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Abstract: Due to rising incidence rates of liver cancer and worries about the toxicity of current
chemotherapeutic medicines, the hunt for further alternative methods to treat this malignancy has
escalated. Compared to chemotherapy, quercetin, a flavonoid, is relatively less harmful to normal
cells and is regarded as an excellent free-radical scavenger. Apoptotic cell death of cancer cells
caused by quercetin has been demonstrated by many prior studies. It is present in many fruits,
vegetables, and herbs. Quercetin targets apoptosis, by upregulating Bax, caspase-3, and p21 while
downregulating Akt, PLK-1, cyclin-B1, cyclin-A, CDC-2, CDK-2, and Bcl-2. Additionally, it has
been reported to increase STAT3 protein degradation in liver cancer cells while decreasing STAT3
activation. Quercetin has a potential future in chemoprevention, based on substantial research on
its anticancer effects. The current review discusses quercetin’s mechanisms of action, nanodelivery
strategies, and other potential cellular effects in liver cancer.
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1. Introduction

Globally, liver cancer is the third most frequent cause of mortality despite a significant
amount of research related to its treatment. It is more common in men than in women.
Scientists from IARC published and submitted a report to WHO, which stated the world-
wide diagnosis of people with liver cancer in 2020 was 905,700, out of which 830,200 people
died from this disease. Global age-standardized incidence and mortality rates (ASRs) were
also reported in their study, which reported an ASR of 9.5 for new cases and 8.7 for deaths
in liver cancer per 100,000 people. Based on the most recent estimates of the worldwide
burden of liver cancer in 2020, it was predicted that by 2040, the number of cases and
fatalities from liver cancer would increase by more than 55% [1].

The treatment of cancer includes various traditional methodologies such as radio-
therapy, chemotherapy, surgery, immunotherapy alone or in combination [2–4]. However,
efficacy of the methods was greatly reduced by their limitations, such as sensitivity of
normal cells to irradiation [5], chemotherapeutic drug resistance [6–8], poor liver functional
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reserve, incomplete tumor resection [9] and development of intrinsic or acquired resis-
tance [10–12]. To overcome the disadvantages of the present methodologies, the discovery
of novel anticancer agents with improved efficacy and minimal side effects continues.

Phytotherapy is one of the potential options involving the usage of plants for the
production of traditional drugs in the treatment of various cancers [13–15]. Nowadays,
application and evaluation of anticancer therapeutic effects of plants and their compounds
is increasing. However, the mechanism by which these drugs act as anticancer agents is
mostly unclear. Though the induction of antioxidant effects in the prevention and treatment
of cancer is obvious, as plants are good sources of antioxidants [16–18]. A study has shown
the antioxidative properties present in soil algae (Pleurochloris pyrenoidosa, Botrydiopsis erien-
sis, and Scenedesmus obliquus) which was attributed to the presence of flavonoid compounds
like quercetin [19]. In addition, another report has described anticancer and antioxidant
activities of some algae such as Chlorophyta (Ulva lactuca, and Codium tomentosum), Phaeo-
phyta (Cystoseira crinita, Cystoseira stricta, and Sargassum vulgare), and Rhodophyta (Gelidium
latifolium, Hypnea musciformis, and Jania rubens). These algae comprised sources of polyphe-
nols, such as flavonoids, isoflavones, cinnamic acid, benzoic acid, quercetins, etc. [20]. Most
studies have suggested that the prevalence of cancer is lower in people consuming more
fruits and vegetables that have antioxidative effects. In different plants having biological
activities, there are more than 25,000 phytochemicals. From 1940 to 2014, more than 50% of
the approved anticancer drugs originated from natural sources [21].

Quercetin is a flavonoid that exists in daily dietary foods such as apple, red grapes,
broccoli, onion, citrus and black-berry. Studies have reported that it may play a crucial
role in the prevention or treatment of various diseases such as cancer. Therefore, it has
been added to functional foods as a commercial dietary supplement [22]. Over the past
years, numerous studies have reported its biological functions, such as anti-inflammatory,
anti-oxidant and anti-cancer effects [23]. Quercetin possesses the capability to regulate
mechanisms such as inflammation, fibrosis, migration, apoptosis, and angiogenesis, in-
volved in the progression of hepatocellular carcinoma [24]. Additionally, it inhibits the
inflammatory enzymes and also modulates oxidative stress via ROS depletion, which
further enhances the antioxidant system [25,26]. In hepatocellular carcinoma, quercetin
has been shown to have antiproliferative and anticancer effects through inducing cell cycle
arrest, inhibiting the production of cyclins, inducing CDK inhibitors, inhibiting metabolic
activity, inducing cell death, and inhibiting survival signals [27–32]. Recent studies have
also reported that quercetin has the capability to reduce tumor microenvironment com-
ponents and can be used for hepatocellular carcinoma growth inhibition [33]. Until now,
very limited mechanistic information is available describing the role of quercetin in liver
cancer prevention with improved efficacy, in contrast to traditional methods. Therefore,
in this review, we provide a thorough and contemporary overview about the recent and
eminent research on the role of quercetin in liver cancer, especially through regulating
apoptotic mechanisms.

