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Abstract: Hyaluronidase is clinically used in treating many skin diseases due to its good permeability-
promoting effect, which may motivate the diffusion and absorption of drugs. To verify the penetration
osmotic effect of hyaluronidase in microneedles, 55 nm-size curcumin nanocrystals were fabricated
and loaded into microneedles containing hyaluronidase in the tip. Microneedles with bullet shape
and backing layer of 20% PVA + 20% PVP K30 (w/v) showed excellent performance. The micronee-
dles were able to pierce the skin effectively with a skin insert rate of 90% and demonstrated good
mechanical strength. In the in vitro permeation assay, with the increase of hyaluronidase concentra-
tion at the tip of the needle, the cumulative release of curcumin increased, as well as the skin retention
decreased. In addition, compared with the microneedles without hyaluronidase, the microneedles
containing hyaluronidase in the tip exhibited a larger drug diffusion area and deeper diffusion depth.
In conclusion, hyaluronidase could effectively promote the transdermal diffusion and absorption of
the drug.

Keywords: hyaluronidase; curcumin; nanocrystals; transdermal diffusion; microneedles

1. Introduction

Curcumin (CUR) has extensive physiological and pharmacological activities, such as
antioxidant [1], anti-inflammatory [2], antihypertensive [3], antitumor [4,5] and so on. In
addition, it is also clinically used in the treatment of multiple organ injuries [6], neurological
diseases [7], cancer [8], depression [9] and other diseases. However, poor solubility, oral
bioavailability (only 1% [10]) and intestinal permeability [11,12] limit further applications.
To address the instability and insolubility problems, the pharmaceutical modification of
CUR, such as CUR liposomes [13], gels [14], and biotextiles containing CUR [15], were
proposed and applied in the treatment of breast cancer and psoriasis. The mechanism of
CUR works on skin involved as follows [16]: when the medium evaporates, continuous
aqueous menisci are generated between CUR particles and skin, triggering local swelling
of the skin and achieving highly passive penetration of CUR.

Compared with oral or injection, transdermal administration has many advantages,
such as low pain and low dose [17]. Relevant drug preparations are applied to human
skin, achieving local or systemic drug delivery. As the major impediment to transdermal
drug delivery, skin is composed of four parts: stratum corneum (SC), epidermis, dermis,
and hypodermis layers from top to bottom [18]. Only some small molecules and medium
lipophilic molecules penetrate the SC barrier, while many insoluble drugs are difficult to
pass through the skin [19]. Therefore, to promote the absorption of insoluble drugs, many
strategies were applied: 1© permeation enhancer (polyethylene glycol, polysaccharides,
propylene glycol, alcohol, etc. [20–24]); 2© pharmaceutical technologies (nanocrystals (NCs),
liposomes, microemulsion formulations, etc.); 3© physical technologies (electroporation,
iontophoresis, microneedles (MNs), etc.) [25].

Hyaluronic acid (HA), a glycosaminoglycan, is one of the main components of the
skin extracellular matrix (ECM) [26]. Hyaluronidase (HAase) could reduce the activity

Pharmaceutics 2023, 15, 788. https://doi.org/10.3390/pharmaceutics15030788 https://www.mdpi.com/journal/pharmaceutics

https://doi.org/10.3390/pharmaceutics15030788
https://doi.org/10.3390/pharmaceutics15030788
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/pharmaceutics
https://www.mdpi.com
https://orcid.org/0000-0002-0609-5376
https://orcid.org/0000-0003-4785-839X
https://orcid.org/0000-0001-7259-191X
https://orcid.org/0000-0002-9843-993X
https://doi.org/10.3390/pharmaceutics15030788
https://www.mdpi.com/journal/pharmaceutics
https://www.mdpi.com/article/10.3390/pharmaceutics15030788?type=check_update&version=2


