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Abstract: Nanomedicine has garnered significant interest owing to advances in drug delivery, effec-
tively demonstrated in the treatment of certain diseases. Here, smart supermagnetic nanocomposites
based on iron oxide nanoparticles (MNPs) coated with Pluronic F127 (F127) were developed for
the delivery of doxorubicin (DOX) to tumor tissues. The XRD patterns for all samples revealed
peaks consistent with Fe3O4, as shown by their indices (220), (311), (400), (422), (511), and (440),
demonstrating that the structure of Fe3O4 did not change after the coating process. After loading with
DOX, the as-prepared smart nanocomposites demonstrated drug-loading efficiency and drug-loading
capacity percentages of 45 ± 0.10 and 17 ± 0.58% for MNP-F127-2-DOX and 65 ± 0.12 and 13 ± 0.79%
for MNP-F127-3-DOX, respectively. Moreover, a better DOX release rate was observed under acidic
conditions, which may be credited to the pH sensitivity of the polymer. In vitro analysis demon-
strated the survival rate of approximately 90% in HepG2 cells treated with PBS and MNP-F127-3
nanocomposites. Furthermore, after treatment with MNP-F127-3-DOX, the survival rate decreased,
confirming cellular inhibition. Hence, the synthesized smart nanocomposites showed great promise
for drug delivery in liver cancer treatment, overcoming the limitations of traditional therapies.

Keywords: supermagnetic nanocomposites; Pluronic F127; in vitro test; liver cancer; doxorubicin;
HepG2 cell line; drug delivery

1. Introduction

Cancer is one of the fatal diseases responsible for more than eight million deaths
per year globally [1]. Different types of cancers, such as breast, colorectal, liver, and
lung cancers, are the most commonly diagnosed cancers in women in Asia and Europe.
Interestingly, liver and lung cancers remain the leading causes of mortality worldwide [2,3].
The liver is a vital organ that regulates most of the chemical processes in the blood and is
responsible for eliminating a substance called bile from the body, which helps eliminate
waste products. This vital organ is also responsible for metabolizing and breaking down
medications in a manner that is safe for utilization in the body [4]. Several studies have
demonstrated that hepatocellular carcinoma (HCC), commonly known as liver cancer, is
one of the top five causes of death in 90 countries globally. It is predicted that the cases
and deaths will rise over the coming years as the world’s population grows [5,6]. This fatal
disease is mainly associated with several causes, such as infections by B or C hepatitis virus
(HBV and HCV), alcohol consumption, obesity, smoking, cirrhosis, diabetes, iron overload,
and nonalcoholic fatty liver disease, among other different causes [7–9].

Pharmaceutics 2023, 15, 740. https://doi.org/10.3390/pharmaceutics15030740 https://www.mdpi.com/journal/pharmaceutics

https://doi.org/10.3390/pharmaceutics15030740
https://doi.org/10.3390/pharmaceutics15030740
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/pharmaceutics
https://www.mdpi.com
https://orcid.org/0000-0001-7616-3867
https://doi.org/10.3390/pharmaceutics15030740
https://www.mdpi.com/journal/pharmaceutics
https://www.mdpi.com/article/10.3390/pharmaceutics15030740?type=check_update&version=1


Pharmaceutics 2023, 15, 740 2 of 19

Currently, surgical intervention, radiation, and chemotherapy are the main approaches
used for cancer treatment. However, these therapies have some disadvantages and side
effects. Radiotherapy has several drawbacks attributed to long-term exposure to high doses
of ionizing radiation (X-rays), which can induce cellular changes and alterations [10,11].
Additionally, owing to the lack of cancer symptoms, surgical intervention is often per-
formed when the disease is already advanced (type III or IV), and in most cases, it can
cause collateral damage to the patient, such as metastasis. Moreover, chemotherapy aims
to treat patients with intravenous drug administration, leading to widespread systemic
distribution. This treatment is not specific because it provokes therapeutic drugs to attack
not only cancerous but also healthy cells, generating side effects, such as anemia, hair
loss, bruising, bleeding, sore mouth, loss of appetite, and others [12,13]. Furthermore,
widespread distribution and rapid elimination to organs and different tissues require the
administration of a large amount of a drug, which causes toxicity and worsens the quality
of life of patients [14]. Hence, to prevent all of these drawbacks as well as drug resistance,
it is crucial to develop a smart nanocomposite with targeting ability to successfully treat
HCC to avoid spreading drugs to organs and tissues that are not the target sites.

