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Abstract: Background: Methotrexate (MTX) is a key immunosuppressant for children with acute lym-
phoid leukemia (ALL), and it has a narrow therapeutic window and relatively high pharmacokinetic
variability. Several population pharmacokinetic (PopPK) models of MTX in ALL children have been
reported, but the validity of these models for model-informed precision dosing in clinical practice
is unclear. This study set out to evaluate the predictive performance of published pediatric PopPK
models of MTX using an independent patient cohort. Methods: A PubMed literature search was per-
formed to identify suitable models for evaluation. Demographics and measurements of the validation
dataset were retrospectively collected from the medical records of ALL children who had received
intravenous MTX. Predictive performance for each model was assessed by visual comparison of
predictions to observations, median and mean predicted error (PE), and relative root mean squared
error (RMSE). Results: Six models were identified for external evaluation, carried out on a dataset
containing 354 concentrations from 51 pediatrics. Model performance varied considerably from one
model to another. Different models had the median PE for population and individual predictions at
−33.23% to 442.04% and −25.20% to 6.52%, mean PE for population and individual predictions at
−25.51% to 780.87% and 1.33% to 64.44%, and RMSE for population and individual predictions at
62.88% to 1182.24% and 63.39% to 152.25%. All models showed relatively high RMSE. Conclusions:
Some of the published models showed reasonably low levels of bias but had some problems with
imprecision, and extensive evaluation is needed before model application in clinical practice.

Keywords: methotrexate; children; acute lymphoid leukemia; population pharmacokinetics; external
validation

1. Introduction

Methotrexate (MTX), a folate reductase inhibitor, has been widely used in the treatment
of autoimmune diseases and malignancies for decades [1,2]. Leukemia is a group of
malignant neoplastic diseases of the hematopoietic system, and it poses a significant health
risk to children. Childhood leukemia mainly includes acute lymphoid leukemia (ALL)
and acute myeloid leukemia (AML). ALL is the most common childhood cancer [3], and it
accounts for more than 70% of childhood leukemia in China [4]. MTX is the cornerstone
of maintenance cycles in childhood ALL chemotherapy [5], and its clinical dose can be
roughly classified as low (<0.5 g/m2), intermediate (0.5–1.0 g/m2), and high (>1.0 g/m2)
dose [6]. High-dose MTX (HD-MTX) provides the ability to target extramedullary leukemia
by producing cytotoxic concentrations in sanctuary sites (e.g., cerebrospinal fluid) where
low-dose MTX does not readily distribute [7]. Compared with low-dose MTX, HD-MTX
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shows significantly better patient event-free survival for childhood leukemia [8,9], and the
use of HD-MTX is widely accepted as the first-line therapy in consolidation for childhood
ALL [10,11].

In clinical practice, administration of HD-MTX often begins with a loading dose (e.g.,
10% of the total dose) infused over 0.5 h, followed immediately by a continuous titration
of the remaining dose over 23.5 h. It has been described that the steady-state plasma
MTX concentration (Cp,ss, the concentration after the end of 24 h MTX infusion) is most
appropriately associated with its therapeutic efficacy [12]. Depending on the risk level
of cancer patients, the dose level of HD-MTX varies individually for maximizing efficacy
while minimizing the toxicities [13]. For instance, a relatively high dose (e.g., 5.0 g/m2) is
suggested for ALL children with intermediate risk (IR) or high risk (HR) in order to improve
the outcome [14], while the relatively low dose (e.g., 3.0 g/m2) is adequate for low risk (LR)
ALL children [10]. Age, leukocyte count, leukemic cell genotype, and minimal residual
disease (MRD) are the important factors for risk classification [14,15]. The MTX dose is
deemed effective if the Cp,ss, is above 65 µmol/L (IR and HR patients) or 33 µmol/L (LR
patients) [11,12], and the treatment is subtherapeutic with a high risk of relapse when the
Cp,ss, is below < 16 µmol/L. HD-MTX is associated with a variety of toxic reactions, and liver
injury and nephrotoxicity are two of the serious adverse events [5,16]. It has been reported
that MTX concentrations > 100 µmol/L at 24 h, >1.0 µmol/L at 48 h, and >0.1 µmol/L at
72 h are supratherapeutic and are associated with increased toxicity [10,17,18]. Therefore,
the optimal use of HD-MTX is an important question for providing balanced efficacy
and toxicity.

