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Abstract: Cardiomyopathy is associated with structural and functional abnormalities of the ventricu-
lar myocardium and can be classified in two major groups: hypertrophic (HCM) and dilated (DCM)
cardiomyopathy. Computational modeling and drug design approaches can speed up the drug
discovery and significantly reduce expenses aiming to improve the treatment of cardiomyopathy. In
the SILICOFCM project, a multiscale platform is developed using coupled macro- and microsimula-
tion through finite element (FE) modeling of fluid–structure interactions (FSI) and molecular drug
interactions with the cardiac cells. FSI was used for modeling the left ventricle (LV) with a nonlinear
material model of the heart wall. Simulations of the drugs’ influence on the electro-mechanics LV
coupling were separated in two scenarios, defined by the principal action of specific drugs. We
examined the effects of Disopyramide and Dygoxin which modulate Ca2+ transients (first scenario),
and Mavacamten and 2-deoxy adenosine triphosphate (dATP) which affect changes of kinetic pa-
rameters (second scenario). Changes of pressures, displacements, and velocity distributions, as
well as pressure–volume (P-V) loops in the LV models of HCM and DCM patients were presented.
Additionally, the results obtained from the SILICOFCM Risk Stratification Tool and PAK software
for high-risk HCM patients closely followed the clinical observations. This approach can give much
more information on risk prediction of cardiac disease to specific patients and better insight into
estimated effects of drug therapy, leading to improved patient monitoring and treatment.

Keywords: cardiomyopathy heart modelling; hypertrophic cardiomyopathy (HCM) patients; dilated
cardiomyopathy (DCM) patients; fluid–structure interaction (FSI); kinetic processes of sarcomeric
proteins interactions; disopyramide; digoxin; mavacamten; 2-deoxy adenosine triphosphate (dATP);
modeling drug influence

1. Introduction

Cardiomyopathies are defined as structural and functional abnormalities of the ven-
tricular myocardium [1]. When the same genetic mutation happens in more than one family
member, it is called familial cardiomyopathy (FCM). On the other hand, in the absence
of relevant family history, nonfamilial cardiomyopathy is classified [2]. There are four
major classifications of cardiomyopathy: hypertrophic (HCM), dilated (DCM), restrictive
(RCM), and arrhythmogenic right ventricle (RV) cardiomyopathy (ARVC) [3], while the
most frequent are HCM and DCM.

HCM can cause outflow obstruction and abnormal movement of the mitral valve due
to increased left ventricle (LV) wall thickness, which is called left ventricular outflow tract
obstruction (LVOTO). It can be observed that approximately 70% of patients with HCM
have LVOTO with severe basal septal hypertrophy and systolic anterior motion of the
mitral valve [4].
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Understanding of cardiac muscle activity in HCM and DCM cardiomyopathies has
been significantly improved with continuous development and integration of compu-
tational models [5]. Furthermore, the idea of an integrative modeling methodology by
coupling several spatial and temporal scale computational tools presented in the study
of Prodanovic et al. [6] might help in identifying the symptoms and outcomes of patients
with multiple genetic disorders. For the simulation of total heart health or pathology,
molecular, cellular, tissue, and organ levels have to be integrated. However, simulations
of muscle function at the organ level [7] with even simpler models [8] require a lot of
high-performance computing and memory [9]. Furthermore, simulation of fluid–structure
interactions (FSI) in whole heart during the total heart cycle demands usage of a large num-
ber of finite elements (FEs) due to complex heart geometry. Moreover, calculating precise
muscle characteristics for specific patients’ conditions, such as muscle stiffness and active
tension, requires solving partial differential equation solutions [10,11] or using Monte Carlo
approaches [10–12]. Nevertheless, high-performance computing makes it possible to run
multiscale models of the heart, in which the behavior of each cell is controlled by molecular
mechanics and organ level tissue structures using the FE method. In this way, heart simula-
tions might also be used for clinical applications besides the scientific purposes. In terms of
clinical application, Siguira et al. [13] used UT-Heart models for cardiac resynchronization
therapy and surgery for congenital heart disease, while the computational platform for in
silico clinical trials (SILICOFCM platform [14]) has been used for risk prediction of cardiac
hypertrophic disease [15,16]. The SILICOFCM platform integrates patient-specific data and
allows the testing and optimization of medical treatment to maximize positive therapeutic
outcomes. The integrated data include biological, genetic, and clinical imaging data which
are processed using various approaches such as bioinformatics, machine learning, data
analytics, multiscale modelling, and FE modelling.