2. Chemistry of Quercetin

Quercetin, also known as 3′,4′,5,7-tetrahydroxyflavonol, belongs to the flavonols
(flavonoids) and is mostly found in fruits, black and green tea, beans, and vegetables as
a secondary metabolite [34]. It is present in conjugated forms with sugar moieties [35].
It possesses five -OH groups placed at the 3-, 3′-, 4′-, 5- and 7-positions. X-ray crystal-
lography of quercetin gave crystal data as follows: a = 13.060(5), b = 16.564(7), c = 3.725(2) Å,
α = 92.05(4), β = 94.39(3), γ = 120.55(3), V = 689.4(5) Å3, z = 2, space group P1,
Dc = 1.63 g cm−3, Dm = 1.69(1) g cm−3 [36]. In crystal form, it exists as H-bonded dimers.
These dimers form a 2-D net connected through water molecules. It can exist in a free state
in the form of aglycone, or as its derivative and conjugates with carbohydrates, known
as quercetin glycosides; with alkyls, known as quercetin methyl or ethyl; with hydroxyl
groups, known as quercetin ethers; and with sulfate groups, known as quercetin-derived
sulfates. Two phenyl groups are connected by three carbon bridges to form the basic
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structure of flavonoids. A diversity of flavonoid structures result from variations in ring-C
and substitution patterns in rings-A and -B. Due to the substitutions of various functional
groups on the main flavonol molecule, a broad range of biochemical and pharmacological
properties are observed [37]. Three structural groups contribute to quercetin’s stability.
These operate as an antioxidant and confer antioxidative properties by countering free
electron carrying species, such as the B ring o-dihydroxyl groups, the 4-oxo group conju-
gated to the 2,3-alkene, and the 3- and 5-hydroxyl groups [34]. The structure of quercetin is
provided in Figure 1.
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3. Absorption and Metabolism

Flavonoids are poorly absorbed. A small quantity of ingested quercetin gets absorbed
in the stomach; however, the small intestine is found to be the major absorption site.
They enter the colon and are digested by enterobacteria into an aglycone. Due to its
lipophilicity, it is then quickly absorbed in the large intestine and is then metabolized in
the liver by O-methylation, glucuronidation, and/or sulfation. [34]. Following intestinal
absorption, it proceeds through phase-II metabolism before being ultimately eliminated
by the liver into bile or via the kidneys into urine. Quercetin and its glycosides are mostly
transported by sodium-dependent glucose co-transporters (SGLTs), which are found on
the apical membrane of intestinal epithelial cells [38]. Additionally, quercetin modifies the
intestinal microbiota and protects the intestinal barrier [39]. Quercetin glucosides can pass
through epithelial cell layers and get transported into the circulatory system. They are less
effective than quercetin aglycone, though. As a result, it has been discovered that quercetin
absorption is accelerated by the hydrolysis of the glucoside to the aglycone [40]. According
to research, the type and positioning of the sugar moieties connected, determine how well
quercetin is absorbed [34]. Computational studies to analyze the absorption, distribution,
metabolism and excretion have also been carried out [37]. A study has revealed that the
plasma binding protein ability rate of quercetin and its derivatives were within the range
of 85.36–99.82. This study also showed prediction of ADME properties of quercetin and its
derivatives using the ACD/I-Lab platform which revealed that quercetin and the 3′-methyl
ether quercetin were found to have maximum passive absorptions of 100%, while other
quercetin derivatives showed less than 15% absorption [37]. The intestine and liver are
the main sites for quercetin metabolism. Quercetin passively diffuses through OATP2B1,
OATP1A2, and OCT1 in HEK293 cell lines. A study revealed that in humans, quercetin
gets absorbed in the small intestine where it is catabolized by the gut microbiota-derived
β-glucosidase and lactasephlorizin hydrolase and the products are absorbed by colon.
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Quercetin monoglycosides get absorbed by SGLT-1 [41]. The resulting compounds circulate
in blood as conjugates with attached glucuronide, methyl, or sulfate groups [42]. These
metabolites are transported through MRP-2 and subsequently to the liver through blood
vessels. They are then exposed to biotransformation enzymes and undergo secondary
metabolisms I and II [43]. In phase I metabolism it undergoes oxidation, reduction, and
hydrolysis, which increases the reactivity and facilitates its subsequent metabolism. The
resultant products undergo phase II metabolism including glucuronidation, sulfation, and
methylation reactions, which benefits its excretion through bile and urine [39]. Quercetin
and its metabolites are capable of passing the blood–brain barrier. Quercetin-3-O-β-D-
glucuronide is the main metabolite of quercetin that gets transported to target tissues
through plasma and exerts its biological activity in the targeted tissues. The half-life of
quercetin metabolites varies from 11–28 h [44].