MTX has a narrow therapeutic window, and the pharmacokinetics (PK) of HD-MTX
shows wide inter-individual variability (IIV) in children even under the same dosing regi-
men [19,20]. Routine therapeutic drug monitoring (TDM) for HD-MTX has been strongly
recommended to reduce the incidence of adverse events in the target patient popula-
tion [19,21]. Population pharmacokinetic (PopPK) models have the potential to improve
patient care by streamlining the TDM process [22]. PopPK models are less dependent on
precisely timed drug concentrations than traditional peak and/or trough concentration-
based monitoring, and they provide the options to quantify PK variability and identify
clinical characteristics (e.g., age and renal function) affecting the drug’s PK. In particu-
lar, for the immunosuppressive agents that are typically personalized by TDM, PopPK
models allow for the area under the concentration-time curve (AUC) guided monitoring
using Bayesian forecasting with limited sampling. Furthermore, PopPK models can aid
in accelerating the initial dose titration through a priori model-informed precision dosing
(MIPD) based on the baseline covariates of the target patients. Further optimization of
subsequent treatment target attainment can be performed through a posteriori MIPD based
on available TDM measurements and updated covariates over time [23,24].

MIPD is an advanced quantitative approach (e.g., PopPK model) that combines prior
knowledge on the drug-disease-patient system with patient data from TDM to support
individualized dosing in ongoing treatment [25], which takes into account inter-individual
variability in a drug’s exposure. By combining the efficacy and toxicity risk targets, MIPD
offers the potential to improve initial dose selection and individualized dose optimization,
thereby it can minimize the duration of subtherapeutic or supratherapeutic HD-MTX doses.
Before considering a PopPK model used in MIPD, model evaluation is an essential step
to assess the model’s accuracy and predictive performance. The most crucial question in
the evaluation of a PopPK model is if it can extrapolate the model’s results to patients at
other institutions or forecast the drug’s PK in prospective studies, especially when the goal
of the model is to determine the ideal individual dose. Internal evaluation is necessary
to test a model’s ability to describe the population with which it has been constructed,
and an external evaluation must be carried out to assess the predictive performance of the
model when extrapolated. Currently, the PopPK models of HD-MTX in ALL children have
been extensively reported [11,18–21,26], while the reported PK parameters and identified
covariates varied significantly. Although some of the published PopPK models of MTX
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in ALL children have been internally evaluated with a dataset from the same patient
cohort, this does not guarantee a good prediction performance when subjected to similar
patient populations from external institutions [27]. Therefore, it is important to evaluate
the predictive performance of the published PopPK models of MTX using independent
datasets in order to identify the best candidate model for MIPD.

The aim of this study was to provide a systemic summary of the published PopPK
models of MTX in ALL children and evaluate the predictive performance of these models
using an independent dataset.

2. Methods
2.1. Literature Search for the PopPK Models of MTX in ALL Children

A search of the literature data for the PopPK models of MTX in ALL children was made
through PubMed (until 30 November 2022) using the following search terms: (population
pharmacokinetics [Title/Abstract]) AND (methotrexate [Title/Abstract]) AND (children
[Title/Abstract] OR paediatrics [Title/Abstract]). The identified studies were reviewed,
and the relevant references were examined to identify other potential publications for
inclusion. Published studies were included for further analysis if the PopPK of MTX was
conducted in children with ALL. PopPK models of MTX were excluded from the external
validation if (1) the key information (e.g., the typical PK parameters and IIVs) is inadequate
for the model recompilation; and (2) the mean or median age of the patient population is
beyond the age range (1.0–13.0 years) of our patient cohort for the external validation. For
eligible PopPK models, the following information was extracted from the original studies:
structure of the compartmental model, population PK estimates, covariate model, inter-
and intra-individual variability, residual variability, and estimation method.

2.2. Dataset for External Evaluation

Data were collected retrospectively from the medical records of patients treated with
HD-MTX at the Third Xiangya Hospital at Central South University from 2019 to 2022.
This study was approved by the ethics committees of the hospital and was registered at
the Chinese Clinical Trial Registry (Register number: ChiCTR2000035264). Throughout the
study, all the procedures were carried out in accordance with the Declaration of Helsinki.
ALL was diagnosed if at least 25% of lymphoblasts were present in the bone marrow [15],
and we included patients with ALL who were under 18 years of age at the time of diagnosis.

