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Abstract: Drug and radiotherapy resistance is the primary cause of treatment failure and poor
prognosis in patients with tumors. Exosomes are extracellular vesicles loaded with substances such
as nucleic acids, lipids, and proteins that transmit information between cells. Studies have found
that exosomes are involved in tumor therapy resistance through drug efflux, promotion of drug
resistance phenotypes, delivery of drug-resistance-related molecules, and regulation of anti-tumor
immune responses. Based on their low immunogenicity and high biocompatibility, exosomes have
been shown to reduce tumor therapy resistance by loading nucleic acids, proteins, and drugs inside
xosomes or expressing tumor-specific antigens, target peptides, and monoclonal antibodies on their
phospholipid bimolecular membranes. Consequently, future research on genetically engineered
exosomes is expected to eliminate resistance to tumor treatment, improving the overall prognosis of
patients with tumors.
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1. Introduction

The global tumor burden has increased over the past few decades. In China, the
national relative rate of cancer-related deaths increased from 10.1% in the 1970s to 24.2%
in 2015 [1]. The tumors with the highest incidence are related to lung, stomach, liver,
colorectum, and bladder cancers in men and breast, lung, colorectal, thyroid, cervical, and
stomach cancers in women. More than 600,000 people in the U.S. will die from cancer
by 2022 [2]. In Europe, there were more than 3.9 million new cancer cases, of which 53%
were male, and 47% were female, and the total number of cancer deaths was estimated at
1.93 million in 2018 alone [3]. Therefore, cancer is currently the main health problem that
needs to be managed.

The natural progression of tumors includes gene mutations that can lead to the malig-
nant proliferation of tumor cells, destruction and remodeling of the surrounding microen-
vironment by relative molecules released from tumor cell clusters, entry into the circulatory
system through the wall of blood and lymphatic vessels, colonization and growth in dis-
tant organs, and, ultimately, death of the patient. Based on an in-depth understanding
of tumor occurrence and development, current anti-tumor therapies include traditional
surgery, chemotherapy, radiotherapy, emerging immunotherapy, targeted therapy, chimeric
antigen receptor (CAR) T-cell therapy, and ionizing radiation. However, in addition to
the early patients who were cured by surgery, most patients with malignant tumors have
primary therapy resistance or would develop therapy resistance at a certain stage of tumor
treatment, resulting in a poor prognosis. Different solutions can be used for different
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types of therapy resistance. Solutions to single-agent chemotherapy resistance include
the use of drugs with different mechanisms of action, different dose intensities, shorter
chemotherapy intervals, or higher doses supplemented with growth factor support. One
of the solutions to targeted therapy resistance is to identify new gene mutation sites and
use the corresponding targeted drugs [4]. Unfortunately, eventual resistance to drugs and
radiotherapy remains a typical occurrence. Therefore, we focus on the specific molecular
functions of exosomes involved in tumor therapy resistance and the regulation of exocrine
function, which have potential applications in disease treatment.