4. Apoptotic Mechanisms of Quercetin
4.1. Activating Caspase Proteases

The actions of the caspases (family of cysteine proteases) are intimately related to the
apoptotic cell death process. Caspases are first created as monomeric, inactive procaspases
that must dimerize, and frequently cleave, in order to become active [45]. Caspase activation
is a terminal event in the apoptotic process, not a direct activation specifically caused by
quercetin. Therefore, it is essential to understand that caspase activation is a molecular
mechanism involved in quercetin-induced apoptosis. By activating the caspases in the
human hepatoma cell line HepG2, quercetin causes apoptosis. Treatment of the cells for
18 h induced apoptosis by activating caspase-3 and -9 [30]. Similarly in J/Neo cell lines,
quercetin-induced apoptosis was found to activate caspase-9 and caspase-3 in a dose-
dependent manner [46]. Quercetin has been observed to induce proteolysis of vimentin by
activating caspase-3. This results in a decrease in the cancer stem cell population present in
a human papillary thyroid cancer cell line [47]. Researchers have examined the effects of
compounds derived from quercetin on several types of HCC cell lines and have noted their
pro-apoptotic and anti-proliferative capabilities, which are related to caspase activity [24].
Quercetin administration at 60 mg/kg orally to mice with SMMC-7221 HCC cells was
responsible for cleaving caspase-3 protein levels [48]. Reduced cleaved caspases-9 and -3
were seen after quercetin encapsulation (PLGA-loaded gold–quercetin nanoparticles) was
administered to MHCC97H xenograft mice models at doses of 30, 40, and 50 mg/kg [49].
Researchers revealed that 10 mg/kg of co-encapsulated quercetin and sorafenib enhanced
the expression of the caspase-3 protein [50]. In SMMC7721 cells, quercetin at 20 µM leads
to cleavage of caspase-3, and procaspase-3 into a p20 intermediate, thereby leading to
liver cancer cell apoptosis [51]. A study has shown that it affects enzymatic activity of
caspase-8 after 4–18 h of incubation in all quercetin concentrations. With 25 mol/L quercetin,
HepG2 cells were treated for 18 h, which enhanced both the levels of active and cleaved
caspase-3 [30]. Similarly, another study has shown that caspase-9 was cleaved by quercetin
polyphenol in a rat hepatoma cell line H4IIE [52]. It has been shown that procaspase-3
levels were regulated by quercetin TRAIL-resistant hepatocellular carcinoma cells [53].
Quercetin has also been reported to suppress caspase-3 expression, elevate p53 expression,
inhibit cell proliferation, downregulate cell cycle markers cyclin D1 and Ki-67 [29]. Figure 2
represents various apoptotic mechanisms mediated by quercetin.
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4.2. Modulating the Bcl2-Bax Pathway

In addition to taking part in caspase-dependent apoptosis, the mitochondria also have
a major impact on the Bcl-2 pathway during caspase-independent apoptosis. At least one of
the four homologous areas known as Bcl homology (BH) domains (BH1 to BH4), regulate
Bcl2 protein interactions [54]. The Bcl-2 family substrates have been seen to become most
activated in response to quercetin. It assisted in Bcl-2 regulation of HepG2 and boosted
translocation of Bax to the mitochondrial membrane while lowering the Bcl-xL:Bcl-xS
ratio [30]. Another study found that quercetin-treated J/Neo and J/Bcl-xL cells exhibited
downregulation of SQSTM1/p62 protein levels as well as autophagic events such as the
Akt-mTOR pathway, formation of acidic vesicular organelles, conversion of microtubule-
associated proteins such as light chain 3-I (LC3-I) to LC3-II, and formation of acidic vesicular
organelles [46]. When quercetin and an autophagy inhibitor like chloroquine are combined,
Bak activation, which triggers the mitochondrial damage-mediated apoptosis pathway, is
significantly increased [46]. Quercetin has been shown to enhance the fraction of cells in
the G0/G1 phase and to regulate Survivin and Bcl-2 in HepG2 cell death [55]. Quercetin
administration at 60 mg/kg orally to mice with SMMC-7221 HCC cells have increased
Bax protein levels and decreased Bcl-2 protein expression [48]. Quercetin also potentiated
doxorubicin mediated anticancer effects in liver cancer cells by regulating p53/Bcl-xl
pathways [51]. When quercetin (50 µmol/L) was administered, the Bcl-xL:Bcl-xS ratio
fell and eventually reached a minimal value [30]. Quercetin controls the expression of
Bcl-xL, Bcl-xS, and Bax in several ways. This provided evidence that the control of the
apoptotic process may depend on the balance of expression of these proteins [52]. Quercetin
treatment of HCC cells significantly upregulated the mRNA and protein levels of death
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receptor TRAIL, transcription factor Sp1, and expression of Bcl-xL [53]. Interaction between
proteins playing a role in regulating cell death such as Bad, Bcl-xL, Bak, etc. were regulated
in many cancer cell lines by quercetin administration [29]. Lower levels of anti-apoptotic
Bcl-xL and higher levels of proapoptotic Bcl-2 family members including Bcl-xS and Bax
have been demonstrated to directly contribute to the cell apoptotic process. According
to a recent study, quercetin inhibits the development of liver fibrosis via regulating the
activity of the NF-κB/IκB, p38 MAPK, and Bcl-2/Bax signaling pathways in hepatic stellate
cells (HSCs) [56].