The FE method can be applied standalone or coupled with different computational
methods for modelling complex biological tissue behavior and treatments. In a recent study,
the FE method [17] was successfully applied for the simulation of liver tumor treatment
also combining magnetic field and heat control. Treatment of liver cancer by destroying
the damaged liver tissue using a designed surgical needle was also modelled under a
local heating process [18]. The utilized Runge–Kutta and finite difference method were
integrated in a hybrid model for numerical analysis of hyperthermia treatment of tumor or
cancer cells [19], as well as for numerical analysis of thermal response of a multi-layer skin
model under heating and cooling processes [20]. The advantage of these computational
methods is their wide application in tissue modelling, from the micro to macro level.

On the micro level of cardiac tissue, micromechanics models based on the regulatory
and contractile proteins in the sarcomeres analyzed the generation of force in the cardiac
muscle tissue. They include the steady-state force–calcium, force–length, and force–velocity
relationships and the length-dependent prolongation of twitches and increase in peak
force [21].

This study, as part of the SILICOFCM in silico clinical trial, brings novelty in multiscale
examination of drug interactions applying coupled macro- and micro-simulation through
FE modeling of FSI and molecular drug interactions with cardiac cells. With this approach,
adverse drug effects can be avoided, sudden cardiac death can be prevented, and the time
needed for the desired result of drug treatment can be shortened. The main motivation for
such an approach relies on improvement of computational modeling in testing the effects
of pharmacological treatment, aiming to reduce animal experiments and human clinical
trials. Moreover, computer-aided drug design is a well-known approach in the production
strategy of drugs [22]. It can significantly reduce time and costs for procedures in drug
research and development [23]. Additionally, pharmacophore modeling, virtual screening,
molecular docking, and molecular dynamic simulations are becoming very popular in
silico techniques [24].

In this study, an FSI algorithm for FE simulation was firstly introduced, and then an
algorithm of the FE model was integrated with stretches along muscle fibers. The principal
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actions of specific drugs were divided into two major groups. The first class of drugs
modulates calcium transients (Disopyramide and Digoxin), while the second class changes
the kinetics of contractile proteins (Mavacamten, 2-deoxy adenosine triphosphate (dATP)).
We quantitatively assessed the effects of drugs Disopyramide, Digoxin, Mavacamten, and
dATP on the pressure and volume changes in the LV models for relevant HCM or DCM
patients. Results for pressure, displacement, and velocity distribution, as well as P-V
loops for LV HCM and LV DCM patients for basic condition (without administered drugs)
and with effects of using respective drugs are presented. Additionally, results from the
Risk Stratification Tool and PAK software for high-risk HCM patients are presented and
compared with available clinical observations.

2. Materials and Methods
2.1. Fluid–Solid Coupling

The movement of fluid in the left ventricle can be considered as a laminar flow of the
incompressible fluid, which is described using the continuity equation and Navier–Stokes
equations:

− µ∇2vl + ρ(vl · ∇)vl +∇pl = 0, (1)

∇vl = 0, (2)

where vl is the blood flow velocity, pl is the pressure, µ is the coefficient of dynamic
viscosity of blood, and ρ is the density of blood. These equations can be transformed into
the balance equations of an FE by using the Galerkin method. The incremental-iterative
balance equation of an FE for a time step ‘n’ and equilibrium iteration ‘i’ has the form[

1
∆t M + n+1

~
K
(i−1)

vv Kvp
KT

vp 0

]{
∆V(i)

∆P(i)

}
blood

={
n+1F(i−1)

ext
0

}
−
[

1
∆t M + n+1K(i−1) Kvp

KT
vp 0

]{
n+1V(i−1)

n+1P(i−1)

}
+

{ 1
∆t MnV

0

} (3)

where n+1V(i−1) and n+1P(i−1) are the nodal vectors of blood velocity and pressure, with
the increments in time step ∆V(i) and ∆P(i); ∆t is the time step size and the left upper
indices ‘n’ and ‘n + 1’ denote the start and end of the time step.