2. Biological Functions of Exosomes for Cellular Communication

Exosomes, extracellular vesicles (EVs) with diameters ranging from approximately
40–160 nm, are released by nearly all cells. Pan et al. first identified exosomes in sheep retic-
ulocytes in 1983, used to track the transferrin receptor during maturation [5]. Reportedly, a
variety of cells can secrete exosomes, such as nerve cells, immune cells, epithelial cells, mes-
enchymal cells, and tumor cells [6]. The formation of exosomes is a delicate and complex
biological process. First, cells form early endosomes through endocytosis, which contain
extracellular small molecules and cell membrane surface proteins. These early endosomes
then form late endosomes through double invagination of the plasma membrane, eventually
forming intracellular multivesicular bodies (MVBs), in which intraluminal vesicles (ILVs)
of different diameters, namely exosomes, are generated. A variety of specific molecules in
the cytoplasm are loaded into exosomes through the endosomal sorting complex required
for transport (ESCRT)-dependent or -independent mechanism, and ultimately, the exo-
somes are secreted outside the cell through the fusion of these MVBs with the cytoplasmic
membrane [7–9]. Exosomes enter receptor cells through endocytosis, direct fusion, or com-
bination with surface receptors. In recent decades, exosomes have attracted much attention
because they act as cell-signaling mediators by transferring proteins, RNA, DNA, lipids,
and other substances between cells. Interestingly, the composition of the exosomes was not
variable (Figure 1). There is growing evidence that exosomes loaded with different contents
are involved in various complex physiological and pathological processes, including tissue
development [10], immune response [11–13], reproductive health [14], autophagy [15],
cardiovascular disease [16], and cancer progression [17–19]. In terms of physiological and
pathological mechanisms, exosomes derived from tumor cells, tumor-associated immune
cells (e.g., tumor-associated macrophages), and tumor-associated stromal cells (e.g., tumor-
associated fibroblasts) can promote angiogenesis, remodel the tumor microenvironment,
regulate anti-tumor immune responses, and induce resistance to tumor growth, invasion,
and metastasis [20]. For example, exosomes with the epidermal growth factor receptor
EGFRvIII, released from glioma cells, can be taken up by EGFRvIII-deficient cancer cells,
activating translational signaling pathways and enhancing growth ability [21]. Tumor cells
successfully induce angiogenesis by delivering the exosome Tspan8-CD49d complex into
endothelial cells [22]. In addition to providing exosomes, tumor cells can also “educate”
adjacent stromal cells to remodel the tumor microenvironment. Breast cancer exosomes can
increase the level of the unshielded protein RN7SL1 in stromal fibroblasts, which is secreted
by stromal cells with exosomes, driving inflammatory responses in the microenvironment
and promoting tumor cell growth, metastasis, and therapy resistance [23].
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Figure 1. Exosomes transmit information between cells. Exosomes originate from early endosomes
and are loaded with substances such as nucleic acids, proteins, and lipids in the process of forming
intracellular multivesicular bodies (MVBs). MVBs then transport the exosomes out of the cells by
fusing with the cell membrane. After entering the recipient cells, exosomes release the components
involved in signal transduction or gene expression regulation [6,7,20].