4.3. Targeting the PI3K-Akt-mTOR Pathway

One of the most often over-activated intracellular pathways in a number of human
malignancies is the PI3K/AKT pathway. This pathway leads to the development of cancer,
tumor cell proliferation, invasion, and metastasis by acting on many downstream target
proteins [57]. In a human hepatoma cell line, quercetin caused the PI-3-kinase/Akt and
ERK pathways to be inhibited (HepG2). In cells treated with quercetin, a long-lasting
suppression of Akt and extracellular regulated kinase (ERK) also took place [30]. Exposure
of quercetin in SMMC-7721, BEL-7402 HCC cells has shown altered Akt/mTOR inhibition
by decreasing p-Akt/Akt and p-mTOR/mTOR rates [58]. It decreased the protein levels
of HK2 and thereby suppressed the AKT/mTOR pathway in HCC cells [58]. Quercetin
treatment of SMMC-7721 and HepG2 HCC cells have shown decreased p-Akt, p-mTOR,
p-p70S6K and p-4EBP1 protein levels thereby targeting Akt/mTOR inhibition and MAPK
activation [48]. Administration of encapsulated quercetin at a dose of 30, 40 and 50 mg/kg
to MHCC97H xenograft mouse models has shown decreased p-Akt, p-ERK1/2 protein,
leading to Akt/ERK1/2 inhibition [49]. Induction of p53 as a consequence of PI3K and
PKC downregulation has been associated with chemo preventive effects in liver cancer
cells BEL-7402 HCC [59]. Quercetin was observed to inhibit inflammation in liver through
NF-κB/TLR/NLRP3, and also reduced PI3K/Nrf2 mediated oxidative stress, reduced
mTOR activation, and also inhibited the expression of apoptotic factors/proteins associ-
ated with liver disorders and cancers [60]. Quercetin also led to a significant increase in
autophagosomes and autophagolysosomes in hepatocellular carcinoma (HCC) cells. It
was observed that quercetin also stimulated autophagy by inactivating the AKT/mTOR
pathway and activating the MAPK pathway [61]. By blocking the MEK1/ERK1/2 signaling
pathway and subsequently reducing the proteasome’s subunits in HepG2 cancer cells, it
reduced the chymotrypsin activity of the proteasome [62]. Quercetin concentrations more
than 50 mol/L were found to inhibit Akt via lowering the amount of phosphorylated
active Akt [30].

4.4. Targeting JAK-STAT3 Signal Pathway

Signals from cytokines, interleukins, and growth factors are sent through a number
of transmembrane receptor families in JAK/STAT pathways. Research revealed that a
successful drug development technique has been to target these intracellular signaling net-
works [63]. Treatment of LM3 cells with quercetin decreased p-STAT3 protein expression,
and targeted JAK2/STAT3 inhibition [32]. Administration of quercetin led to suppression
of liver tumors by targeting cell proliferation via activation of the JAK/STAT signaling
route. Treatment with quercetin regulated the effect of signal transducer and activator
of transcription-1 (STAT1) tyrosine phosphorylation, and elevated IFN-β-induced STAT1
tyrosine phosphorylation in HepG2 cells, thereby activating the JAK/STAT pathway [64].
Quercetin treatment also inhibited M1 macrophage polarization after injury through in-
hibiting STAT1 and NF-κB pathways [65]. Studies using immunocytochemistry were
performed to evaluate the nuclear STAT3 levels. The study results revealed that quercetin
successfully inhibited the proliferation of liver cancer cells in a dose- and time-dependent
manner. It also led to an increase in sub-G0/G1 apoptotic populations [66]. It reduced the
expression of p-JAK1 and p-STAT3 while it decreased STAT3-dependent activity in many
hepato-cancerous cells [66]. Treatment of cancer cells with 25, 50, and 100 µM doses of
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quercetin, led to dose-dependent apoptosis of cell lines, which resulted in decreased STAT3
phosphorylation levels [67]. Similar effects were observed in Huh7 cells where STAT1 levels
were regulated by quercetin treatment [64,67]. It potentiated the inhibitory effect of IFN-α
on hepato-cancer cell proliferation by activating JAK/STAT pathway signaling through
inhibiting SHP2 [64]. It also played a suppressive role against HCC cells by initiating
apoptosis and p16-mediated cell cycle arrest, thereby suppressing cancer cell growth [68].

4.5. Inducing Apoptosis via Autophagy Modulation

Under starvation conditions, autophagy induction is typically thought to act as a
cancer defense mechanism. However, prolonged starvation stress causes the tumor tissues
to consume themselves. Autophagy performs this role, making it simpler for oncogenic
substances to be broken down and so slowing the growth of tumors, in contrast to apoptosis,
which kills cancer cells via programmed cell death [69]. Quercetin has been observed to
modulate apoptotic and autophagic cell death pathways in many cancerous cells (Figure 3).
It limits initiation, differentiation, and proliferation of cancerous cells. Quercetin has
been observed to inhibit growth of hepatocellular carcinoma cells by inducing apoptosis
through autophagy stimulation in mouse models. It has been observed to increase auto-
phagosome fusion with lysosomes and forms auto-lysosomes in HCC cell lines. These
inhibit the Akt/mTOR pathway, thereby activating the MAPK pathways [48]. Treatment
with quercetin has been observed to induce formation of intracellular autophagic vacuoles
that later form auto-phagosome/auto-lysosomes. This then leads to cell cycle arrest and
onset of apoptotic cell death. Quercetin treatment reduced phosphorylation of proteins
such as p70S6 and 4E-BP1 [70,71]. A study has shown that quercetin induced protective
autophagy in gastric cancer cell lines. This was attributed to the involvement of Akt-mTOR
as well as HIF-1α mediated signaling. It also led to formation of acidic vesicular organelles,
conversion of LC3-I to LC3-II, recruitment of LC3-II to auto-phagosomes and activation of
autophagy genes [72].
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5. Synergism of Quercetin in the Liver Cancer