Advances in nanomedicine have demonstrated that the use of targeted nanomaterials
along with stimuli-responsive polymers can improve the efficacy of cancer treatment
via enhancement of the clinical indices of the active compounds engineered within the
nanocomposites [15–18]. The use of targeted nanoparticles increases the possibility of
reducing the side effects of antitumor drugs by administrating lower but more precisely
targeted doses to specific tissues (Scheme 1) [19]. Magnetic nanoparticles (MNPs) have been
studied and applied in biomedicine owing to their physical and chemical properties, such
as good solubility, high drug-loading capacity, magnetic hyperthermia, magnetic resonance
imaging (MRI), excellent biocompatibility, and biodegradability [20]. The application
of magnetic nanoparticles offers several benefits for drug delivery. In general, they can
target precise sites in the body, thus decreasing the systemic distribution of cytotoxic
complexes and increasing uptake at the target tissue, resulting in potent therapeutic effects
at lower doses [21]. The biomedical applications of MNPs, in addition to biomedicine,
have generated a great impact on the diagnosis of several diseases, such as cancer and
infectious diseases. Additionally, the combined use of biomedicine and nanomedicine has
created a platform called theranostics (therapeutics and diagnostics). Significant progress
has been made in nanoparticle engineering in recent years, as well as innovative new
hybrids for multifunctional modalities, such as imaging, biosensing, chemotherapeutic or
photothermal agents, and antimicrobials [22].
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The incorporation of polymers onto the surface of the nanoparticles facilitates drug
loading via surface adsorption, entrapping, or encapsulation [23–25]. Moreover, the drug-
loading ability and biomedical properties of MNPs attributed to various surface coatings
are the factors that can aid in avoiding toxicity. Several organic and inorganic compounds
have been used as coating materials for the surface modification of nanocargoes to reduce
their toxicity and increase their loading ability. Stimuli-sensitive nanocomposites that
react to pH, temperature, and magnetic fields have garnered significant interest owing
to their ability with respect to constant and controlled release to particular tissues [26].
pH-sensitive nanoparticles have developed rapidly in the field of biomedicine because of
their ability to induce drug release at lower pH due to ionizable functional groups on the
polymer backbone or side chain, which facilitates the dissolution of the carriers. These
smart nanocomposites can be used to target tumor tissues, lysosomes, and endosomes,
where the pH is relatively low [27–29]. Pluronic F127 is one of the most common smart
copolymers used for drug delivery owing to its pH sensitivity [30–32]. It is a copolymer
composed of poly-ethylene oxide (PEO) and hydrophobic poly-propylene oxide (PPO),
with an ABA triblock arrangement (PEO–PPO–PEO) [33–35]. The advantage of using
this copolymer is the PEO outer crown, which confers antifouling properties to prevent
nanocomposite aggregation, protein adsorption, and recognition by the reticuloendothelial
system (RES). Furthermore, the hydrophobic PPO core can be adjusted to encapsulate
hydrophobic anticancer drugs [36–39]. This non-toxic copolymer has been applied in
different pharmaceutical areas, including tissue engineering, the development of drug
carriers, and gene delivery [40–43].