3. Isolation and Purification of Exosomes

Exosomes can be identified in almost all biological fluids, including blood, urine,
bronchoalveolar lavage fluid, lacrimal fluid, seminal fluid, and ascites [24,25]. However, one
of the challenges in the clinical application of exosomes is that their isolation and storage are
not standardized. A variety of methods have been developed to isolate exosomes; however,
most of the available isolation techniques are unable to obtain large quantities of high-purity
exosomes while maintaining vesicle integrity. Differential ultracentrifugation uses different
centrifugal forces and times to sort materials based on the density and size of exosomes
and other components [26,27]. After the removal of dead cells and cell debris from the cell
culture supernatant or biological fluid, the exosome particles are suspended in PBS solution
and can be used immediately for biological experiments or stored in a refrigerator at 4 ◦C
for near-term use. This technique has been successfully used to isolate exosomes from cell
culture supernatant, serum, saliva, urine, breast milk, and amniotic fluid [27,28]. Although
this method is simple and easy to operate, the process takes a long time, can partially
damage exosomes, and is vulnerable to the influence of centrifugation time and biological
material type [29]. Based on these shortcomings, isopycnic density-gradient centrifugation,
one-step sucrose cushion-buffered centrifugation [29,30], and cushioned-density gradient
ultracentrifugation have all been developed. Since the marker proteins expressed on
the exosome membrane surface include CD9, ALIX, an-nexin, and Rab5, immunoaffinity
capture technologies based on magnetic beads or affinity columns have been developed.
The main principle is to use magnetic beads or affinity columns coated with antibodies to
capture exosomes from exosome suspensions enriched in ultracentrifugation by recognizing
specific signaling receptors on the exosome membrane surface. This technique is suitable
for isolating specific exosome subgroups for further study of their biological functions;
however, the low yield of this method limits their further development and clinical use [31].
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Precipitation techniques use polymers such as polyethylene glycol to separate exo-
somes from liquids [32]. Several precipitation-based commercial products are available
for purchase. However, it should be noted that polyethylene glycol is difficult to separate
from exosomes and has potential toxicity. The chitosan separation method has also been
used to collect exosomes [33]. Positively charged chitosan can attract negatively charged
exosomes, thereby separating them from the cell culture medium, urine, blood, and saliva.
This technique can safely isolate intact exosomes at a relatively low technical cost. However,
the elution of exosomes from chitosan-exosome complexes may be less efficient given the
differences in density and pH of different biological fluids. Based on the size difference
among exosomes and other components of biological fluids, exosomes can be separated
using cellulose membranes with different molecular weight cut-off values, a method called
ultrafiltration. This method is simple and less time-consuming, but the clogging of exo-
somes on the surface of the membrane may lead to a decrease in recovery [34]. Researchers
have successfully isolated different exosome subpopulations using the simple, rapid, and
gentle asymmetric flow–field flow fractionation, which is expected to help researchers
further elucidate the heterogeneity and biological origin pathways of exosomes. However,
the small capacity of gentle asymmetric flow–field flow fractionation makes it difficult
to use for large-scale preparation of exosomes [35]. Microfluidic techniques can separate
exosomes based on exosome-specific proteins or lipids (label-based) or physical properties
of exosomes (label-free). The label-based microfluidic method captures exosomes based
on the principle of antigen-antibody specific binding, but the dissociation process of the
antigen-antibody complex may destroy the exosome structure. In contrast, label-free mi-
crofluidic techniques can better ensure the intact structure and biological composition of
exosomes. Furthermore, the simple operation steps, high cost-effectiveness, and short
time consumption make label-free microfluidic techniques a very promising method for
exosome isolation. However, this method may not be able to distinguish exosomes from
lipoproteins of similar size and density [36]. The efficient exosome detection method via the
ultrafast-isolation system (EXODUS) is an efficient exosome purification method that im-
proves the separation efficiency by incorporating double-coupled harmonic oscillations in
the dual membrane filter. The researchers compared EXODUS with other exosome isolation
methods, including ultracentrifugation, size-exclusion chromatography, and polyethylene
glycol precipitation. The results revealed that EXODUS was able to obtain high-purity
exosomes and their subpopulations at a faster rate and in higher yields, which offers the
possibility of large-scale preparation of exosomes and future clinical applications [37].

All of the above methods have advantages and disadvantages. It is necessary to
continue to develop simple, efficient, and low-cost separation strategies and gradually
standardize them to ensure the accuracy of results, further meeting the needs for sustainable
medical care.

4. Exosomes Participate in Resistance of Tumor Therapy

With the exploration of exosomes, their various functions in tumor therapy resistance
are gradually being clarified.

4.1. Exosomes Reduce Intracellular Drug Concentration through Drug Efflux

The mechanisms of tumor drug resistance involve tumor burden, physical barriers,
tumor heterogeneity, immune dysregulation, and selective therapeutic pressure. Exosomes
are involved in tumor therapy resistance processes through various complex mechanisms.

Some anti-tumor drugs need to enter the cytoplasm or nucleus for subsequent anti-
tumor effects; however, tumor cells can sort intracellular drugs into exosomes and then
secrete them outside the cells. Lehuédé et al. found that breast cancer cells co-cultured with
breast adipose cells developed a resistance to doxorubicin (DOX). Further studies revealed
that DOX accumulated in the exosomes of these breast cancer cells and was subsequently
secreted extracellularly in conjunction with an increase in the transport-associated major
vault protein [38]. Similarly, studies have shown that cisplatin accumulates in the lyso-
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somes of tumor cells, and cisplatin-resistant ovarian cancer cells secrete more exosomes
carrying lysosome-associated proteins 1 and 2 and cisplatin into the extracellular environ-
ment [39]. B-cell lymphoma cells were observed to extrude the anthracycline, DOX, and
the anthracenedione, pixantrone, from cells by secreting exosomes, which may be related
to the involvement of the vital molecule ATP transporter A3 in exosome biogenesis [40].
In addition, tumor cells block the delivery of anti-tumor drugs by constructing an acidic
microenvironment, which further leads to drug resistance. In an acidic environment, the
uptake of cisplatin by human melanoma cells is significantly reduced. These tumor cells
sort cisplatin into exosomes and then discharge drugs from the cells, resulting in drug
resistance [41].