Children with ALL were classified as LR, IR, and HR. The children with ALL whose
MRD was <1% at 19 days or MRD < 0.01% at 46 days were placed in the LR group. Patients
whose MRD was ≥1% at 46 days or who had leukemia blasts ≥ 5% without MRD markers
or with mixed lineage leukemia fusion genes, age < 6 months, and WBC ≥ 300 × 109/L
were placed in the HR group. All other cases are placed in the IR group. Theoretically,
patients in the LR group were given an HD-MTX dose of 3.0 g/m2, and patients in the IR
or HR group were given an HD-MTX dose of 5.0 g/m2. In practice, the actual HD-MTX
dose was decided by the physicians for each patient. MTX was intravenously administered
within 0.5 h for 10% of the total dose, and the remaining 90% dose was infused over 23.5 h.

Plasma samples were collected every 24 h until the MTX concentration dropped below
0.1 µmol/L. The actual sampling times were determined by the responsible nurses and
may be slightly deviated from the theoretical points. MTX concentration was determined
using fluorescence polarization immunoassay with a quantification limit of 0.05 µmol/L.
Data were included if at least one intravenous dose of MTX and the concentration measure-
ments were available. Data were excluded if there was any uncertainty about the time of
dosing, infusion duration, or the sampling time of concentration measurements. Baseline
characteristics of the ALL children were collected, including the demographics (gender, age,
weight, body surface area (BSA), and height), the laboratory measurements (white blood
cells, neutrophils, serum creatinine (Scr), alanine aminotransferase (ALT), and aspartate
aminotransferase (AST)), and the estimated glomerular filtration rate (eGFR) based on
the Bedside Schwartz formula (Equation (1)) [28]. Data collation was performed using R
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version 4.2.0 (R Foundation for Statistical Computing, Vienna, Austria). No patient data in
the external validation dataset had previously been included in the development of any of
the PopPK models of MTX.

eGFR =
0.413×height

Scr (1)

2.3. Evaluation of Predictive Performance

Each selected PopPK model was separately implemented in NONMEM® software
(version 7.3, Icon Development Solutions, Ellicott City, MD, USA) as described in the
original article. Parameter estimates and covariate models for each PopPK model were set
to those determined in the original publications. Concentration predictions were generated
based on the specific PopPK models in combination with the doses, sampling times, and
covariates recorded in the validation dataset. That is, the predicted concentrations were
obtained based on the PopPK models using the maximum a posteriori-Bayesian estimation
(MAP-BE, $ESITIMATION MAXEVAL=0 in NONMEM). Reported PK parameters were
adopted for each PopPK model to calculate the predicted population and individual
concentrations at sampling times identical to those of our own data. If the specified
covariate in the PopPK model was not available in the evaluation dataset, the mean or
median covariate value was used as stated in the original publication. In addition, a
proportional error of 30% was assumed for the residual variability if the models did not
report this information.

The predictive performance of the PopPK models was assessed by the use of graphics
and statistical metrics. Goodness-of-fit (GOF) was assessed graphically by comparing ob-
served concentrations (Cobs) to population predicted concentrations (Cpred) and individual
predicted concentrations (Cipred) to inspect potential bias (a systematic upward or down-
ward deviation from the line of unity) and imprecision (a high degree of scattered data
points around the line of unity). Furthermore, the Bland-Altman (B-A) plots were created
to visualize the trends in bias for the population and individual predictions. The prediction
error (PE; in percent; Equation (2)), the mean relative error (MPE; in percent; Equation (3)),
and the relative root mean squared error (RMSE; in percent; Equation (4)) were calculated
for population and individual predictions to quantify the predictive performance.

PE =
Ci,pred−Cobs

Cobs
(2)

MPE = 1
N

N

∑
i=1

Ci,pred−Cobs
Cobs

(3)

RMSE =

√
1
N

N

∑
i=1

(Ci,pred−Cobs
Cobs

)2
(4)

where N is the number of observed MTX concentrations, and Ci,pred is the Cipred or Cpred
of MTX.