Doxorubicin (DOX) is a common cancer drug with high antitumor activity and strong
side effects, such as cardiotoxicity [44]. The application of DOX has demonstrated positive
results for the treatment of several types of cancers, including breast, lung, gastric, liver,
skin, bone, ovarian, and thyroid cancers [45,46]. DOX mediates the generation of oxygen-
containing reactive species (ROS) in different tumor cells. However, the specific function
of ROS in the DOX-mediated killing of tumor cells remains unclear. Additionally, the
intracellular oxidative stress generated by DOX is typically attributed to the overexpression
of antioxidant enzymes, which can prevent apoptosis in cancer cells. However, the lack of
endogenous antioxidants could cause cancer cells to be more susceptible to apoptosis. In
cardiomyocytes, the target organelles of DOX toxicity are the mitochondria, where DOX
accumulates over time, resulting in approximately two- to three-fold magnitude higher
DOX concentration than its extracellular concentration in culture [47,48]. The development
of an innovative carrier to entrap DOX into the polymer may decrease side effects and
augment the quality of life of patients. The high payload of DOX is responsible for its
sustained release behavior and good cellular internalization capability during release,
rendering this nanocomposite suitable for drug delivery. The present study aimed to
develop an innovative smart nanocomposite based on a pH-sensitive smart polymer coated
on the surface of MNPs loaded with the anticancer drug DOX (MNP-F127-DOX) for the
treatment of liver cancer. Although researchers have studied the application of MNP-F127-
DOX against breast cancer and oral epithelial cancer cells (MCF-7 and C152, respectively),
few studies have explored its inhibitory ability against liver cancer cells (HepG2) [49]. This
smart nanocomposite presented remarkable aqueous colloidal stability, magnetic response
capacity, and the ability to load antitumor drugs for constant and low drug release, thereby
circumventing side effects and providing a better quality of life for patients.

2. Materials and Methods
2.1. Materials, Chemicals, and Apparatus

Pluronic F127 (F127), iron (III) chloride (FeCl3–6H2O), hydrochloric acid (HCl), sodium
hydroxide (NaOH), sodium acetate (NaCH3COO), sodium citrate (Na3C6H5O7), phosphate-
buffered saline (PBS), ethylene glycol (MEG), and diethylene glycol (DEG) were obtained
from Sigma Aldrich. Cancerous cells (HepG2), dimethyl sulfoxide (DMSO), Dulbecco’s
modified Eagle medium (DMEM), doxorubicin (DOX), 3-(4,5-dimethyl thiazol-2-yl)-2,5-
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diphenyltetrazolium bromide (MTT), and DAPI solution were obtained from the National
Taiwan University Hospital, Taipei, Taiwan.

2.2. Synthesis of the Nanocomposites

MNPs were synthesized as defined in our previous study [49]. Briefly, 2.4 g Na3C6H5O7,
16 g FeCl3–6H2O, and 16 g NaCH3COO were diluted in a solution of 320 mL MEG and
80 mL DEG. The solution was magnetically stirred for 3 h. Subsequently, the yellowish
solution was heated in a Teflon-lined stainless-steel autoclave at 200 ◦C for 12 h. Then the
black solution was washed several times with ethanol and deionized (DI) water to avoid
contamination and subsequently dried at 65 ◦C for 12 h. Additionally, the surface-modified
MNPs with F127 were formulated using two different concentrations of polymer (5 and
10%), mixed with 200 mg MNPs, and stirred overnight. The nanocomposites were washed
numerous times with ethanol and DI water. Finally, the nanocomposites (MNP-F127-2 and
MNP-F127-3) were dried at 65 ◦C overnight.

2.3. Characterization

The average particle size was studied using dynamic light scattering (DLS, HORIBA,
Kyoto, Japan). Samples were diluted in ultrapure water to the appropriate concentration to
avoid multiscattering. The measurement was completed at 25 ◦C and each parameter was
measured in triplicate. The morphology and structure were obtained using field-emission
scanning electron microscopy/energy-dispersive X-ray spectroscopy (FE-SEM/EDS, HI-
TACHI, Hitachi, Japan) using solid samples, while for the transmission electron microscopy
(TEM, HITACHI, Hitachi, Japan), one drop of the as-synthetized nanoparticles solution
was separately placed on a copper grid coated with Formvar/carbon film and dried un-
der vacuum for 10 h. In addition, the functional groups of the studied nanocomposites
were detected by Fourier transform infrared (FTIR, PerkinElmer, Waltham, MA, USA); the
spectra were the average of 50 scans recorded at a resolution of 4 cm−1 in a range of 4000
to 500 cm−1. Moreover, the crystalline structures were detected using X-ray diffraction
(XRD, MXP18, Mac Science, Japan) with Cu-Kα radiation in the range of 2θ = 20–80◦.
Furthermore, the chemical compositions of the nanocomposites were determined by X-ray
photoelectron spectroscopy (XPS; Fison-ESCA, Tokyo, Japan) calibrated to a carbon peak
(C 1s). Finally, the local structures and dynamic properties of the nanocomposites were
detected by electron paramagnetic resonance spectrometry (EPR; JEOL, Akishima, Japan).