4.2. Exosomes Promote Tumor Cells to Develop Drug-Resistant Phenotype

EMT is a flexible change in cellular phenotypes, during which epithelial cells lose
adherence junctions, acquire mesenchymal properties, and develop invasion and drug
resistance. MicroRNAs (miRNAs) can influence gene expression levels through recogni-
tion sites in the 3′-untranslated region of a specific mRNA. Some exosomes involved in
resistance to tumor therapy are listed in Table 1. Elevated miR-155-5p expression was
found in paclitaxel-resistant gastric cancer, with an epithelial-to-mesenchymal transition
(EMT) phenotype (Figure 2, Table 1). Sensitive cells exhibited the EMT phenotype after
the uptake of paclitaxel-resistant cell-derived exosomal miR-155-5p. Further research re-
vealed that miR-155-5p could target GATA-binding protein 3 (GATA3) in drug-sensitive
tumor cells [42]. Exosomes released from oncogenically transformed mesenchymal human
bronchial epithelial cells (HBECs) transfer chemoresistance to epithelial HBECs and in-
crease the expression of the EMT transcription factor ZEB1, resulting in gemcitabine and
cisplatin resistance of the recipient cells [43]. Clinically, increased circulating exosomal
miR-92a-3p levels in patients with colorectal cancer (CRC) are associated with chemother-
apy resistance. Exosomal miR-92a-3p, isolated from cancer-associated fibroblasts (CAFs),
inhibited FBXW7 and MOAP1 expression, increased cell stemness, and induced EMT and
5-FU resistance [44]. Exosomal miR-155 collected from breast cancer stem cells (CSCs) and
chemoresistant cells could be transferred to recipient-sensitive cells and effectively induce
EMT change, DOX, and paclitaxel drug resistance [45]. Exosomal gp96 from paclitaxel-
resistant breast cancer cells increases paclitaxel resistance in paclitaxel-sensitive breast
cancer cells by degrading p53. Hypoxia promotes EMT and paclitaxel resistance in tumor
cells [46]. Furthermore, exosomal miR-210-3p may play a role in osimertinib resistance by
inducing the EMT process in the tumor microenvironment of EGFR-mutant non-small cell
lung cancer (NSCLC) [47].

4.3. Exosomes Deliver Drug-Resistant-Associated Molecules

Studies have found that exosomes can also transmit drug resistance to cancer cells.
Exosomes derived from cisplatin (DDP)-resistant triple-negative breast cancer (TNBC) cells
alter the sensitivity of other tumor cells by delivering miR-423-5p [48]. Exosomes with
miR-21 released from cisplatin-resistant oral squamous cell carcinoma (OSCC) could induce
cisplatin resistance and promote tumor growth, as indicated in the subcutaneous xenograft
mouse model [49]. Exosomal miR-4443 from cisplatin-resistant NSCLC is transferred to
sensitive cells and confers drug resistance by regulating FSP1 [50]. A significant decrease
in miR-567 was found in trastuzumab-resistant HER-2 positive breast cancer patients
over that found in responding patients. Overexpressed exosomal miR-567 can be taken
in by recipient-resistant cells, suppress autophagy, and reverse trastuzumab resistance
by targeting ATG5 both in vitro and in vivo [51]. As a molecularly targeted tyrosine
kinase inhibitor specific to EGFR, osimertinib has been widely used for EGFR-mutant
NSCLC. However, most advanced NSCLC patients treated with osimertinib develop drug
resistance and tumor progression within 1 year. A previous study showed that osimertinib
promotes the secretion of exosomes from EGFR-non-mutation-resistant lung cancer cells.
These exosomes then transferred wild-type EGFR protein to sensitive cells, which induced
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osimertinib resistance by activating the PI3K/AKT signaling pathways [52]. Moreover,
a report indicated that exosomal miR-136-5p from anlotinib-resistant advanced NSCLC
cells induced anlotinib resistance in sensitive NSCLC cells by targeting PPP2R2A [53]. In
addition to the tumor cells, stromal cells in the tumor microenvironment can also deliver
drug-resistant miRNAs. Tumor-associated macrophages (TAM) from the pancreatic ductal
adenocarcinoma (PDAC) microenvironment secrete exosomes carrying miR-365. miR-
365 upregulates triphospho-nucleotides in PDAC cells and significantly decreases the
sensitivity of tumor cells to gemcitabine [54]. Furthermore, miR-100, miR-222, and miR-433
can be loaded into exosomes and involved in chemotherapy resistance [55,56].