Using velocities as nodal variables, the incremental-iterative equations of the force-
balance for a FE and per unit volume can be written in the usual form:(

1
∆t

M +
¯
K
(i−1)

)
∆V(i) = Fext(i) − Fint(i−1) − 1

∆t
M
(

V(i−1) −Vt
)

, (4)

where ∆t is the time step, i is the iteration counter, and Fext(i) are external nodal forces
acting on the element; V(i−1) and Vt are nodal velocities at a previous iteration and at the
start of the time step, respectively. The mass and stiffness matrices are

M = ρNTN,
¯
K
(i−1)

=

(
¯
B

T

CT
¯
B

)(i−1)

, (5)

where ρ is the mass density, and the vector of the internal nodal forces is

Fint(i−1) =
¯
B

T(i−1)
¯
σ
(i−1)

. (6)

The tangent constitutive matrix, C(i−1)
T , in the local system will be determined within

the computational procedure presented below.
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There are two approaches for the FE modeling of FSI problems: (a) strong coupling
method, and (b) loose coupling method. For the strong coupling, the solid and fluid
domains are modeled as one mechanical system. In the loose coupling, solid and fluid
domains are modeled separately with different FE solvers. Namely, the solid domain
is modelled in a computational solid dynamics (CSD) solver and the fluid domain in a
computational fluid dynamics (CFD) solver. Although the solutions are obtained with
different FE solvers, the parameters from one solution which affect the solution for the
other medium are transferred successively.

There is no slip between the fluid and solid at the common boundary, which means
that the nodes at the solid–fluid boundary have the same displacements and velocities for
the solid and fluid domains. If the strong coupling approach is used, the terms of the FE
matrices and forces corresponding to these common nodes are summed as is usual in the
FE assembling procedure. In the loose coupling method, the systems of balance equations
for the two domains are formed separately and there are no such computational difficulties.
Both strong and loose coupling are available in our PAK FE software package [25]. Similar
results can be achieved with both methods but since the loose coupling is computationally
less intensive, this method is used more frequently. In loose coupling, the equations are
first solved for the fluid domain. When the convergence for the fluid domain is reached,
the nodal forces, for an element E, which has nodes at the boundary, is calculated as in (6):

FE =
[

1
∆t M + Kvv Kvp

]{V
P

}
, (7)

and the forces at the common boundary as the vector FE are used.

2.2. Finite Element (FE) Solvers

This section explains how FE model was integrated with stretches along muscle fibers.
A multi-scale model of muscle contraction together with graphical interpretation of the
algorithm for the FSI problem is shown in Figure 1 [26].
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Figure 1. Block diagram of the FSI algorithm coupled with multi-scale model of muscle contraction. 
Muscle is discretized into FEs where each FE contains muscle fiber and integration points [26]. 
Figure 1. Block diagram of the FSI algorithm coupled with multi-scale model of muscle contraction.
Muscle is discretized into FEs where each FE contains muscle fiber and integration points [26].

Based on input parameters, the current state of the material of the microscale model,
and provided stretch, in each iteration i, the Mijailovich–Prodanovic (MP) surrogate model
of sarcomere contractions [6,16] calculates the local active tension and instantaneous stiff-
ness along muscle fibers (Figure 2). Afterwards, the macroscale model solves the equi-
librium equation that includes local active tension and stiffness from the MP model and
provides the stretch and total tension in the FE integration points. This coupled incremental
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iterative process is repeated until the changes in the velocity and the active tension at the
current iteration are below the prescribed tolerances.
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Figure 2. Algorithm linking FE analysis and MP surrogate model.

2.3. Cardiomyopathy Risk Stratification

This section briefly explains the Cardiomyopathy Risk Stratification Tool, developed
as part of the SILICOFCM platform, which uses specialized data mining methods for
supervised learning to provide an identification of high-risk patients [14–16,27]. More
specifically, its main aim is to identify patients with a high risk of severe events such
as sudden cardiac death (SCD) or life-threatening arrhythmias. In addition to modeling
patient risk, the tool is also supplemented with reliability estimates for risk predictions.
Both the risk prediction model and reliability estimates allow medical experts to decide
whether the patient will be subjected to further analysis, and how trusting the automatically
predicted risk level is.