2.4. Formulation of MNP-F127-DOX Core-Shell Nanocomposites

The MNP-F127-2 and MNP-F127-3 were loaded with DOX following our previous
study [50]. Briefly, 3 mg each of MNP-F127-2 and MNP-F127-3 was separately mixed
with 1 mg of DOX and 1 mL of DI water for 48 h under constant shaking in the dark.
Subsequently, the formulations were centrifuged at 65,000 rpm for 20 min, and the acquired
pellet was oven-dried at 65 ◦C overnight. The drug-loading efficiency (DLE) and drug-
loading capacity (DLC) were measured as follows:

DLE (%) =
Mt

Mo
× 100 (1)

DLC (%) =
Mt

Mt + ML
× 100 (2)

where Mo, ML, and Mt denote the primary drug content, total quantity of the nanocompos-
ite, and the mass of the encapsulated drug, correspondingly.

2.5. In Vitro DOX Release under Conditions Involving Various pH

The drug release for MNP-F127-3-DOX was performed under different conditions
(pH 7.4 and 5.4). Briefly, 2 mg MNP-F127-3-DOX was diluted in 4 mL PBS and subsequently
placed into a dialysis bag (MWCO: 3500). The assembled dialysis bags were placed sepa-
rately into 18 mL PBS in various pH conditions. The release experiment was completed
in the dark at 37 ◦C with continuous stirring for 72 h. At specific intervals, 5 mL of the
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mixture was collected and measured. The solution was then transferred back to the initial
suspension. UV-Vis (483 nm) spectroscopy was used to estimate the concentration of DOX
released into the solution. The formula used to measure the percentage of DOX released is
as follows:

Drug release (%) =
DOX in dialysis medium
Total DOX in the system

× 100 (3)

2.6. Cytotoxicity Assay

The cytotoxicity assay was performed using human liver carcinoma cell lines (HepG2),
following our previous studies [49,50]. Briefly, 1 × 106 cells were seeded in 96-well plates
(n = 3) and incubated for 24 h. DMEM was replaced with fresh medium containing in-
creasing concentrations of PBS (control), MNP-F127-3, MNP-F127-3-DOX, and free DOX.
The treated cells were incubated at 37 ◦C for 24, 48, and 72 h. After that, 20 µL of MTT
solution was injected into each well and incubated for 4 h at 37 ◦C. Subsequently, DMEM
was replaced with DMSO and incubated for 15 min. Finally, the absorbance was measured
at 483 nm; the final data are a comparison of untreated control cells to the percentage of
viable cells.

2.7. Cellular Uptake

The cellular uptake of PBS (control), MNP-F127-3, MNP-F127-3-DOX, and free DOX
was observed using fluorescence microscopy, as previously reported [49–56]. Briefly, a
piece of coverslip was placed into each well of 6-well plates, and HepG2 cancerous cells
were seeded on top at a cell density of 5 × 103 cells/well. After 24 h of incubation at 37 ◦C,
the HepG2 cells were treated with PBS (control), MNP-F127, MNP-F127-DOX, and free
DOX at equivalent concentrations of 2 µL, and incubated at similar conditions. After this
period, the medium was discarded, and the coverslip containing the HepG2 cancerous cells
was washed with fresh PBS and fixed with 75% ice-cold ethanol for 20 min. Subsequently,
the cells were washed with fresh PBS and treated with DAPI solution for 15 min. Finally,
the coverslips containing the treated cells were rinsed with PBS and observed under a
microscope for analysis. DAPI emission was detected at a wavelength of 480 nm.

2.8. Statistical Analyses

Analysis of variance (ANOVA) was applied for statistical analysis. Data were analyzed
in triplicate and are presented as mean ± standard deviation (SD). The data obtained at
* p < 0.05 were considered statistically significant.

