs, including the downregulation
of glia EAAT1 expression [93].

Further, excessive proinflammatory cytokines release such as MCP-1, IL-1, IL-6, and
TNF-alpha leads to behaviors comparable to depression [94]. Recently, it was discovered
that after depression was induced, MCP-1, IL-1, IL-6, and TNF expression increased sig-
nificantly. Expression of MCP-1, IL-1, IL-6, and TNF- was decreased by adipose-derived
mesenchymal stem cells (ADSC) therapy. These ADSCs were extracted and grown from
adipose tissues (mouse abdominal fat) for the study [95]. These stem cells are multipotent
and capable of differentiating into a variety of cell types, including those of adipogenic,
myogenic, chondrogenic, and osteogenic lineage [96]. The findings also demonstrated that
ADSC treatment decreased mice’s depressive-like behaviors in the sucrose preference test
(SPT), tail suspension test (TST), and forced swimming test (FST), which is consistent with
earlier depression and inflammation studies [97]. It was also shown that ADSC treatment
enhanced the levels of BDNF and TrkB expression, which had previously been observed to
be reduced following depression. The BDNF-TrkB signaling pathway has been previously
demonstrated to modulate brain inflammation and protect against hippocampus injury,
suggesting that ADSC-mediated protective effects could be linked to reduced symptoms of
depression [98,99]. ADSCs have the ability to engraft in the brain tissue and develop into
neurons and glial cells following transplantation, and as a result, they are commonly used in
peripheral nerve regeneration [100]. ADSC transplantation therapy has been demonstrated
to have anti-inflammatory benefits in recent investigations [101]. Further research revealed
that depression increased TLR4/NF-B activation while simultaneously suppressing the
Nrf2/HO-1 signaling pathway. ADSC therapy, on the other hand, enhanced Nrf2/HO-1
signaling while decreasing TLR4/NF-B activation. TLR4 signaling activates the JNK signal-
ing cascade, causing neuroinflammation and neurodegeneration, and/or interacts with the
Bcl-2 family of proteins, causing the mitochondrial apoptotic pathway to be activated [102].
It has been observed that depression is associated with a decrease in neurogenesis. MSCs
have the ability to stimulate neurogenesis by neurotrophic factor expression and differenti-
ate into neural lineages [103]. In another study by Tfilin et al., MSCs were derived from
the adult bone marrow and were injected into FSL rats (an animal model for depression)
through a cerebroventricular injection. The MSC-transplanted rats showed improvement
in behavioral performance when measured with the dominant–submissive relationship
(DSR) paradigm and forced swim test [103]. After the transplantation, the MSCs will start
migrating the dentate gyrus, CA3, and CA1 regions of the hippocampus, hypothalamus,
thalamus, and contralateral hippocampus, and neurogenesis will be stimulated. Neuro-
genesis helps in modulating the treated depressive disorders [103]. Furthermore, a study
performed by Kin et al. explained that the administration of encapsulated MSCs into the
lateral ventricle of Wistar Kyoto (WKY) rats, which are promising animal models of TRD,
exerts antidepressant effects. The implantation of encapsulated MSCs is associated with
the upregulation of the intrinsic expression of CNTF and VEGF and their receptors [104].

9. Neural Stem Cells and Depression

NSCs have garnered interest in recent years with the extensive published literature
elucidating that the adult brain maintains multipotent NSCs in contrast to the old dogma
of the brain being a generally invariable and quiescent organ that lacks the flexibility
to regenerate. With their most generally accepted distinguishing traits, NSCs are also
ascribed to the so-called tissue stem cells [105], featuring the power to stay undifferentiated
without an outlined phenotype under specific conditions, the power of dividing and
proliferating (self-renewal), and also the ability to be differentiated into a progeny like
neurons, oligodendroglia, and astroglia upon neurogenesis initiation. They are the unique
types of competent cells found within the adult mammalian brain’s “neurogenic” regions,
such as the hippocampus [106], subventricular zone [107], and neural structures [108],
and might create neurons both spontaneously and in response to local signals induction.
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Neurogenesis (NG) is assumed to need an explicit set of signaling cues to be delivered
to cells that are neurogenic in a very spatially and temporally coordinated manner by
their surroundings so as to activate stem cells or progenitors to develop new neurons and,
in addition to the well-known modulators [109], injury is considered to be sufficient to
activate neurogenesis. Neurogenesis is also stimulated by the expression of BDNF [110].
NSCs are often extracted from adult brain tissues, including post-mortem brain tissue [111],
and become significant candidates for increasing or restoring the quality and function of
brain tissue affected with CNS-related illnesses. The NSCs are clonally expanded in vitro,
genetically manipulated, or stimulated to transform CNS cell lineages [111]. Understanding
how adult neurogenesis is regulated has required significant work. Because of this, we
now understand that numerous intrinsic and extrinsic pathways might influence this
process [111].

Growth factors, transmitters, enzymes, tissue hormones, neuromodulators, and an-
tibodies are predicted to be secreted into the local tissue environment by activated cells,
eliciting desirable tissue responses. In damaged neuronal and glial networks, the newly em-
powered cells and their progeny can operate as functional enhancers and scaffold “healing
agents.” These properties have led to substantial advancements in the invention of thera-
pies for trauma and perfusion issues such as stroke [112], ischemia, or neurodegeneration-
related conditions [112–114]. Not unexpectedly, the prospects of NSCs in mental health
care are being hotly debated. Numerous psychiatric illnesses are likely to possess genetic
variants and specific cellular and anatomical correlations that are mostly unknown [112].

In depression, a reduction of neurogenesis is often seen in the hippocampus [115].
This further implies that neurogenesis deficiencies might cause the symptoms associated
with depression, while enhanced neurogenesis can mediate antidepressant action and ease
symptoms. However, various conflicting reports regarding the role of neurogenesis in
alleviating depression must be first reconciled before this bidirectional concept’s complete
legitimacy is established [116]. The activation of adult hippocampal neurogenesis leads
to the transformation of neural somatic cell progeny to mature CNS neurons. These CNS
neurons then acquire functional and morphological qualities to integrate into existing
neural networks or replace various other brain cells that have died [117,118].

10. Conclusions

Recent pharmacological treatments of depression rely on medications that primarily
target monoamine neurotransmitter systems. This has a delayed efficacy with lag dura-
tions of several weeks to months before exhibiting clinical improvement. Psychiatry, on
the other hand, is going through a fascinating period. Importantly when combined with
current breakthroughs in genome editing tools, hiPSC technology offers innovative and
distinct options in disease modeling and medication discovery for depression. Reduced
hippocampal neurogenesis has been observed in depression. This implies that NG deficien-
cies might cause depressed symptoms of depression and that enhanced NG can mediate
antidepressant action and ease symptoms. Moreover, as reported in experimental models,
the differentiated MSCs have a promising treatment capability in reversing depressive-like
behavior.
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