A PopPK model was deemed acceptable for our clinical settings when both the mean
and median values of PE were less than 20% [27,29] and RMSE was less than or equal to
30% [29,30]. Data processing and plotting were carried out with R version 4.2.0.

3. Results
3.1. Literature Search and Summary of Published PopPK Models

The literature search identified a total of fourteen papers detailing the population
pharmacokinetics of MTX in children [11,18–21,26,31–37]. Among them, six studies in-
cluded ALL patients greater than 13 years or infants and were excluded for further anal-
ysis [18,31–35,37]. In addition, one PopPK study was conducted on pediatric patients
with osteosarcoma and was also excluded [38]. Finally, six PopPK models of MTX in ALL
children were included for the external evaluation [11,19–21,26,36]. The demographics,
clinical characteristics, and doses for the patients of the included studies are summarized in
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Table 1. The mean age for all the studies was 5.0–7.5 years. Three of the models evaluated
were based on the data from Chinese children [19,20,26], and the others were developed for
Spanish [21], American [36], and Mexican [11] children. The largest model was developed
with data from 311 pediatric patients proposed by Gao et al. [19], while the smallest model
was developed with data from 36 patients proposed by Hui et al. [20].

The key information (e.g., model structure and covariate model) of the included
PopPK models were provided in Table 2. The disposition of MTX was described by a
two-compartment model in five studies and a three-compartment model in one study [19].
Typical estimates for MTX clearance in the included studies ranged from 3.52 [36] to
7.73 [20] L/h, with the lowest value being reported in the Jonsson et al. study with a
median patient age of 5.0 years old. In studies based on a two-compartment model, the
typical central volume of distribution varied across different subpopulations, ranging
from 7.5 [11] to 24.1 [36] L, with the lowest value being reported in a Medellin-Garibay
et al. study. All models estimated the IIV associated with MTX clearance, with values
ranging from 8.2% [11] to 109.0% [26]. The highest IIV in MTX clearance was reported in a
Jonsson et al. [36] study. The PopPK model developed by Hui et al. study implemented
an inter-individual variability on MTX clearance with an estimated effect of 14.9% [20].
Applied covariates varied among the models, but all models included body size descriptors
(e.g., weight and BSA) related to clearance and/or volume of distribution. Other identified
covariates were eGFR and Scr on clearance, age on clearance and volume terms [21], gender,
and pre-chemotherapy alkalinization volume on clearance [26]. As for residual unexplained
variability, the applied forms included additive (including the additive error on the natural
log-transformed concentrations), proportional, or combined proportional and additive
error models with values ranging from 19.0% to 35.4% for the proportional component and
0.0035 to 0.0872 µmol/L for the additive component.

Table 1. Demographics and clinical characteristics of the included studies and evaluation dataset of
high-dose methotrexate in children with acute lymphoblastic leukemia (ALL).

Characteristics Aumente et al. [21] Gao et al. [19] Hui et al. [20] Medellin-Garibay et al. [11] Zhang et al. [26] Jonsson et al. [36] Evaluation Dataset

Tumor Type ALL ALL ALL ALL ALL ALL ALL
N 37 311 36 41 96 304 51

M/F 17/20 197/114 23/13 NA 66/30 NA 40/11
Age (years) 5.0 (0.5–17.0) 5.0 (0.75–15.2) 5.3 (1.3–15.8) 5.0 (1.0–15.0) 7.4 ± 3.1 5.0 (0.4–17.8) 5.5 (1.0–13.0)
Weight (kg) 24.2 (7.5–80.0) 19.0 (4.5–113.0) 18.4 (10.4–57.8) 21.2 (8.0–57.3) 26.1 ± 10.4 19.0 (5.8–93.3) 19.0 (9.5–62.0)
Height (cm) 115 (69–174) 112 (67–175) 107 (77–176) 115 ± 24 120 ± 21 110 (63–192) 113 (73–168)
BSA (m2) 1.07 (0.30–1.90) NA 0.74 (0.47–1.64) 0.79 (0.41–1.6) 0.97 ± 0.29 0.76 (0.31–2.19) 0.77 (0.41–1.60)