3. Results and Discussion
3.1. Characterization of MNP and MNP-F127

The chemical interaction between the MNP and F127 was accomplished by hydrogen
bonding. After conjugation, Pluronic F127 and DOX were functionalized via hydropho-
bic interactions due to the amphiphilic (hydrophobic and hydrophilic) property of the
copolymer and the hydrophobic characteristic of DOX [57,58], as is shown in Scheme 2.

To define the size distribution and colloidal stability of the as-synthesized smart
nanocomposites, DLS analyses were performed. The average diameter and polydispersity
index (PDI) of the MNPs were 168.9 nm and 0.298, respectively (Figure 1a). After coating
with F127, the average diameter and PDI for MNP-F127-2 were 194.6 nm and 0.111, while
for MNP-F127-3, they were 212.2 nm and 0.217, respectively (Figure 1b,c), confirming the
polymeric coating on the surface of the MNPs. As the polymer concentration increased,
the average diameter also increased, indicating an effective coating on the surface of
the smart nanocomposites. EPR analyses were performed to determinate the magnetic
characteristics at high frequency owing to the resonance originating from the interaction
between electromagnetic waves and spins (Figure 1d). The data revealed strong and broad
asymmetry resonance signals at a field of around 3203.5, 3347.6, and 3241.9 G for MNP,
MNP-F127-2, and MNP-F127-3 nanocomposites, respectively. These line broadenings
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might arise from the dipolar interaction between MNPs [52,53]. These results can be
attributed to spin disorder probably coming from the antiferromagnetic interaction between
the neighboring spins in the MNPs. The g values for MNP, MNP-F127-2, and MNP-
F127-3 were 2.16, 2.11, and 2.20, respectively, which ratifies the magnetic behavior of the
nanocomposites [54–56].
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The XRD patterns were conducted to investigate the structural parameters of the as-
synthesized MNP, MNP-F127-2, and MNP-F127-3 smart nanocomposites. The XRD patterns
showed diffraction peaks with 2θ values of 30.2◦, 36.5◦, 42.91◦, 53.8◦, 57.3◦, 63.21◦, and
73.78◦, belonging to the (220), (311), (400), (422), (511), (440), and (533) planes of crystalline
iron oxide nanoparticles, respectively (JCPDS No. 89–3854) [57–59]. This confirms that the
Fe3O4 structure was retained during the coating process. Additionally, the broad nature
of the diffraction peaks proposed that the as-synthetized nanocomposites present small
particle sizes [60–62]. This result confirms the spinal state structure of the as-synthetized
MNP, MNP-F127-2, and MNP-F127-3 smart nanocomposites (Figure 2A). Furthermore,
FTIR spectra was performed to characterize the as-synthesized nanocomposites as well as
to understand the existing surface functional groups in the metal interactions. The FTIR
spectra of MNP, MNP-F127-2, and MNP-F127-3 nanocomposites showed strong bands
at 579 and 635 cm−1, which belong to the vibration of the Fe–O bonds, confirming the
formation of MNPs (Figure 2B).
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Furthermore, the band at 592 cm−1 corresponds to the Fe–O stretching vibration of
tetrahedral sites of the spinel structure. In addition, two bands of ν(Fe–OH) were recognized
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at 1609 and 3369 cm−1, corresponding to the stretching vibration of the hydroxyl groups on
the surface of the MNPs [61–64]. After coating, the samples containing F127 presented peaks
located at 2889, 1402, and 1110 cm−1 belonging to the asymmetric stretching vibrations
–C–H, –C–C, and –C–O, respectively, of the polymer ascribed to the cross-linking of the
hydrophilic part of Pluronic F127 and Fe+ cations [63,64]. The sizes and morphologies of the
synthesized MNP, MNP-F127-2, and MNP-F127-3 nanocomposites were investigated using
FE-SEM. The obtained images of the MNP, MNP-F127-2, and MNP-F127-3 nanocomposites
are shown in Figure 3a–c. The data revealed quasi-spherical shapes with rough surfaces,
and the particles were aggregated owing to their magnetic properties. After coating, the
nanocomposites presented lower aggregation, slightly larger particle size, and a smoother
surface, which may be due to the presence of F127 on the surface of the MNPs. In addition,
the obtained nanocomposites were found to be increased in the range of 50–100 nm, due to
the aggregation produced by their magnetic properties [64,65].
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Additionally, TEM was used to determine the structure and size of the MNP, MNP-F127-2,
and MNP-F127-3 nanocomposites. The TEM micrographs of the nanocomposites are shown
in Figure 4a–c. The micrograph for the MNPs reported aggregation between particles
and varied sizes from 10 to 20 nm. After coating, the MNP-F127-2 and MNP-F127-3
nanocomposites reported a slight agglomeration and the diameter of the nanocomposites
increased as a result of the coating layer of the F127 onto the surface of the MNPs [66–68].
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3.2. DOX Encapsulation and Release