Pharmaceutics 2023, 15, 788 2 of 12

of HA by cutting the glycosidic bond [27]. When HAase meets HA in the dermis, HA is
depolymerized under the depolymerization action of HAase. Then the dermis tissue is
loosened, and the ECM barrier is destroyed, resulting in enhancing a larger area of drug
diffusion and deeper penetration distance [28]. Since the discovery of the biological activity
of HAase, it was also clinically used in the treatment of chemotherapy extravasation [29],
hypertrophic scar [30], local scleroderma, melanoma [31], and other diseases due to its opti-
mistic effect on enhancing diffusion kinetics. In addition, combination therapy is also an
important means of HAase application as well [32,33]. Co-loading HAase and hydrophilic
metformin hydrochloride into MNs could significantly improve the efficiency of transcuta-
neous penetration [28]. However, as we know, most active pharmaceutical ingredients are
poorly water soluble, and HAase loaded in MNs may increase the penetration of this kind
of drug.

MN is a needle-like medical instrument, which is composed of many pretty thin and
short, tiny needle tips arranged on the patch by matrix. MNs pass through the SC by the
tip of the needle, leaving a nano-level channel aperture on the skin for the delivery of
drugs [34]. Usually, the small needle tip only pierces the papillary layer without damaging
the nerves and capillaries of the dermis [35]. Dissolving MNs could relieve the symptoms
of needle phobia and avoid the pain caused by injections. The drug loading of NCs is
higher than that of other nanoparticles, such as micelles and liposomes. Therefore, loading
NCs into MNs could obtain a relatively high drug-loading capacity. [36] In addition, some
insoluble drugs such as CUR [37] and albendazole [38] were successfully delivered by MNs
to treat many skin diseases [39], such as skin cancer [40], acne, scars [41], psoriasis [42]
and hair loss [43]. Previous MNs based studies focused on the advantages of overcoming
the SC barrier to enhance drug delivery, while the effect of the ECM barrier on the skin
penetration of poorly soluble drugs may be neglected [44]. Hence in this work, we focused
on the HAase to depolymerize the HA and loosen the ECM barrier.

Therefore, in order to overcome the skin ECM barrier and achieve deep penetration of
poorly soluble drugs, 55 nm-size CUR-NCs were prepared and loaded into dissolving MNs
with or without HAase. The effect of HAase on enhancing the skin penetration of insoluble
drugs was evaluated by in vitro percutaneous penetration and diffusion experiments.

2. Materials and Methods
2.1. Chemicals and Materials

CUR (purity > 98%) was purchased from Fuyumi Biological Technology Co., Ltd.
(Nantong, China). HAase was purchased from Yante Biological Technology Co., Ltd.
(Shanghai, China). Polyvinylpyrrolidone (PVP K30 and PVP K90) was purchased from
Macklin (Shanghai, China). Polyethylene glycol 400 (PEG 400) was purchased from China
National Pharmaceutical Group Co., Ltd. (Beijing, China). All other chemical reagents
were analytical or chromatographic grade.

2.2. Preparation of 55 nm-Size CUR-NCs

First, 55 nm-size CUR-NCs were prepared by the method of stirred precipitation [12].
The organic phase solution was obtained by dissolving 10 mg CUR drug substance in 2 mL
anhydrous ethanol. In the same way, 60 mg PVP K90 was dissolved in 6 mL deionized water
to prepare the aqueous phase solution. Under stirring at 1000 rpm, 2 mL of CUR ethanol
solution (5 mg/mL) was uniformly added to 18 mL of aqueous phase containing 0.33%
PVP K90 (w/v) via a 1 mL syringe. The 30 kDa Amicon® Ultra-15 centrifugal filtration
device (Merck, Darmstadt, Germany) was used to remove the organic solvent.