The developed Risk Stratification Tool uses machine learning methods for supervised
and unsupervised learning to mine heterogeneous patient data provided by clinical partners
within the SILICOFCM clinical study. The final model stratifies patients into a low-risk
or high-risk class based on the probability that one or more of the selected severe events
(e.g., SCD, heart failure, life-threatening arrhythmias) will occur in the next five years. The
results of the Risk Stratification Tool for five HCM patients (selected in a such way that
higher and lower risk are present in the population) are presented in Section 3.1.

2.4. Drug Modeling

Despite the lack of understanding of the disease’s progression, there is significant
evidence that mutations frequently cause the disease. There have been numerous in vitro
investigations of the characteristics of mutated proteins, as well as studies of muscle
from transgenic mice with these mutations. However, there is now a big gap between
understanding how the mutation modifies the behavior of the protein and how this process
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leads to disease. Part of the complication stems from the fact that the protein is present in
the tissue from birth, although there are often no observable changes in phenotype until
adolescence or even later.

Until recently, there had been no method to connect the in vitro studies of individual
proteins carrying mutations with studies of intact systems—either trans-genetic mice or data
from human-tissue- or patient-specific data. However, recently developed computational
models, such as the MUSICO platform [28], have significantly advanced our understanding
of cardiac muscle activity in HCM and DCM cardiomyopathies [5]. The MUSICO platform
can trace the effects caused by genetic mutations from the molecular level and across
multiple length and time scales up to the muscle fibers and translate these effects from
rodent studies to human muscle behavior [29]. This is a powerful tool which can also be
used to assess the effects of small molecules (drugs) on muscle contraction and determine
specific pathways of drug action.

Using MUSICO simulations, we have recognized two major groups by the principal
action of specific drugs. The first group of the drugs modulates calcium transients, while
the second group of the drugs changes kinetics of contractile proteins. Each group can be
further divided into two different subgroups depending on cardiomyopathy type (HCM
or DCM). Disopyramide is, for example, used for HCM modulation of [Ca2+] transients
because it lowers peak and baseline levels of [Ca2+] [30]. On other hand, for DCM, Digoxin
increases the peak of [Ca2+] transient during twitch contractions, but without influencing
time to peak and relaxation times [31].

Furthermore, drugs such as Mavacamten and 2-deoxy adenosine triphosphate (dATP)
change the kinetics of contractile proteins. Mavacamten has been used for treating HCM
because it is associated with the regulation of transition rates between ordered parked
(OFF) states and disordered myosin detached (ON) states [32]. On the other hand, dATP is
a promising drug for treating DCM which modulates crossbridge cycle rates and affects
structural OFF/ON transitions of myosin heads [33–35].

2.4.1. Drugs That Modulate [Ca2+] Transients

An example of a scenario of in silico testing of drugs that modulate calcium transients
has been presented in Figure 3. In this scenario, the drug is acting through changes in ionic
currents or membrane (channels) properties. This, in turn, modulates intracellular calcium
concentration during muscle contraction. To model these effects, experimentally observed
calcium transients were used as the inputs for MUSICO and MP surrogate models where
available.
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Figure 3. Scenario 1: Drug action via modulation of calcium transient. Adopted from ref. [16].

a. Disopyramide

On a macro level, disopyramide reduces LVOT gradients, with a slight decrease in
the resting ejection fraction. It has been observed that Disopyramide decreases early drag
forces on the mitral valve. Additionally, Disopyramide results in a modest reduction of
global systolic function—5% to 6%.