MTX dose (g/m2) 1.23–5.23 1–5 2–5 2.89 ± 0.9 2–3.5 5–8 1–5
ALT (IU/L) NA 16.0 (2.0–390.0) 16.5 (5.0–247.0) 19.1 (7.2–98.2) 32.7 ± 44.5 31.2 (6.0–228.6) 32.5 (4.0–250.0)
AST (IU/L) NA 26.0 (8.0–135.0) NA 25.8 (13.9–112.7) 45.3 ± 34.5 NA 36.0 (17.0–131.0)
Scr (mg/dL) 0.5 (0.3–0.8) 0.3 (0.1–1.5) 0.362 (0.11–1.07) 0.37 ± 0.11 0.36 ± 0.10 NA 0.31 (0.16–0.71)

The values are presented as median (range) or mean ± standard deviation. M/F: male/female; N: number of
patients; ALL: acute lymphoid leukemia; BSA: body surface area; Scr: serum creatinine; MTX: methotrexate; ALT:
alanine aminotransferase; AST: aspartate aminotransferase; NA: not available.
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Table 2. Summary of the included population pharmacokinetics model of methotrexate for external evaluation.

Studies Structural Model Fixed Parameters and Covariate Models IIV (%) (IOV (%)) RUV

Aumente et al. [21] 2 CMT

K12 (1/h) = 0.0155
K21 (1/h) = 0.0724

CL (L/h, age > 10 years) = 0.149 × Weight
CL (L/h, age < 10 years) = 0.287 × Weight0.876

V1 (L, age > 10 years) = 0.437 × Weight
V1 (L, age < 10 years) = 0.465 × Weight

K12 = 20.8
K21 = 35.2
CL = 41.7
V1 = 41.6

Prop = 16.2%
Add = 0.0035 µmol/L

Gao et al. [19] 3 CMT

CL (L/h) = 6.9 × (Weight/19 kg)0.75 × (1 + (Scr-26) × (−0.0097)) × eηCL
V1 (L) = 20.7 × (Weight/19 kg)

V2 (L) = 41.0 × (Weight/19 kg) × eηV2
Q1 (L/h) = 0.255 × (Weight/19 kg)0.75

V3 (L) = 3.17 × (Weight/19 kg)
Q2 (L/h) = 0.217 × (Weight/19 kg)0.75

CL = 17.9
V1 = 26.2 Prop * = 35.4%

Hui et al. [20] 2 CMT

CL (L/h) = 7.73 × (BSA/0.735)0.721 × (eGFR × 1.73/192 × BSA)0.256 × eηCL
+IOV

V1 (L) = 19.0 × (BSA/0.735)0.985

Q (L/h) = 0.283 × (Age/5.29)0.278

V2 (L) = 6.63 × eηV2

CL = 14.3 (14.9)
V2 = 34.6 Prop = 30.2%

Medellin-Garibay et al. [11] 2 CMT

CL (L/h) = 6.5 × BSA0.62 × eηCL
V1 (L) = 0.36 × Weight × eηV1

Q (L/h) = 0.41
V2 (L) = 3.2 × eηV2

CL = 8.2
V1 = 25.9
V2 = 26.7

Prop = 20.1%

Zhang et al. [26] 2 CMT

CL (L/h) = (5.04 × (1 − 0.278 × Gender) × BSA0.777 + (OH/100)0.514) × eηCL
V1 (L) = 16.1 × eηV1

Q (L/h) = 0.203 × (Age/10)1.56 × eηQ
V2 (L) = 7.05 × (Age/10)1.76 × eηV2

CL = 49.6
V1 = 29.4
Q = 137.6
V2 = 107.7

Prop = 19.0%
Add = 0.0872 µmol/L

Jonsson et al. [36] 2 CMT

CL (L/h) = Weight × 0.185 × eηCL
V1 (L) = Weight × 1.27 × eηV1

Q (L/h) = Weight × 0.017 × eηQ
V2 = Weight × 1.02 × eηV2

CL = 109.0
V1 = 26.0
Q = 22.0
V2 = 44.0

NR

* The exponential residual error model was used, in which the estimate is approximately equal to the proportional error model. CMT: number of compartments; K12: transfer rate
constant from central compartment to peripheral compartment; K21: transfer rate constant from peripheral compartment to central compartment; CL: clearance; V1: central volume
of distribution; V2 and V3: volume of distribution for peripheral compartments; Q: intercompartmental clearance; Scr: serum creatinine; eGFR: estimated glomerular filtration rate:
BSA: body surface area; OH: pre-chemotherapy alkalinization volume; IIV: inter-individual variability; IOV: inter-occasion variability; RUV: residual unexplained variability; Prop:
proportional residual unexplained error; Add: additive residual unexplained error; NR: not reported.
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3.2. Characteristics of the Evaluation Dataset