2.3. Characterization of CUR-NCs

The particle size and polydispersity index (PDI) of the CUR-NCs were measured
by Nano® Zetasizer (Malvern Instruments, Worcestershire, UK). The morphology of the
CUR-NC was observed by Nova Nano SEM (FEI, Hillsboro, OR, USA).
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2.4. Preparation of HAase-Loaded CUR-MNs

The CUR-MNs were fabricated by the method of double-layer casting. The concen-
trated CUR-NCs suspension of 1 mL was mixed with 1 mL of 60% PVP K30 (w/v) gel. PVP
K30 (30%, w/v) solution was used as the solvent to dissolve HAase to form the enzyme
solution. First, the enzyme solution was filled into the polydimethylsiloxane (PDMS) molds
( 1© 15 × 15 quadrilateral cone, height 600 µm, radius 290 µm; 2© 15 × 15 cone, height
600 µm, diameter 280 µm; 3© 15 × 15 bullet head, height 900 µm, diameter 350 µm). The
molds were centrifuged at 4000 rpm for 20 min. The excess enzyme solution was recovered
by scraping, and the molds were dried at 25 ◦C for 30 min. Then the CUR-NCs suspension
was added to the mold, and the foregoing operations were repeated three times. After
that, the blank solution (30% PVP K30 (w/v)) was added, and the previous procedure was
repeated once. Finally, the backing layer gels (20% PVA (w/v) and 20% PVP K30 (w/v))
were added to the mold, centrifuged at 2000 rpm for 3 min, dried at 25 ◦C for 12 h, and
removed. MN patches with different enzyme concentrations and different morphologies
were manufactured by the same manufacturing process, achieved by changing the enzyme
solution concentrations and molds.

2.5. CUR-MNs Backing Layer Screening

By changing the materials and proportions to select the appropriate backing layer,
the CUR-MNs with different backing layers were prepared by the aforementioned double-
layer casting method. By comparing the properties of the lacking layer, CUR-NCs diffu-
sion conditions and MNs skin insert rates, the optimal prescription of the backing layer
was determined.

2.6. Morphology and Structure of CUR-MNs

The morphology and structure of the CUR-MNs were observed by Axio Observer
inverted fluorescence microscope (Carl Zeiss AG, Oberkochen, Germany), stereomicroscope
(SRZ-7045DM, KeXin, China), and Nova Nano SEM (FEI, Hillsboro, OR, USA).

2.7. Evaluation of Mechanical Properties of CUR-MNs

Bama miniature pig skin was purchased from Jingde Agricultural Products Sales Co.,
Ltd. (Hebei, China), which was frozen at −20 ◦C for further use. A certain size of pig
skin was taken and soaked in normal saline for 1 h. The hair was carefully removed with
a scraper, and the MNs were then inserted into the pig skin by pressing the thumb for about
30 s. After removing the MNs patch, the skin was stained with 0.5% aqueous solution of
Trypan blue and observed by a stereomicroscope to calculate the skin insert rate.

As reported in our previous study [45], the mechanical force of MNs was tested by
a TMS-pilot texture analyzer (FTC, Vienna, VA, USA). Firstly, the MNs were placed in
a pin-up configuration. When the sensor first touched the tip of the MNs, the displacement
and force test started. Then the sensor continued to probe. Lastly, when the sensor moved
down 0.8 mm from the tip of MNs, the detection ended.

2.8. Measurement of MNs Drug Loading

MNs tips with 30 intact were scraped from the patch with a blade and dissolved
in 0.5 mL 50% (v/v) anhydrous ethanol solution. The CUR-NCs loading in MNs were
determined by high-performance liquid chromatography (HPLC).

2.9. In Vitro Percutaneous Penetration Test

Franz diffusion cell experiment, with a vertical diffusion area of 2.25 cm2, was used
to study the transdermal permeability of CUR-MNs in vitro. Pig skin slightly larger than
the diffusion area was taken, soaked in physiological saline for 1 h, and pricked with
MNs. The skin was superglued between the donor and recipient by cyanoacrylate to avoid
skin displacement. In each diffusion tank, 5 g of weight was placed above the MNs to
maintain pressure. 20% (v/v) PEG 400 aqueous solution was used as receptor medium, the
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experimental temperature was 37 ± 1 ◦C, and the rotational speed was 100 rpm. At 2, 4, 6,
8, 10, 12, and 24 h, the recipient culture medium was collected and supplemented by 1 mL
fresh medium. The collected samples were centrifuged at 12,000 rpm for 10 min, and the
supernatant was added to a shaded 96-well plate. To explore permeation circumstance, the
fluorescence intensity of CUR-NCs was measured by a multifunctional microplate reader.
In addition, the skin was removed and processed for the experiment on skin retention. The
area with CUR diffusion was cut out, dissolved in 0.5 mL acetonitrile solution, ground
with grinding beads, ultrasonic crushed (ultrasonic conditions: 3 s on, 2 s off, 5 min, 400 w
power), and centrifuged at 12,000 rpm for 10 min. The supernatant was removed, and the
skin retention of CUR was determined by HPLC.