Experimental observations of normal and HCM human cardiac tissues treated with
disopyramide [30] showed that the drug decreases intracellular calcium transient by both
decreasing the twitch [Ca2+] peak and the level of basal calcium concentration (Figure 4A).
In the recent study by Prodanovic et al. [6], it had been demonstrated that MUSICO
simulations of human trabeculae twitches can predict a decrease in the peak twitch tension
by ~55% and a decrease in the resting tension by ~50% in the presence of 5 µmol/L of
Disopyramide (Figure 4B), matching the observations of Coppini et al. [30].
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(B) Disopyramide effects on human HCM trabeculae twitch contraction, shown as comparison
between the experimental twitch tension traces [30] (solid lines), and the predictions by MUSICO
(dashed lines) and MP surrogate model (dotted lines) in presence of (red) and without Disopyramide
(black). Figure is adopted from Prodanovic et al. [6].

b. Digoxin

Cardioactive glycosides (e.g., Digoxin) have been important in treating congestive
heart failure for more than 200 years, in large part because of a positive inotropic effect.
The effect of Digoxin results in higher diastolic [Ca2+], higher SR Ca2+ content, and even
greater Ca2+ influx via NCX during the action potential which increases twitch tension [36].

It is observed that DCM causes an enlargement of the chambers while the muscular
wall progressively becomes thinner. In addition, cardiac function in DCM is compromised
with decreased cardiac muscle contractility that, along with the structural changes of an
enlarged left ventricle, reduces systolic function, with an ejection fraction <50%. Digoxin
increases the intracellular calcium concentration transient (opposite of Disopyramide) by
increasing the [Ca2+] peak during twitch contractions but keeping the time to peak and the
relaxation time unchanged [31,37] as illustrated in Figure 5A.
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Figure 5. Digoxin effects on human DCM trabeculae twitch contraction. (A) Calcium transient for
DCM in presence of (pink) and without Digoxin (purple). Inset in (A) peak tension dependence on
peak calcium concentration during twitch contractions in presence of increased doses of Digoxin.
(B) MUSICO (dashed lines) and MP surrogate model predictions (dotted lines) in presence of (red) and
without Digoxin (black).

The increase in intracellular calcium concentration increases heart wall tension and,
therefore, increases systolic pressure and ejection fraction. The MUSICO simulations of
human DCM trabeculae twitches predicted a dose-dependent increase in the peak twitch
tension up to twofold (Inset in Figure 5A), similar to the observations of Morgan [36].
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Furthermore, MUSICO and MP surrogate model predictions of twitch tension transients
for human DCM fibers in presence of and without Digoxin are presented in Figure 5B.

The majority of parameters used in MUSICO simulations originate from wild-type
(WT) human trabeculae with 100% β myosins used in the study of Prodanovic et al. [29],
while calcium transients are taken from mouse DCM [5] and adapted to human. The FE
simulations of human LV using PAK solver [25] enable quantitative assessment of the effect
of Digoxin on cardiac output including increase in both systolic and diastolic pressures,
and the ejection fraction.

2.4.2. Drugs That Affect Changes in Kinetic Parameters

The second scenario for testing drugs that affect changes in the kinetic characteristics
of protein interactions is shown in Figure 6.
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a. Mavacamten

Mavacamten (MYK-461) is an allosteric inhibitor of cardiac myosin ATPase which
reduces actin-myosin cross-bridge formation. In experimental HCM models it has been
shown that this drug directly reduces myocardial contractility and improves myocar-
dial energetic consumption in experimental HCM models. A clinical randomized trial
demonstrated the efficacy and safety of Mavacamten in reducing left ventricular outflow
tract obstruction and ameliorating exercise capacity [38]. Mavacamten reduces adenosine
triphosphatase activity in cardiac myosin heavy chain. This has a consequence in reduction
of the contraction of the heart, which can contribute to improving obstruction in HCM
patients [39].

Mavacamten has already been successfully used in clinical trials for treatment of
HCM and adopted by the U.S. Food and Drug Administration (FDA) [40]. Mavacamten’s
negative inotropic action is likely mediated by the shift of detached motor heads towards an
autoinhibited SRX state. The impact of Mavacamten on cardiomyocyte electrophysiology
and Ca2+ handling is still under investigation, but the drug is able to reverse the adverse
remodeling of cardiomyocyte excitation–contraction coupling observed in mouse models
of HCM [39].

The effect of increased tension in HCM can be attenuated by Mavacamten’s action
on the level of crossbridge cycle, specifically by modulation of the state transition rates
between the SRX state and the disordered myosin detached states, capable of binding to
actin. The recent experimental observations of Ma et al. [32] have shown that there is a
significant decrease in tension (~33%) in steady-state force development in skinned porcine
heart muscles in the presence of 1 µM Mavacamten.