Tumors can easily develop resistance to a single oncolytic drug since they are com-
posed of genetically diverse clones. Consequently, synergistic targeted therapy is the best
course of action for cancer [73–76]. Combining two or more drugs, each with a unique
anti-tumor mechanism, results in synergism, which further strengthens the anti-tumor
action without affecting the normal, healthy cells. Numerous targeted therapies have
been discovered for the treatment of liver cancer, but none have shown much efficacy
against cancer cells. Quercetin showed synergistic effects when used with other anti-cancer
compounds. Studies have reported the synergistic effect of quercetin when used with 5-FU
in liver cancer cell lines. This combination led to enhanced growth inhibition in some cell
lines, in comparison to quercetin administration alone [28,77]. Another study discovered
that quercetin alone or in conjunction with sorafenib, the first drug approved to treat
advanced hepatocellular carcinoma, all downregulated the anti-inflammatory, proliferative,
and angiogenesis-related genes TNF-, VEGF, P53, and NF-B. HCC growth was significantly
inhibited by treatment with sorafenib and quercetin, which also produced cell cycle arrest,
apoptosis, and necrosis [78]. Quercetin can boost ZD55-TRAIL mediated growth inhibition
and death in HCC cells, according to research on the synergistic anti-tumor effects of
quercetin and oncolytic adenovirus in HCC. Quercetin combination has shown promise in
both in vivo and in vitro anti-HCC trials [79]. In drug-resistant cancers, particularly liver
cancer, the clinical applications of doxorubicin (DOX) are limited due to dose-dependent
toxicities. The study on the combined use of DOX and quercetin indicated an enhanced
anti-tumor activity in liver cancer cells through p53/Bcl-xl, and protection of the normal
liver cells [51]. In a different study, quercetin’s synergistic effect with cisplatin, a common
chemotherapeutic agent, was examined using human hepatocellular carcinoma cells. It
was found that quercetin had suppressive effects through p16-mediated cell cycle arrest
and death. The inhibitory effects in suppressing cell growth and inducing apoptosis were
more when used in combination [68]. Because of this, the development of quercetin may
be advantageous in a combination therapy that inhibits the growth of liver cancer cells
more severely while sparing healthy cells. The respective combinations can increase the
therapeutic efficacy against liver cancer.

6. Nano Delivery of Quercetin in Liver Cancer

Due to quercetin’s poor water solubility and delivery, low bioavailability, chemical
instability, and brief half-life, its clinical use in cancer chemoprevention is constrained.
Quercetin accumulation and bioavailability in the liver can be enhanced by controlled
drug delivery methods such nano conjugation [80,81]. Nano conjugated quercetin has
garnered a lot of interest due to its prospective therapeutic applications, regulated drug
release, prolonged retention in tumors, and increased anticancer potential. Liposomes,
silver nanoparticles, silica nanoparticles, poly (D,L-lactic acid), poly (lactic-co-glycolic acid),
polymeric micelles, chitosan nanoparticles, and other drug carriers are used to deliver
effective outcomes [82]. The flavonoid nano formulations’ anti-cancer activity may be
explained by a number of mechanisms, including activation of caspase enzymes, induction
of cell cycle arrest, reduction in tumor vascularization, reduction in tumor cell invasion and
metastasis, induction of mitochondrial damage, and apoptosis [83]. According to reports,
the use of quercetin-PLG with polymeric nanoparticles in the treatment of liver cancer
resulted in effects such as reduced release of cytochrome C from mitochondria, cytosolic
SOD, increased glutathione-one-D-transferase, and inhibition of lipid peroxidation leading
to cell cycle arrest. Use of liposomal nanoparticles with quercetin have been reported in
liver cancer and showed its effect by the downregulation of HSP70 and cell cycle arrest.
Gold particles with a size of 106.7 nm with quercetin, have also been reported in liver cancer
and the effects included release of cytochrome c through cleavage of caspase-3 and caspase-
9, decrease in COX-2 via suppression of NF-κB nuclear translocation and its binding to the
COX-2 promoter and the inactivation of Akt and ERK1/2 signaling pathways [84]. Table 1
summarizes delivery systems for quercetin developed against different cancers.
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Table 1. Anti-Cancer effects of various types of quercetin nano-formulations based delivery systems.

S No.