Long noncoding RNA (lncRNAs) that biochemically resemble mRNAs are defined as
RNA genes with base pairs larger than 200 yet do not have protein-coding potential. lncR-
NAs can compete with endogenous RNA (ceRNAs) to regulate miRNA expression levels
and form “lncRNA–miRNA–mRNA” axes [57]. Exosomal lncARSR released from renal
cell carcinoma (RCC) cells promotes sunitinib resistance by binding to miR-34 and miR-
449. Sunitinib-resistant RCC cells treated with an AXL/c-MET inhibitor showed restored
sunitinib sensitivity [58]. The alkylated drug temozolomide (TMZ) is a standard chemother-
apeutic drug for malignant glioma treatment; however, drug resistance greatly increases the
difficulty of clinical treatment. Exosomal lnCSBF2-AS1 from TMZ-resistant glioblastoma
(GBM) cells upregulated X-ray repair cross complementing 4 expression levels by targeting
miR-151a-3p, enhancing drug resistance in GBM cells [59]. Furthermore, high levels of
serum exosomal lncRNA PART1 in patients with esophageal squamous cell carcinoma
(ESCC) are clinically associated with adverse reactions to gefitinib treatment. The lncRNA
PART1 from gefitinib-resistant cells promotes Bcl-2 expression in parental ESCC cells
in vitro by binding to miR-129 and promoting gefitinib resistance [60]. lncRNA-SNHG14
incorporated into exosomes from trastuzumab-resistant HER-2+ breast cancer cells can
disseminate resistance to sensitive cells by targeting the apoptosis regulator Bcl-2 (Bcl-2) sig-
naling pathway [61]. lncRNA XIST, lncRNA UCA1, and lncRNA AX747207 [62–64] can also
be selectively loaded into exosomes of tumor cells and participate in tumor drug resistance.

Circular RNAs (circRNAs) are produced by post-splicing the precursor mRNA of gene
exons in eukaryotes. Drug-resistant tumor cells can improve the energy metabolism
of sensitive cells by delivering circRNAs. Oxaliplatin-resistant CRC cells transferred
the circular RNA hsa_circ_0005963 (ciRS-122), which is a sponge for pyruvate kinase
(PKM2)-targeting miR-122, to sensitive cells through exosomes. CiRS-122 in recipient
cells upregulates the expression of PKM, which is a key molecule in catalyzing glycolysis,
and gradually transforms cells into drug-resistant cells [65]. CircRNA nuclear factor I X
in exosomes, released from TMZ chemoresistant glioma cells, was found to repress cell
apoptosis under TMZ exposure and enhance cell migration and invasion by sponging
miR-132 in recipient-sensitive cells [66]. Exosomal circ_0072083 expression is increased in
TMZ-resistant glioma patients. Circ_0072083 silencing can reduce NANOG expression by
blocking demethylation and restraining TMZ resistance in tumor cells [67]. Additionally,
exosomal circ 0000338, circ CPA4, and circ PVT1 are also involved in the process of tumor
chemotherapy resistance [68–70].

Hormonal therapy is an endocrine therapy for tumors, including postmenopausal
estrogen receptor-positive breast cancer. Estrogen-dependent MCF-7 breast cancer cells
showed partial antiestrogen drug resistance after treatment with exosomes derived from
tamoxifen- and/or biguanide-metformin-resistant cells. The transmission of this resistance
is partly related to the activation of Akt, NF-κB, and SNAIL1 transcription factors [71].