The data used for external evaluation were collected from 51 ALL pediatrics with
354 concentration measurements. The demographics and clinical features of the included
patients are summarized in Table 1. The prescribed HD-MTX dose varied from 1.0 g/m2

to 5.0 g/m2. The median age, weight, and BSA of the pediatric population were 5.0 years,
19.0 kg, and 0.77 m2, respectively. All the patients had normal renal function with a
median eGFR of 149.9 mL/min/1.73 m2. The concentration observations versus time after
dosing are displayed in Figure 1. In general, the measurements were mainly obtained at
approximately 24, 48, 72, and 96 h after the start of MTX infusion.
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3.3. Model Evaluation

The comparisons of population and individual predictions to observations for each
model are shown in Figure 2. For population predictions, two of the models (Aumente et al.
and Zhang et al.) had many predictions underestimated compared to the observations
(Panels A and E) [21,26], while the model proposed by Jonsson et al. showed significant
overpredictions (Panel F) [36]. The systematic bias of the individual predictions for the
above models almost disappeared, except for the model proposed by Aumente et al. (Panel
A) [21], indicating a better accuracy of individual predictions compared to the population
predictions. Additionally, no systematic bias was observed for the models proposed by
Gao et al., Hui et al., and Medellin-Garibay et al. in terms of the population and individual
predictions (Panels B, C, and D) [11,19,20].

The prediction errors of the population and individual predictions for the evaluated
models are visualized in box plots (Figure 3), and the median PE and MPE values are
presented in Table 3. The median PEs of the population predictions for most of the models
(except the Medellin-Garibay et al. study) were beyond ±20%, and the highest median
PE (442.0%) was observed for the model proposed by Jonsson et al. [36]. Conversely, the
median PE of the individual predictions for only one model (Gao et al. study) is distributed
slightly over ±20% [19], and all other models showed acceptable bias. In terms of the
MPE, the top three models showing good performances (<±20%) for both population and
individual predictions were the Gao et al. [19], Hui et al. [20], and Zhang et al. [26] studies.
Again, the model proposed by Jonsson et al. showed the worst bias with an MPE value of
780.87%. Bland-Altman plots showed that there was no apparent trend in the prediction
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errors of the population (Figure 4) and individual (Figure 5) predictions for four models
(Aumente et al., Medellin-Garibay et al., Zhang et al., and Jonsson et al.) [11,21,26,36] over
the whole concentration range observed in our data, while obvious trends were observed
for the models proposed by Gao et al. [19] and Hui et al. [20]. All models show high RMSE
with determined values > 30% (Table 3). The model proposed by Gao et al. performed best
in RMSE in view of both the population (72.39%) and individual (63.96%) predictions [19].
This model also showed the smallest bias, as indicated by the MPEs. In general, the high
RMSEs indicate the high imprecision of the models. That is, when validated with external
data, the models all showed the need for further refinement.
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Figure 2. Observed concentrations versus population and individual predictions for the included
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(A) Model proposed by Aumente et al. [21]; (B) model proposed by Gao et al. [19]; (C) model
proposed by Hui et al. [20]; (D) model proposed by Medellin-Garibay et al. [11]; (E) model proposed
by Zhang et al. [26]; and (F) model proposed by Jonsson et al. [36].

Table 3. Prediction error (PE) of the individual predictions (IPRED) and population predictions
(PRED) to observations for the evaluated models.