A UV-Vis spectrometer was used to determine the successful encapsulation of DOX
(Figure 5). The MNP, MNP-F127-2-DOX, and MNP-F127-3-DOX nanocomposites were
compared to free DOX. The results revealed a DOX-related absorbance peak at 483 nm
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associated with the MNP-F127-2-DOX and MNP-F127-3-DOX, confirming the successful
DOX encapsulation. The DLE and DLC percentages of MNP-F127-2-DOX were 45 ± 0.10
and 17 ± 0.58%, correspondingly, whereas those of MNP-F127-3-DOX were 65 ± 0.12 and
13 ± 0.79%, respectively.
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DOX-release profiles at different pH conditions (5.4 and 7.4) were used just for MNP-
F127-3-DOX due to its higher DLC percentage (Figure 5b). The final data revealed better
DOX release under acidic environments, which can be accredited to the pH sensitivity of
F127. Moreover, during the initial period, the release was faster in both environments,
which may be due to the active compounds of DOX. Moreover, the results exposed the DOX-
release ability of MNP-F127-3-DOX in a controlled manner under acidic environments,
confirming the long-term delivery of DOX from the nanocomposites, which is a key factor
for decreasing the side effects and increasing drug accumulation in tumor tissues. Thus,
the release of DOX from the nanocomposites was triggered by pH, which decreased
DOX loss throughout blood transport, thereby increasing the efficacy of the therapeutic
drugs. To ensure the stability of the drug loaded in the MNP-F127-3-DOX nanocomposites,



Pharmaceutics 2023, 15, 740 11 of 19

DOX-release data were measured using four different kinetic models, including the First-
order, Korsmeyer–Peppas, Higuchi, and Weibull models, as displayed in Figure 6a–d.
DOX molecules were chemically bound to the polymer on the surface of the MNP. The
aforementioned kinetic models were fitted according to the drug release data obtained for
the pH environment (pH = 5.4 and 7.4).
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Figure 6. Drug-release kinetics plots: (a) Korsmeyer–Peppas, (b) First-order, (c) Weibull, and
(d) Higuchi models under different pH values (pH = 5.4 and 7.4) at 37 ◦C (n = 3).

As shown in Figure 6, the First-order kinetics model reported lower R2 values, which
demonstrated that the model was not the best fit for the experimental results. Nevertheless,
a slight increase in the R2 values was attributed to the acidic environment, demonstrating
pH-dependent release kinetics. After analysis, the Weibull and Higuchi models resulted in
the best fit in terms of describing the DOX-release mechanism. These results indicate that
DOX release occurred through a complex and anomalous mechanism, possibly due to the
swelling behavior of the polymer [62,68]. Table 1 summarizes the correlation coefficients
(R2) of each model for each pH condition.

3.3. In Vitro Cytotoxicity Studies

To evaluate the in vitro biocompatibility and pharmacological activity of the nanocom-
posites, an MTT assay was performed. The MNP-F127-3-DOX nanoparticles were selected
for this analysis due to their high DLC and DLE (65 ± 0.12 and 13 ± 0.79%, respectively).
The assay was carried out using increasing concentrations of control, PBS, MNP-F127,
MNP-F127-DOX, and free DOX. As revealed in Figure 7a,b, cancerous HepG2 cells were ex-
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posed to different concentrations of PBS and MNP-F127-3. The final data showed nontoxic
effects after 24, 48, and 72 h for both samples. Furthermore, HepG2 cells treated with MNP-
F127-3-DOX and free DOX showed a survival rate of approximately 60–50%, suggesting
effective cell growth inhibition (Figure 8a,b). The data showed significant concentration-
and time-dependent cell growth inhibition for MNP-F127-3-DOX and free DOX.