2.10. In Vitro Skin Diffusion

The pig skin was soaked in normal saline for 1 h, and the hair was carefully scraped
with a spatula. Then the CUR-MNs patch containing different concentrations of HAase was
inserted and incubated at 37 ◦C for 30 min [46]. Meanwhile, the absorbent cotton moistened
with normal saline was used to keep the skin moist and prevent the skin from becoming
dry. The MNs were taken down, and the skin surface was wiped with normal saline.
The orientation of the hair follicles was fixed with a pin so that the skin specimens were
embedded in a tissue-freezing medium (O.C.T. Compound Leica, Mainz, Germany). Then
the frozen skin was cut into sections (40 µm) with a freezing microtomy (Leica CM1950,
Mainz, Germany) for visualization of skin insertion, observed and photographed under an
inverted fluorescence microscope (Carl Zeiss AG, Oberkochen, Germany). According to
previous studies, the diffusion area of CUR-NCs in the skin was measured by the software
Image J 1.8.0 [47].

2.11. HPLC Conditions

The CUR was tested at 425 nm by an HPLC system (Agilent 1100, Santa Clara, CA,
USA). On an XB-C18 column (Ultimate®; 250 × 4.6 mm, 5 µm) using a mobile phase
of methanol and 3.6% (v/v) glacial acetic acid solution (75/25, v/v) at a flow rate of
1 mL/min [48,49].

3. Results
3.1. Fabrication of CUR-NCs

As shown in Figure 1a, the particle size of CUR-NCs was 54.73 ± 0.16 nm, and the
PDI was 0.264 ± 0.003. The suspension of 55 nm-size CUR-NCs is displayed in Figure 1b,
which is a suspension of light orange. By the double-layer casting method (Figure 1c),
three different shapes of CUR-MNs with HAase in their tips were prepared. According
to the scanning electron microscope images (SEM) and differential scanning calorimetry
curves (DSC) produced in the previous study [36], 55 nm-size CUR-NCs are amorphous
and spherical.

3.2. Morphology and Structure of CUR-MNs

The overall and local bright-field images and skin insert rates of the three different
shapes of MNs are displayed in Figure 2. All three MNs patches were 15 × 15 matrix
arrays with the following shapes and skin insert rates: 1© quadrangular cone, with a skin
insert rate of 82% in Figure 2a; 2© cone with a skin insert rate of 86% in Figure 2b; 3© bullet
head with a skin insert rate of 92% in Figure 2c. Through comparative analysis, the bullet
head showed a better skin insert rate. The enlarged SEM images of the CUR-MNs with
HAase and without HAase are shown in Figure 2d, where the bullet head matrix array was
clearly displayed.
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Figure 2. Bright field images of different shapes of CUR-MNs and skin insert rates under stereo
microscope, (a) quadrangular cone, (b) cone, (c) bullet head; SEM images of (d) CUR-MNs (i-1–i-3)
and CUR-MNs with HAase on the tip (ii-1–ii-3).