Model
IPRED PRED

Median PE (%) MPE (%) RMSE (%) Median PE (%) MPE (%) RMSE (%)

Aumente et al. [21] 6.52 12.06 76.09 −31.70 −25.51 81.15
Gao et al. [19] −25.20 1.33 63.96 −26.76 3.22 72.39
Hui et al. [20] −10.43 8.78 82.96 −33.23 −8.24 62.88

Medellin-Garibay et al. [11] −0.75 22.71 75.55 −7.56 6.39 68.33
Zhang et al. [26] 1.16 16.00 63.39 −29.92 15.62 145.92

Jonsson et al. [36] 5.25 64.44 152.25 442.04 780.87 1182.24

MPE: mean relative error, RMSE: root mean square error.
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Figure 3. Prediction error (PE) distributions of the individual (upper panel) and population (bottom
panel) predictions for evaluated population pharmacokinetic models of methotrexate using an inde-
pendent dataset in children with acute lymphoid leukemia. In the boxplots, the lower boundary of the
box indicates the 25th percentile, the line within the box marks the median, and the upper boundary
of the box represents the 75th percentile. Whiskers above and below the box indicate 1.5-fold of the
interquartile range below the 25th percentile and above the 75th percentile, respectively. Points above
and below the whiskers are defined as outliers. The vertical black solid line represents the PE value
at zero (unbiased), and the dashed black lines indicate ±20% of PE (acceptable bias) [11,19–21,26,36].
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Figure 4. Bland-Altman plots of the prediction errors of population predictions for published
population pharmacokinetic models of methotrexate based on an independent dataset in children
with acute lymphoid leukemia. The black line is the mean of the population prediction error, and the
black dashed lines are the mean ± 1.96 times the standard deviation of the population prediction
error [11,19–21,26,36].
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acute lymphoid leukemia. The black line is the mean of individual prediction error, and the black
dashed lines are the mean ± 1.96 times the standard deviation of the individual prediction er-
ror [11,19–21,26,36].

4. Discussion

External evaluation is a crucial step to assess the accuracy, precision, and predictive
performance of a PopPK model before its application in clinical practice. This step evaluates
the model’s ability to describe the intended population and the impactful clinical variables
related to the drug’s PK. This study is the first to review the published PopPK models of
MTX in ALL pediatric patients and to systemically evaluate the predictive performance of
these models using a new independent dataset.

All the evaluated models incorporated the influence of body size (e.g., body weight and
BSA) on either clearance or volume of distribution. As MTX distributes into extracellular
fluid and tissues, it is explainable that its volume of distribution tends to increase with the
patient’s body size. As a predominantly renally excreted drug (80–90% of the administered
dose), the descriptors of renal function (e.g., Scr and eGFR) are expected to influence
MTX clearance. Of the evaluated models, only two of them included the influence of
a renal function descriptor on MTX clearance [19,20]. This may be because most of the
studies were based on patients with normal to moderately impaired renal function, and
the impact of renal function on MTX clearance could not be detected significantly. The
conflicting findings in the literature about the effect of renal function descriptors on MTX
clearance might be arising from the following reasons: (1) the sample size of some studies
is too small to detect the potential effect; (2) some studies only tested the effect of serum
creatinine whereas eGFR is theoretically more predictive; and (3) the effect of renal function
descriptors may be relatively weak in some studies and might have been blinded by other
highly correlated covariates (e.g., age and body size-related covariates). Our patients in the
validation dataset all had normal renal function, and the inclusion or the lack of inclusion
of renal function in the PopPK model may be of little importance for the prediction.

The predictive performance of the models evaluated in our study varied considerably,
and all the tested models only partially met the predefined criteria. In general, most of
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the models (except the Jonsson et al. model) demonstrated good accuracy (<±20% or a bit
higher, in terms of median PE and MPE) for both the population and individual predictions.
This highlighted that these models would be useful for a priori dose adjustment using
only the population parameters and identified covariates. However, for all models tested,
the RMSEs were between 62.88–1182.24% for population predictions and 63.96–152.25%
for individual predictions. This demonstrated that the use of population PK parameters
and patient covariates alone without feedback concentrations from individual subjects is
inadequate to make precise predictions. Incorporation of feedback measurements into the
PopPK model could improve the precision of Bayesian forecasting. The PopPK models
of Aumente et al. [21], Medellin-Garibay et al. [11], and Zhang et al. [26] showed the best
predictive performance across all the different tests, including the graphic and numerical
predictive performance assessment. All these three models were originally validated using
the dataset from the patient cohort very similar to the population with which the model
was developed. Although the Gao et al. [19] and Hui et al. [20] models showed comparable
performance to the above models in terms of numerical assessment, they had obvious
prediction bias over the concentration range, as indicated by the Bland–Altman plots.
Notably, the Gao et al. [19] model was developed based on the largest dataset (311 children
with 4517 measurements), but it did not show a better predictive ability. In this model,
a three-compartment disposition rather than a two-compartment disposition model was
used, while the residual unexplained variability of the final model is still high (35.4%).
We noted that the central volume of distribution in the Gao et al. [19] model (20.7 L) is
higher than in other models (Table 2), leading to an obvious underprediction for the peak
concentrations of MTX (Supplementary Table S1). Similarly, significant underprediction
of peak MTX concentrations was also seen with the Hui et al. model (Table S1). The
worst predictive performance was observed with Jonsson et al. model, especially for the
population predictions. This is because a large variability (109%) was found for MTX
clearance in this model, and probably the most influential covariates were not identified
to reduce the variability. As expected, a better performance was found for the individual
predictions after the incorporation of the IIVs of the population parameters. The model
performance could be further improved when the trough concentrations were removed
(Table S1), indicating that the model is inaccurate for predictions of trough concentrations.
These results highlighted that it is essential to evaluate a model in target patient populations
before its application in clinical practice.