Type of Nano
Formulations/
Nanoparticles

(Quercetin Based)

Type of Cancer Study Model (Both
In Vitro/In Vivo)

Particle Size
(Nanometres (nm)) Effects Concentration References

1 PLGA
nanoparticles Cervical HeLa 89.8 nm ↑ apoptosis ↑ Caspase-3 and 7 1, 10, 25 and 50 µM [85]

2 PLGA
nanoparticles Breast MCF-7 89.8 nm

↑ apoptosis frequency, ↑
Mitochondrial damage in Cancer

Cells,
1, 10, 25 and 50 µM [85]

3 PLGA
nanoparticles Breast

DMBA-induced
mammary

adenocarcinoma SD
rats

89.8 nm ↓ average number of tumors and
prolonged the tumor latency period 128 mg/kg [85]

4 Poly (lactic-co-glycolic acid)
nanoparticles Glioma C6

Qu1NP-215.2 nm,
Qu2NP-282.3,

Qu3NPs-584.5 nm

↓ cancer cell proliferation, ↑ SOD
activity, ↑ GSH levels 1–100 µg/mL [86]

5
Phenylboronic acid (PBA)

conjugated Zinc oxide
nanoparticles (PBA-zno)

Breast MCF-7 40 nm ↑ apoptotic frequency, ↑
mitochondrial damage, 5–50 µg/ml [87]

6 Polymeric (chitosan)
nanoparticles Lung A549 <200 nm ↑ release, ↑ cytotoxicity to

cancer cells
12.5, 25, 50, 75, 100,

150 and 200 µM [88]

7 Polymeric (chitosan)
nanoparticles Breast MDA

MB 468 <200 nm ↑ release, ↑ cytotoxicity to
cancer cells.

12.5, 25, 50, 75, 100,
150 and 200 µM [88]

8 Polymeric
micelles

Ovarian
Multidrug resistant

Breast

Skov-3
NCI/ADR
MCF-7 and

MDA-MB-231

24.83 to 45.88 nm
↓ cell viability, ↑ targeted drug

release directly into the intracellular
environment

6.25 to 100 µM [89]

9
Gold-quercetin into poly
(DL-lactide-co-glycolide)

nanoparticles
Cervical

Male BALB/c nu/nu
nude mice

xeno-grafted with
Caski cells

–
↓ tumor xenograft growth and

development, ↑ KI-67, ↑ Bax, ↑ Bad,
↑ Cyto-c, ↑ ↓S6RP

– [90]



Pharmaceutics 2023, 15, 712 10 of 20

7. Safety Aspects

In general, quercetin is considered to be safe. This statement has also been verified
in several human intervention studies, reporting only rarely some mild adverse effects
following the intake of quercetin supplements [91]. For instance, no severe adverse events
were detected among chronic obstructive pulmonary disease patients after administration
of quercetin up to 2000 mg/day for one week [92]. Similarly, quercetin displayed safety
among patients suffering from chronic hepatitis C virus infection, even at doses as high
has 5 g per day for 4 weeks [93]. However, possible interactions of quercetin with other
drugs cannot be excluded and should be analyzed case by case. Tables 2 and 3 represent
summaries of diverse preclinical investigations carried out using quercetin in liver cancer.
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Table 2. Preclinical studies showing apoptotic effects of quercetin on liver cancer.

Type of Cancer Cells Effects Mechanistic Insight Concentration References

Hepatocellular HepG2 Induces Apoptosis, Cell
Cycle arrest

↓ Proliferation of cancer cells, ↑ cell
cycle arrest at S and G1 phase, ↑

necrotic and apoptotic cells,

Quercetin 20 to 220 µM or sorafenib
5 to 40 µM) [78]

Hepatocellular HepG2 Induces Apoptosis

↓ Cell proliferation, ↓ Bcl-2, ↓
mitochondrial mass, ↓ mitochondrial

membrane
potential, ↑mitochondrial

superoxide anion, ↑Caspases 3/7/9,
↓↑ BAX,

Quercetin and Permethylated
Anigopreissin A (PAA) (inhibitors of

hGDH1)-1,2,4,8,12 and 16 µM
[94]

Hepatoblastoma HepG2, HuH-6 and
HepT1 Induces Apoptosis,

↑ SIRT6, upregulation of SIRT6,
suppressed cell proliferation and

invasion, promoted cell apoptosis, ↓
frizzled 4 (FZD4) transcription, ↓

FZD4 and H3K9ac, ↓Wnt5a,
β-catenin, cyclin D1 and c-Myc

0, 60 and 120 mM [95]

Hepatocellular HepG2, Huh-7
(Gemcitabine resistant)

Induces Apoptosis, Cell
Cycle arrest

↓ Proliferation of gemcitabine
resistant cancer cells, ↑ apoptosis

frequency, ↑ gemcitabine efficacy, ↑
accumulation of HepG2 cells in S

phase, ↓ G1 and G2/M phase
populations, ↑ p53, ↓ cyclin D1

Quercetin 0, 10, 25, 50, 100, or 200
µM or 0, 10, 25, 50, 100, and 200 nM

Gemcitabine
[95,96]

Liver

KIM-1, KYN-1, KYN-2,
KYN-3, HAK-1A,
HAK-1B, HAK-2,

HAK-3, HAK-4, HAK-5,
and HAK-6

Induces Apoptosis, Cell
Cycle arrest

↓ Cell proliferation, ↓ viable cell
count, ↑ apoptosis frequency, G0/G1,
G2/M and S phase cell cycle arrest

0–100 µM [77]

Hepatocellular HepG2 and Huh7 Induces Apoptosis ↓ cell viability and colony growth, ↑
apoptotic pathway, ↑ caspases ↑ Bax 100–500 µM [97]
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Table 2. Cont.