The effects of Mavacamten on human trabeculae were preliminary assessed with
MUSICO simulations by using the same calcium transient as observed in HCM. The simu-
lations predicted a similar decrease in tension, ~30% for steady-state force development at
high [Ca2+] and about 50% in twitch contractions. Furthermore, simulations also showed
a significant decrease in resting tension, which is the expected outcome of Mavacamten
treatment. These changes are similar to the tension responses predicted by Disopyramide,
but the mechanisms of action of these two distinctive drugs are fundamentally different.

It has been observed that Mavacamten is related to a nearly complete resolution of
mitral valve systolic anterior motion. This can be directly associated with a reduction in
the LVOT gradient. Additionally, a decrease in left ventricle mass index, left atrial volume
index, and lateral E/e’ have also been associated with the influence of Mavacamten.
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On the other hand, Mavacamten has not been associated with cardiac structural
changes such as reductions in interventricular septum thickness or left ventricle end-
diastolic diameter. However, there are observations for significant changes in inferolateral
wall thickness and left ventricle end-systolic diameter [41].

These data are suitable for FE analysis, i.e., for simulations of the heart using PAK
solver [25], to quantitatively assess the effect of Mavacamten on cardiac output including
decrease in both systolic and diastolic pressures and the ejection fraction.

b. 2-Deoxy Adenosine Triphosphate (dATP)

The molecule dATP can replace ATP as the energy source for the motor protein myosin
contraction in striated muscle. dATP allosterically enhances myosin crossbridge binding to
actin (and cycling kinetic) such that small amounts of dATP are potent [42,43]. Increasing
the cardiomyocyte level of dATP from the typical <0.1% of the ATP pool to just 1% is
enough to significantly increase contraction [44]. Through either viral vector or transgenic
approaches this results in increased dATP levels sufficient to increase contractile magnitude
and kinetics. Thus, approaches to increasing cardiomyocyte dATP constitute an exciting
and novel therapy with the potential to treat heart failure.

The significant increase in cardiac muscle contractility could be beneficial for DCM
cardiomyopathies. The effects of dATP on DCM mice trabeculae were preliminary assessed
with MUSICO simulations at the level of muscle fiber [6].

3. Results
3.1. Cardiomyopathy Risk Stratification Tool

Five HCM patients who have not been used for training the machine learning model
were randomly selected but in a such way that higher and lower risk are present in the
population. The testing which was performed on the five selected patients provided the
following results: two patients were at high risk (patients No. 3 and 5), whereas three
patients were at low risk (patients No. 1, 2, and 4). The detailed reports from the Risk
Stratification Tool are displayed in Table 1 and Figure 7. The prediction bars for the five
selected patients are included in Figure 7. Insight into real-life data from clinical records
and follow-up of patients No. 3 and 5 who were at high risk according to the results from
the Risk Stratification Tool showed that their real health condition was worse, especially in
case of patient 3 (heart failure symptoms).

Table 1. Report from the Risk Stratification Tool for the selected five patients.

Patient No. Prediction Reliability PredictedError ConfidenceMin ConfidenceMax

1 0.010995677 0.987413164 0.082859018 0.003019494 0.059243858
2 0.082876824 0.965970863 0.144172512 0.019990185 0.165266529
3 0.55732954 0.858801931 0.450618253 0.117242657 0.701754749
4 0.027759297 0.980057329 0.103892767 0.004188759 0.077506609
5 0.5642663 0.885699762 0.373704863 0.047019321 0.564266324
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In addition to the Risk Stratification Tool, we employed PAK FE simulation for patients
3 and 5, who were at high risk of severe events. The LV geometries of the patients 3 and 5
are shown in Figure 8, respectively. Compared to patient 3, patient 5 has a larger LV with
thicker walls. Prescribed inlet and outlet velocities for aortic output and mitral input are
presented in Figure 9.
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It should be emphasized that our parametric geometrical models are simplified but
reflect the features of patient-specific measurements, i.e., the geometrical parameters were
obtained from the patient data [16]. Measured valve diameters and wall thicknesses were
used to generate the FE mesh of our parametric LV model. The lengths of the mitral and
aortic branches do not influence the results of the computation. We adopted nominal inlet
and outlet velocity values (shown in Figure 9) and scaled them according to the size of the
valve diameters. Inlet velocity is scaled proportionally to the mitral valve diameter, and
outlet velocity is scaled proportionally to the aortic valve diameter.