We consider that the following factors can partially explain the heterogeneous perfor-
mance of the included models. First, the incorporated covariates may affect the prediction
performance. Theoretically, the models including the largest number of covariates could
show better results in the external evaluation, especially for the population predictions. For
instance, the Jonsson et al. model only considered the effect of body weight on a drug’s PK,
which seems to be significantly insufficient for our data [36]. Furthermore, extrapolation of
the covariate effects beyond the range of the values from the original patient population
could lead to biased model predictions. Likewise, the lack of inclusion for important covari-
ates in the PopPK models may result in high prediction errors for the population predictions
(e.g., the Jonsson et al. model) [36]. Second, the differences in clinical characteristics of the
external validation dataset and the patient populations in published PopPK models may
influence the evaluation results. In this study, although we ensured that the mean age of the
model evaluated was close to that of the validation dataset, the other patient characteristics
were not considered. Differences in other parameters, such as disease severity, leucovorin
rescue procedure, ethnicity and genetic polymorphisms, duration of MTX treatment, or
co-medication, may alter the population parameters of the patient populations with similar
age (e.g., the high central volume of distribution in Gao et al. study) [19], thus they may
partly explain the models’ non-applicability to our patient cohort. Third, some of the
constructed models were mainly based on peak and trough concentrations [19,20], and this
would lead to a biased estimation of the distribution parameters. Likewise, our validation
dataset is composed of peak and trough measurements. The concentrated distribution of
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such data points failed to fully assess the model prediction performance over the whole
concentration-time range, potentially producing a biased evaluation.

The diverse landscape in the performance of the evaluated models observed in our
study demonstrated that it is important to first execute extensive model evaluation before
adopting a model in clinical facilities. Our study showed that the PopPK models of MTX
failed to predict concentration-time data properly for external subjects that belong to a
similar population in which the model was created. Therefore, it warns us that we should
be cautious to apply the internally validated model to external institutions.

The present study has some limitations. First, the validation dataset was retrospec-
tively collected from clinical settings, and uncertainty was associated with data records.
Although we performed a data inspection by two independent persons, some random
errors may still remain in the data. As the selected model is intended to be used in daily
clinical practice, and the same random errors (e.g., recording errors) may also present
in real situations, evaluation of the model performance using such real-world data is a
meaningful and rigorous examination in order to test the robustness of the model. Second,
the evaluation dataset was from a single center and consisted of centralized measurements
(peak and trough), which may prevent a good appreciation of the drug’s distribution. Yet,
the ultimate objective of the model evaluation was to use the selected models for MIPD in
daily practice with only the peak and/or trough concentrations, thus it was crucial to test
the models under this real-life condition.

5. Conclusions

The present study externally evaluated six published PopPK models of MTX in ALL
children with independent clinical data. Some of the published PopPK models were found
to have reasonably low levels of bias for both population and individual predictions but a
relatively high degree of imprecision. The fact that none of the evaluated models passed the
external validation emphasized that extensive validation is required before the adoption of
the model used for clinical care for ALL pediatrics.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/pharmaceutics15020569/s1, Table S1: Prediction error (PE) of the individual
predictions (IPRED) and population predictions (PRED) to observations for the evaluated models for
peak concentrations.
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