Type of Cancer Cells Effects Mechanistic Insight Concentration References

Hepatocellular HepG2 Induces Apoptosis,

↑ cell viability, ↑ caspase-3 and 8, ↑
loss in cell connections, ↑ cell

shrinkage, ↑ cell surface detachment,
↑ cytoplasmic density, ↑ dead cells, ↑
Bax, Bid, Bad, and p53, ↓ Bcl-2 and

Bcl-XL, ↑ GRP78 and CHOP

Combination of naringenin,
quercetin, and naringin and balsamin
IC50 values for Nar, Nir and Qu are

150 mM, 20 mM and 37 mM,
respectively, and 25 µg/mL of

balsamin

[98]

Hepatocellular SMMC7721 and HepG2 Induces Apoptosis, Cell
Cycle arrest

↓ Growth of HCC cells, ↑
autophagosomes and autolysosomes,
↑ LC3A/B-II and beclin1, ↓ p62, ↓

phosphorylated AKT, mTOR, p70S6K
and 4EBP1, ↑ phosphorylated JNK,

ERK1/2 and p38MAPK

IC50’s at 21.0 and 34.0 µM [48]

Hepatocellular LM3 Induces Apoptosis, Cell
Cycle arrest

↓ Cancer cell viability, ↑ apoptosis
frequency, ↑ cleaved DNA, ↑ cells
were arrested in the S and G2/M

phases, ↓ G0/G1 phase cells, ↓
vimentin and MMP9, ↓ invasion and

migration, ↑ LC3, ↓ p-STAT3

0, 20, 40, 60, 80, 100,120, 140, 160, and
200 µmol/L [32]

Hepatocellular HepG2 Induces Apoptosis, Cell
Cycle arrest

↓ Proliferation of cancer cells, ↓
intracellular ROS level, ↓cyclin E

and SOD1
– [99]

Hepatocellular HepG2 Induces Apoptosis

↓ Cell viability, ↑ cell apoptosis, ↓
chymotrypsin-like activity of

proteasome, ↑ cleaved caspase-3, ↓
Bcl-2, ↑ p38 MAPK and JNK
phosphorylation, ↓ ERK1/2

phosphorylation

0, 25, 50, and 100 µM [62]

Liver
MHCC97H,

Hep3B, HCCLM3 and
Bel7402

Induces Apoptosis,

↓ Cancer cell proliferation, cell
migration and colony formation, ↑

caspases, ↑ cytochrome c, ↓ NF-κB ↓
Akt and ERK1/2, P-27 was expressed
highly, ↓ c-Myc, ↓ cyclin-D1, ↓ CDK1,

↓MMP7, ↓ β-catenin,

Gold-quercetin
-poly(DL-lactideco-glycolide)

nanoparticles-0,10,20,30,40,50 and
50 µg/mL

[49]
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Table 2. Cont.

Type of Cancer Cells Effects Mechanistic Insight Concentration References

Hepatocellular SMMC-7721, HepG2
and HuH-7 Induces Apoptosis

↑ ZD55-TRAIL ↑ caspases and
cleaved PARP, ↓ ZD55-TRAIL
mediated NF-κB activation, ↑

pro-apoptotic action of ZD55-TRAI,
↓ Bcl-2, ↑ Bax

ZD55-TRAIL adenovirus-1,2,5,10
MOI + Quercetin 5, 10, 25, 50 µM [79]

Hepatocellular HepG2 and SMCC-7721 Induces Apoptosis, Cell
Cycle arrest

↓ Cell proliferation, ↑ apoptosis, ↑
Bad and Bax, ↓ Bcl-2 and Survivin, ↑

5-fluorouracil (5-FU) therapeutic
efficacy, ↓ cells in S phases, ↑ cells in

the G0/G1 phase

0.05, 0.1, and 0.15 mmol/L [28]

Hepatocellular HepG2 Apoptosis

↓ Cell growth, ↑ apoptosis, ↑ nuclear
condensation and fragmentation, ↓
Sp1 and Sp1 regulatory protein, ↑

p27, p21, ↑ Bax, ↑ caspases and
cleaved PARP

10–100 µM [100]

Liver HepG2 and Hep3B Induces Apoptosis, Cell
Cycle arrest

↑ Apoptosis, ↑ caspase-3, -8 and -9, ↓
phosphorylation of ERK

and p38MAPK, ↑ phosphorylation
JNK, ↓ PKC, entering the S and

the G2/M phases gradually
decreased, while most cells were

blocked in the G1 phase

0, 100, 200, 400 and 800 µM [101]

Hepatocellular HepG2 Induces Apoptosis

↓ Cell proliferation, blockade of the
cell cycle in the S-phase, ↓ DNA

topoisomerase II, ↑ DNA
fragmentation, ↑ caspase-3, ↑

apoptosis frequency

1, 10, 50, 100, 150 and 200 µM [102]

Hepatoma HepG2 Induces Apoptosis

↓Cell viability, ↑ ROS generation, ↑
caspase-3 and -9, ↑↓ caspase-8, ↓

Bcl-xL:Bcl-xS ratio, ↑ translocation of
Bax to the mitochondrial membrane,

↓ Akt and ERK

0–100 µM [30]

Hepatoma H22, LL/2 Induces Apoptosis ↓ cell proliferation, ↑ apoptotic cell
(sub-G1 cells) 0,5,10 and 15 µg [103]
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Table 3. Apoptotic effects of quercetin on liver cancer based on in vivo studies.