3.3. Backing Layer Formulation Screening without Diffusion of CUR

In the preparation of the CUR-MNs, the interactions between the backing layer and
HAase or CUR-NCs may occur, causing the CUR-NCs to diffuse from the needle tip into
the backing layer. Therefore, in order to avoid the diffusion of CUR-NCs, the backing
layer materials were changed to PVA and PVP K30, and the ratio of the two materials
was adjusted. As shown in Figure 3(ai,ii), the diffusion phenomenon of CUR-NCs still
existed. However, when backing layer materials were modulated to 20% PVA (w/v) and
20% PVP K30 (w/v), the diffusion of CUR-NCs was significantly decreased (Figure 3(aiii)).
The non-uniformity of MNs is shown in Figure 3(bi), with the colors of the backing layer
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varied in shades, and the white arrows indicated areas where the CUR-NCs were without
spread. However, as shown by the red arrows, it was clearly displayed that the CUR-NCs
spread into the backing layer, thereby affecting the properties of the MNs. Presented in
Figure 3(bii) were the MNs, which showed no obvious diffusion of CUR-NCs in the backing
layer and a light yellow and uniform color. At the same time, the materials and skin insert
rates (Table 1) of CUR-MNs with different backing layer materials showed a great insertion
performance, with the skin insert rate over 85%. Based on the above results, 20% PVA
(w/v) and 20% PVP K30 (w/v) may produce suitable softness and insertion performance
backing layer.
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Table 1. Different backing materials and the skin insert rates of MNs.

Materials of Backing Layer
Skin Insert Rate (%)

PVA (%, w/v) PVP K30 (%, w/v)

15 35 92
20 20 91
20 30 83
25 25 82
30 20 85

3.4. Mechanical and Insertion Properties of CUR-MNs

The force–displacement curves of the CUR-MNs are shown in Figure 4a, indicating
the hardness of the CUR-MNs with different concentrations of HAase. Three CUR-MNs
could withstand a compressive force of ≥0.14 N/needle with good puncture ability [17,34].
Micro-pores were formed on the skin surface, and the skin insert rate of the 8 × 8 MNs
matrix was 58/64 × 100% = 90.6% > 85% with sufficient insertion performance.
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3.5. In Vitro Percutaneous Penetration

The results of in vitro transdermal cumulative permeation assay and skin retention
of the CUR-MNs within 24 h were shown in Figure 4b and Figure 4c, respectively. The
skin retentions of CUR with different HAase concentrations were also presented in Table 2.
Compared to our previous studies, the transdermal permeation of the CUR-MNs increased
while the skin retention decreased [13]. The permeation rate of CUR-NCs was faster for the
first 12 h and slowed down for 12–24 h. In addition, the cumulative drug release in the 10
and 50 mg/mL groups was approximately 1.2 and 2.5 times of that in the 0 mg/mL group,
respectively. There was no significant difference between the 0 and 10 mg/mL groups,
which may cause by a low concentration of HAase. The HA may not be depolymerized
completely at a low concentration. Therefore, the ECM may not be destroyed with slightly
pro-osmotic ability. In addition, the pro-permeation effect of Haase at 50 mg/mL was
greatly enhanced, and the skin retention was about 1/4 that of the 0 mg/mL group.

Table 2. Cumulative permeation amount of CUR in MNs.

Concentration of HAase
in MNs (mg/mL)

Skin Retention of
CUR (µg/cm2) STDEV.P

0 2.79 0.20
10 2.37 0.03
50 0.68 0.18

The experimental results showed that the HAase concentration of 50 mg/mL en-
hanced the transdermal permeation of CUR-NCs, with concentration-dependent behavior.
The medium concentration of HAase would be added to verify the trend of promoting
the permeability effect. The pro-osmotic capacity of HAase significantly improved the
transdermal drug delivery efficiency, which may be attributed to depolymerizing HA by
HAase. Thereby, the subcutaneous space was loose, and the ECM barrier was broken;
thereafter, drug diffusion and penetration were promoted with a larger corona and longer
distance [30].