The results obtained for patient 3 are shown in Figure 10, presenting displacements,
pressures, and velocity distribution. Since the injection part of the cycle occurs during the
initial couple of steps, displacements at the mitral valve and base part of the model are
noticeable. When the contraction occurs and the fluid begins to flow out (t = 0.7 s), the
bottom half of the wall experiences the most deformation. The solid wall gradually returns
to its original state (t = 1.0 s) and deformations decrease over the remaining time.

During diastole, the fluid is injected into the ventricle and its volume increases, and
pressure is maximum at the mitral valve (t = 0.4 s) throughout the first part of the cycle.
When the injection cycle is finished and the mitral valve is closed, the ventricle contracts
and ejects fluid through the aortic valve, resulting in the highest pressure value in the
model until the end of the cycle.
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Displacements, pressures, and velocity fields for patient 5 are presented in Figure 11.
The displacements are the largest at the middle of the diastole during the blood pumping.
Towards the end of the cardiac cycle, the LV model returns to the initial configuration.
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In addition, P-V diagrams obtained for patients 3 and 5 are shown in Figures 12 and 13,
respectively. Pressure change is similar in both patients, but for patient 5 we found a larger
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volume change at posterior state (follow up) compared with patient 3. Patient 3’s state got
worse, so the posterior state shows a decreased volume change between end-diastole and
end-systole in P-V diagram.
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Left ventricle ejection fractions (LVEFs) in the initial (baseline) and posterior (follow-
up) state for HCM patients 3 and 5 are shown in Table 2 (clinical and simulation values).
The LVEF was calculated as LVEF = (EDV− ESV)/EDV, where EDV is end-diastolic volume
and ESV is end-systolic volume [45]. It can be seen that the simulated LVEF in the posterior
state remains almost unchanged for patient 5, but it is lowered for patient 3 whose real
health state was worse. Both findings are in accordance with clinical observation.

Table 2. LVEF of patients 3 and 5 in initial and posterior state compared with clinical observations.

Patient No.
LVEF [%]

Clinical Value
− Initial

Simulation
− Initial

Clinical Value
− Posterior

Simulation
− Posterior

3 64 59.75 50 49.10
5 60 61.42 60 61.4

In clinical practice, the LVEF is useful for assessment of patient condition, but for
a precise diagnosis cardiologists need additional medial information, knowing that the
LVEF might be normal or even high but that this does not mean that much blood is being
pumped out [46]. For that purpose, results and developed methods from in silico clinical
trials can be applied, assisting in visualization of additional biomechanical parameters
which cannot be measured in vivo, as well as in improved risk assessment and therapy
directions for specific patients.

3.2. Simulations of the Effect of Drugs on Improving State of HCM and DCM Heart Models (PAK
FE Solver Coupled with MP Surrogate Model)

Simulations of the effect of drugs on improving the performance of HCM and DCM
included the drugs that affect calcium transients (Disopyramide and Digoxin) and changes
in kinetic parameters (Mavacamten and dATP). All simulations were performed using cou-
pled PAK FSI, FE solver, and MP surrogate model. For this purpose, we created additional
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HCM and DCM parametric models of LVs using patient-specific measurements [16]. The
boundary conditions were scaled and applied according to the patient-specific measures.

P-V diagrams for the HCM LV model at basic condition (without administered drug)
and with using drugs Disopyramide and Mavacamten are presented in Figure 14, while
P-V diagrams for the DCM LV model at basic condition and with administration of Digoxin
and dATP are presented in Figure 15.
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Figure 15. P-V diagrams for DCM at basic condition (without administered drug) and with using
drugs Digoxin and dATP.

The predicted P-V diagram for HCM (Figure 14) at basic condition (without admin-
istered drug) shows lower volumes and higher ventricular pressures than normal, with
reduced LVEF (LVEF = 59.33%) [47]. On the other hand, the simulation for DCM (Figure 15)
at basic condition predicted lower ventricular pressure caused by increased size of the LV,
thinner ventricle walls, and reduced contractility of DCM. Due to increased LV size, the
P-V loop for the DCM model without administered drug is shifted toward lager ventricular
volume, with LVEF = 56.83%.