Type of Cancer Animal Models Mechanisms Dosage Duration References

Hepatocellular

Chemically induced HCC rat
model with injection of

Diethylnitrosamine @200
mg/kg

↓ Liver
enzymes—aminotransferase

(ALT), ↓ aspartate
aminotransferase (AST), ↓

alkaline phosphatase (ALP),
↓ total proteins (TP) and

conjugated bilirubin (direct
bilirubin), ↓ C-reactive

protein (CRP), ↓ interleukin 6
(IL-6), ↓ lactate

dehydrogenase (LDH), ↓
PIVKA-II and AFP, ↓ Ki-67

cells, ↓ TNFa, VEGF, p53 and
NF-κB expression

Quercetin 50 mg/kg +
sorafenib 7.5 mg/kg 13 weeks [78]

Hepatoblastoma BALB/c nude mice bearing
HepG2 cells (1 × 107) cells

↓ Tumors grew slower and
size, ↓ weighed, ↑ SIRT6, ↓

FZD4
10 mg/kg 28 days [78]

Hepatocellular
BALB/c nude mice bearing

SMMC7721 cells
(2 × 106) cells

↑ Autophagosomes and
autolysosomes, ↓

AKT/mTOR, ↑MAPK,
↑cleaved caspase-3, ↑ BAX, ↓

Bcl-2, ↑ LC3A/B, ↓ p62, ↑
necrosis

60 mg/kg 10 days [48]

Hepatocellular Sprague Dawley rats (TAA
Induced)

↓ Caspase-3, ↓↑ caspase-8, ↑
p53, ↓ cyclin D1 and Ki-67

TAA -200 mg/kg + Quercetin
100 mg/kg 21 days [29]

Hepatocellular Nude mice bearing LM3
cells

↓ Tumor volume, ↑ necrosis,
↑ TUNEL-positive cells, ↓

PCNA, ↑ Bax
100 mg/kg 21 days [32]
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Table 3. Cont.

Type of Cancer Animal Models Mechanisms Dosage Duration References

Hepatocellular
BALB/c nu/nu nude mice

bearing MHCC97H cells (1 ×
107 cells)

↓ Tumor volumes, ↓ AP-2β
and COX2 levels, ↑ TUNEL

levels, ↓ cleaved caspase-9, ↓
cleaved caspase-3, ↓
cytoplasm Cyto-c, ↓

phosphorylated IKKα, IκBα
and NF-κB

30, 40 and 50 mg/kg
Quercetin nanoparticles 35 days [49]

Hepatocellular BALB/C nude mice bearing
HuH-cells

↓ Tumor volume, ↑
survival rate

ZD55-TRAIL
was injected intra-tumorally
at 1 × 109 plaque-forming

units + Quercetin 150 mg/kg

49 days [79]

Hepatocellular BALB/c
nude mice

↑ 5-fluorouracil (5-FU)
therapeutic efficacy, ↑

apoptosis, ↓ tumor growth

Quercetin
40 mg/kg and 5-fluorouracil

30 mg/kg
23 days [28]

Liver Wistar rats (two-phase model
of hepato carcinogenesis)

↓ Number and volume of
preneoplastic lesions, ↑

apoptosis, ↓ proliferative
index, ↓ cell percentages ↓M
phase, ↓ cyclin D1, ↓ cyclin A,
↓ cyclin B, ↓ cyclin-dependent

kinase 1, ↑ peroxisome
proliferator, ↑ caspase-3
activity, ↑ Bax/Bcl-2, ↑
cytosolic cytochrome c

10 and 20 mg/kg 42 days [27]

Hepatoma
C57BL/6N mice bearing
LL/2 Lewis lung cancer

(1 × 106)

↓ Tumor growth, ↓ tumor
volume, ↓ HSP70, ↑

apoptosis rate

Liposomal
Quercetin -50 mg/kg 15 days [103]

Hepatoma BALB/c mice bearing H22
tumor models (5 × 105)

↓ Tumor growth, ↓ tumor
volume, ↓ HSP70, ↑

apoptosis rate

Liposomal
Quercetin -50 mg/kg 15 days [103]
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8. Conclusions

As shown in this review article, quercetin may play several important roles in the fight
against liver cancer, inducing cell cycle arrest and apoptotic cell death through modulating
various intracellular mechanisms. Therefore, this plant secondary metabolite could be
considered a novel potential anticancer drug candidate. However, many issues must be
solved first before initiating clinical trials with liver cancer patients. Firstly, the most
appropriate formulation of quercetin should be developed to avoid its low bioavailability
and extensive metabolic conversion in the human body. Secondly, the proper combination
with the current cytotoxic and/or targeted drugs must be elaborated, allowing reduction
in the doses of conventional therapeutics and thereby also their toxicities. Nevertheless,
the data compiled in this review article clearly highlight the importance of quercetin in the
future management of malignant neoplasms in the liver.
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