3.6. In Vitro Skin Diffusion

As shown in Figure 5b and Table 3, HAase with different concentrations displayed
different effects on the diffusion of CUR-NCs. The HAase with 50 mg/mL greatly promoted
the transdermal absorption of CUR-NCs, while there was no significant difference in skin
diffusion area between 0 and 10 mg/mL concentration groups. Fluorescence was observed
in the SC of the skin, while the fluorescence area expanded and deepened into the active
epidermis in the 50 mg/mL group. This result is consistent with the aforementioned
in vitro transdermal permeation results, further demonstrating that 50 mg/mL HAase
could significantly promote the transdermal absorption of CUR-NCs. In addition, the
average fluorescence intensity of the slices was analyzed by Image J as well. As the data
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shown in Figure 5c and Table 4, the mean fluorescence intensity increased with increasing
HAase concentrations, showing a certain concentration-dependent effect.
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Figure 5. (a) Skin diffusion images of CUR-NCs (bar: 100 µm), (b) skin diffusion area and (c) fluores-
cence intensity of the CUR-MNs containing different HAase concentrations. (Significance is denoted
in the figure as * p < 0.05, and ** p < 0.01).

Table 3. The skin diffusion area of the CUR-MNs containing different HAase concentrations.

Concentration of HAase
(mg/mL)

Skin Diffusion Area of CUR
(×105 µm2) STDEV.P

0 2.33 0.40
10 2.30 0.75
50 3.37 0.67

Table 4. The fluorescence intensity of the CUR-MNs containing different HAase concentrations.

Concentration of HAase
(mg/mL)

Average Fluorescence Intensity
(AU) STDEV.P

0 99.65 26.36
10 116.36 14.62
50 152.97 22.41

Combining the diffusion area and fluorescence intensity data, it can be reasonably
inferred that the amount of CUR-NCs released from MNs increases with the increase of
HAase concentration. However, there was no significant difference between the 0 and
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10 mg/mL groups, possibly due to the low concentration of HAase without depolymerizing
the HA to loosen the structure of ECM.

3.7. HAase-Based Diffusion Mechanism of CUR-NCs in Transdermal Delivery

The CUR-MNs containing HAase were inserted into the skin; firstly, the HAase de-
polymerized the HA and loosened the ECM barrier. The small-size CUR-NCs, therefore,
diffused deeper with a larger diffusion area than the CUR-MNs without HAase, showing bet-
ter promotion and transdermal absorption of CUR (as shown by the red arrows in Figure 6).
This mechanism is also consistent with the experimental data of in vitro penetration and
diffusion. For the 50 mg/mL group, more cumulative permeation and less skin retention were
demonstrated, along with an increase in skin diffusion area. In the 10 mg/mL group, the effect
of MNs containing HAase on promoting skin penetration and diffusion was significantly
weakened, which might be due to the lower HAase concentration.
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3.8. Drug Loading of CUR-MNs

The drug loading of CUR-MNs was 0.37 ± 0.02 µg/needle by measuring the samples
according to the HPLC conditions corresponding to Section 2.7.

4. Conclusions

In this study, 55 nm-size CUR-NCs were fabricated and concentrated as a CUR-NCs
suspension. MNs with or without HAase in the tip were prepared by a double-layer casting
method, with a drug loading of 0.37 ± 0.02 µg/needle. CUR-NCs in MNs with HAase
showed higher penetration and lower skin retention within 24 h. In addition, CUR-MNs
containing HAase were also confirmed to have a larger transdermal diffusion corona area
and deeper penetration distance. This excellent increased diffusion phenomenon may be
caused by the insertion of MNs, which loosens the SC barrier to deliver small-size CUR-
NCs to the dermal firstly. The second improvable strategy might be the ability of HAase
to react specifically with HA in the ECM. HA was degraded, and the ECM was loosened,
creating promising conditions for the increased diffusion and absorption of CUR-NCs. The
combination of MNs and HAase may provide a better effect on improving the efficiency of
transdermal drug delivery of insoluble drugs.

Thus, HAase-based MNs could promote the transdermal penetration efficiency of
CUR-NCs, and the behavior showed some concentration dependence. By controlling the
concentration of HAase and the materials’ proportion of MNs matrix, it is expected to
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achieve efficient transdermal delivery of insoluble drugs. The combination strategy of
HAase, MNs and NCs might offer greater hope for the improvement of clinical skin disease
problems with poorly soluble drugs.
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