N 6-methyladenosine RNA demethylase FTO was found to be enriched in circulat-
ing exosomes collected from gefitinib-resistant advanced NSCLC patients, as compared
to gefitinib-sensitive patients. FTO reduction in exosomes from gefitinib-resistant cells
alleviated the acquired resistance of the gefitinib-sensitive cell line PC-9 cells by the
FTO/YTHDF2/ABCC10 axis in vitro and in vivo [72]. Multidrug resistance (MDR) leads
to poor response to clinical chemotherapy in some tumor patients. A previous study
indicated that docetaxel resistance in prostate cancer could be partly due to the transfer
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of one of the key genes related to drug resistance, MDR-1, via exosomes [73]. Moreover,
mesenchymal stem cell exosomes upregulate MDR-associated proteins, such as MDR and
LRP, by activating the Raf/MEK/ERK kinase cascade in cancer cells and play a promoting
role in drug resistance to 5-fluorouracil [74].

4.4. Exosomes Regulate Anti-Tumor Immune Response

Immunosuppression is one process by which continuous tumor progression proceeds.
One study indicated that murine mammary tumor cell-derived exosomes inhibited the
release of perforin from NK cells, blocking their cytotoxic response and promoting tumor
growth [75]. NKG2D is an activating receptor of immune cells, and its abnormal loss
leads to tumor immune evasion. Cancer cell exosomes expressing NKG2D ligands and
TGF-β1 downregulate NKG2D expression and weaken the ability of CD8(+) T and NK
cells to recognize and kill tumor cells [76]. Murine mammary tumor cell exosomes block
the differentiation of bone marrow (BM) CD11b (+) myeloid precursor cells into dendritic
cells (DC), resulting in the accumulation of myeloid precursors in mouse spleen. Moreover,
this study suggested that IL-6 and phosphorylated Stat3 play important roles in blocking
immune cell differentiation [77]. A study found that circulating exosomal miR-208b is a
potential biomarker for oxaliplatin resistance prediction in patients with CRC. Exosomal
miR-208b derived from colon cancer cells promoted regulatory T cell (Treg) expansion
by targeting programmed cell death factor 4 (PDCD4) once taken in by recipient T cells,
leading to tumor growth and oxaliplatin resistance in vivo [78]. FasL-positive (FasL+)
exosomes have been detected in the serum of patients with oral squamous cell carcinoma.
These microvesicles promote T lymphocyte apoptosis by activating mitochondrial apoptotic
pathways [79]. Exosomes with galectin-1 (Gal-1) from head and neck cancer-derived cells
have been shown to induce an immune suppressor phenotype in human CD8+ T cells,
resulting in the immune escape of tumor cells [80].

At present, monoclonal antibodies have become one of the primary means of tar-
geted anti-cancer therapy, owing to immune-mediated lytic mechanisms in tumor cells.
Monoclonal antibodies as a targeted anti-cancer therapy have benefited most patients
with different tumor types, and the anti-CD20 chimeric antibody rituximab has been
widely used. Rituximab exerts anti-tumor effects by inducing cytolysis after CD20 ligation.
However, the prognosis for patients with primary drug resistance remains poor. A study
found that exosomes with the CD20 antigen released from aggressive B-cell lymphoma
cells could bind rituximab and protect lymphoma cells from humoral immunotherapy.
Exosomes carrying the CD20 receptor on the lipid membrane derived from B-cell lym-
phoma can bind to the anti-CD20 antibody rituximab, thereby mediating its extracellular
depletion [81]. Trastuzumab is a humanized antibody used as an adjunctive therapy
for breast cancer patients with HER-2 overexpression. Unfortunately, exosomes derived
from breast cancer cells can bind trastuzumab, isolating tumor cells from the drug and
reducing drug availability [82]. Drug resistance associated with lncRNA actin filament-
associated protein 1 antisense RNA 1 (AFAP1-AS1) may lead to a shorter survival time in a
fraction of HER-2-positive breast cancer patients. Mechanistically, AFAP1-AS1 loaded in
exosomes from trastuzumab-resistant cells induces trastuzumab resistance by promoting
ERBB2 translation.