Table 1. Kinetics models for DOX release from MNP-F127-3-DOX nanocomposites at different pH
values at 37 ◦C.

Kinetics Model Parameter pH 5.4 pH 7.4
a First-order R2 0.786 0.897

b Korsmeyer–Peppas R2 0.971 0.966
c Higuchi R2 0.979 0.938
d Weibull R2 0.981 0.960

Note: R2 value denotes the correlation coefficient. a First-order: A constant proportion of the drug is eliminated
per unit time. b Korsmeyer–Peppas: Both diffusion- and erosion-controlled rate releases. c Higuchi: The drug
release occurs only by diffusion. d Weibull: Release profile of matrix-type (e.g., polymer) drug delivery.
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Figure 7. Cell viability of MNP-F127-3 and PBS over the HepG2 cell line at (a) 24, (b) 48, and (c) 72 h, respectively.
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Figure 8. Cell viability of MNP-F127-3-DOX and free DOX over the HepG2 cell line at (a) 24, (b) 48,
and (c) 72 h, respectively. * p < 0.05 is known to be statistically significant.
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3.4. Cellular Uptake

To further confirm that the effect on cell viability was caused by apoptosis induced by
DOX delivered into the cytoplasm, fluorescence microscopy was performed. The cellular
uptake of PBS, MNP-F127-3, MNP-F127-3-DOX, and free DOX was analyzed in the HepG2
hepatocellular cancer cell line. As shown in Figure 9, the fluorescence microscopy images
showed that cells treated with MNP-F127-3-DOX and free DOX exhibited red fluorescence,
which confirmed successful uptake by the cell line. Additionally, fluorescence within the
nuclei was significantly reduced, indicating that MNP-F127-3-DOX carried the anticancer
drug DOX to the cells efficiently, thereby suggesting successful internalization of the
nanoparticles by the cells. In contrast, cells treated with PBS and MNP-F127-3 did not show
red fluorescence, demonstrating that the samples did not carry DOX. In addition, as shown
in Figure 9, cells treated with PBS and MNP-F127-3 showed relatively uniform fluorescence
distribution in the cytoplasmic compartment. Moreover, no noticeable morphological
irregularities in the cells were detected, suggesting that the nanocomposites were well
tolerated by the HepG2 cell lines. The uptake of nanoparticles by cellular systems is
mediated by a process known as endocytosis and its stimulation is typically attributed to the
physicochemical characteristics and properties of the nanocomposites, such as size, shape,
and surface chemistry [67,68]. Nanocomposites can enter living cells frequently via many
endocytic routes. Nevertheless, passive penetration of the plasma membrane can occur
as a substitute. Upon endocytosis, the nanocomposites are surrounded first by endocytic
vesicles and are consequently not directly transported to the cytosol. On the contrary,
nanocomposites internalized via membrane permeation are transferred directly into the
cytoplasm, which could be the better route, particularly for targeted drug delivery [69–71].
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4. Conclusions

A novel magnetic drug delivery system was developed in which a layer of F127 was
coated onto DOX-conjugated MNPs for liver cancer treatment. The obtained results demon-
strated that the nanocomposites were properly synthetized, functionalized, and selectively
internalized in HepG2 cells and induced cellular inhibition. The drug release demonstrated
anticancer activity under acidic pH environments, releasing DOX in a controlled manner,
which confirmed the pH sensitivity of the nanocomposites. The MTT assay demonstrated
no cytotoxicity in HepG2 cells treated with MNP-F127, suggesting a survival rate higher
than 90%. In contrast, cells treated with MNP-F127-3-DOX and free DOX displayed signifi-
cant cellular inhibition. Additionally, fluorescence microscopy images showed successful
drug internalization into cancer cells, mediating cellular apoptosis in cells treated with
MNP-F127-DOX. The results demonstrate that the synthesized smart nanocomposites can
be used in drug delivery as nanocargoes for targeted hepatocellular cancer treatment.
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