The principal effects of drugs on HCM are a decrease in peak pressures and a shift
of P-V loops toward higher volumes (Figure 14) and higher LVEFs. On the other hand,
the effects of drugs on DCM (Figure 15) show an increase in ventricular peak pressures
and LVEFs, while the P-V loops are shifted toward decreased volumes, corresponding
to healthy hearts. Taken together, for the DCM we acquired larger volume change than
for the HCM which was previously confirmed in clinical observations [47]. It can be
observed that simulated drug effects shift P-V diagrams closer to basic conditions, which is
a promising result for further investigations in optimization of drug therapy for specific
cardiomyopathy patients.

In addition, displacements, pressures, and velocity distribution for the HCM LV
model at basic condition (without administered drug) and with using Disopyramide and
Mavacamten are presented in Figure 16. Displacements, pressures, and velocity distribution
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for the DCM LV model at basic condition (without administered drug) and with using
Digoxin and dATP are presented in Figure 17. These parameters are shown at peak systolic
moment (t = 0.6 s) for both the HCM and DCM LV models. The presented results provide
additional insight into the changed distribution of biomechanical parameters without and
with administered drugs on HCM and DCM LV models, while their visualization can assist
in more detailed prognosis and directions of drug therapy for specific patients.
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4. Discussion and Conclusions

The SILICOFCM platform as a whole enables in silico animal and clinical trials for
testing the effectiveness of pharmacological treatment for LV heart performance. Such an
approach can significantly reduce the time and cost of running real animal and clinical
trials for drug development and optimal testing which is one of main motivations for
this study. The presented study is performed using coupled macro- and microsimulation
through FE modeling of FSI and molecular drug interactions with the cardiac cells, as part
of the SILICOFCM project [14]. The FSI algorithm within the PAK software was used for
modeling the LV with nonlinear material model, together with stretches and integration
along muscle fibers.

The study presents results of (i) SILICOFCM Risk Stratification Tool and PAK software
for HCM patients at baseline and follow-up, as well as of (ii) simulated drug effects on the
HCM LV model and the DCM LV model. The results closely follow the available clinical
observations, which is a promising step for further improvement of computational methods
also including a larger group of cardiomyopathy patients.

In the case of drug modeling, two major groups are described by the principal action
of specific drugs on modulating calcium transients and changing the kinetics of contractile
proteins. According to the principal actions of drugs on the electro-mechanics LV coupling,
simulations were separated in two scenarios. The effects of Disopyramide and Dygoxin,
which modulate Ca2+ transients, were included in the first scenario, while Mavacamten
and dATP, which affect changes of kinetic parameters, were included in the second scenario.
Changes of pressures, displacements, and velocity distributions, as well as P-V loops in the
LV models of HCM and DCM patients, are presented. The results provide a quantitative
assessment of the effects of different drugs (Disopyramide and Dygoxin, Mavacamten and
dATP) on cardiac output, including both systolic and diastolic LV pressures and volumes,
as well as the LVEF.

It should be emphasized that the performed simulations are based on simplified LV
geometries. In the case of detailed and patient-specific models, FE analyses are very time-
consuming, especially when muscle micromodels are included. In contrary, our models are
patient-specific in terms of dimensions of specific LV components but are geometrically
simplified in order to avoid manual construction of the FE meshes for a large number of
patients. Since models are not anatomically precise, results may slightly differ from the
real state of the patient’s cardiac health. Additional limitations of the study are the lack
of details regarding fully physical and biological properties of the specific patient’s heart.
Despite those limitations, the presented methods can be used together to obtain better
insight into the cardiac health and optimal drug therapy for specific patients.

In summary, this study was designed to propose that developed computational models
can mimic, on a macroscopic level, the behavior of patients under different stages and types
of cardiomyopathy disease. Moreover, this approach can give much more information
for the risk prediction of cardiac disease in specific patients and better insight into the
estimated effects of drug therapy, leading to improved patient monitoring and treatment.
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