4.5. Exosomes Transfer Radiation Resistance

Radiotherapy is a method of treating malignant tumors using radiation, including α-,
β-, and γ-rays, produced by various X-ray therapy machines or accelerators. Radiation can
be absorbed by tumor cells and directly or indirectly damages the DNA of cells, resulting in
cell death. However, both radiation-sensitive and radiation-resistant cells exist in the tumor
microenvironment, and the existence of these radiation-resistant cells is one of the reasons
for tumor recurrence and progression. Exosomes are important signal transduction carriers
in the tumor microenvironment and play a notable role in tumor radiation resistance.
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Radiotherapy causes DNA damage in cancer cells, resulting in changes in the quantity
and composition of the exosomes. A study showed that radiotherapy induced a p53-
dependent increase in exosomes with the B7-H3 protein in human prostate cancer cells,
which was identified as a diagnostic marker for prostate cancer [83]. Similarly, GBM
cells and normal astrocytes secreted more exosomes after precise X-ray exposure. These
exosomes are absorbed by recipient cells and enhance their migration ability by activating
neurotrophic tyrosine kinase receptor type 1 (TrkA) [84]. Jelonek et al. compared the
components of exosomes derived from human squamous head and neck carcinoma FaDu
cells exposed to ionizing radiotherapy. They found that exosomes from FaDu cells exposed
to ionizing radiation carried different proteins involved in transcription, translation, and
cell signaling [85].

As information carriers, exosomes transmit radiation resistance between tumor cells.
Researchers have found that radiation-resistant cells can enhance the enrichment of h3k4me2
to express more noncoding RNA NORAD, which can inhibit miR-199a-5p expression and
reduce the content of miR-199a-5p in exosomes. However, NORAD knockdown increased
the expression level of miR-199a-5p in exosomes, inhibiting the ATR/Chk1 signaling path-
way and restoring the radiosensitivity of radiation-resistant cells. Moreover, NORAD
knockdown increased the efficacy of radiotherapy and anti-PD-1 treatment in mice by
inhibiting PD-L1 ubiquitination [86]. Radiation can enhance the release and uptake of
exosomes by tumor cells, and these exosomes not only facilitate unirradiated cell prolifera-
tion but also promote the survival of irradiated cells. These large numbers of exosomes
from irradiated cells transmit radiation resistance among cells, possibly through increased
DNA double-strand break repair [87]. Increased circulating exosomal circRNA was found
to be associated with disease recurrence in patients with nasopharyngeal carcinoma, and
overexpressed circMYC could reduce the radiosensitivity of tumor cells [88]. Hypoxia
is a critical factor in radiation resistance. Exosomes can transmit radiation resistance be-
tween hypoxic and aerobic cells. MiR-340-5p is highly expressed in exosomes released
from hypoxic esophageal squamous cell carcinoma (OSCC) cells. Exosomal miR-340-5p
is taken up by aerobic cells and then targeted to KLF10/UVRAG, resulting in radiation
resistance [89]. Clinical studies have shown that circMETRN can be detected in the serum
exosomes of patients with GBM at the early stage of radiotherapy. Further studies have
shown that low-dose radiotherapy can cause tumor cells to produce exosomes carrying
high levels of circMETRN and circMETRN-induced radiation resistance through the miR-
4709-3p/GRB14/PDGFRα pathway [90]. A report demonstrated that exosomes released
from latent membrane protein 1 (LMP1)-positive recipient nasopharyngeal carcinoma
(NPC) cells induce radiation resistance in recipient NPC cells, partly via activation of P38
MAPK signaling in the recipient cells. Notably, these exosomes promote cell migration and
invasion while inducing radiation resistance in recipient cells [91]. In addition to tumor
cells, exosomes secreted by tumor-associated stromal cells are also involved in tumor radia-
tion resistance. CAFs are malignant cells assimilated by tumor cells. Exosomes derived
from CAFs have been found to promote the clonogenicity and radiation resistance of CSCs
in CRC by activating the TGF-β signaling pathway [92]. Furthermore, M2-like TAMs have
been detected in clinical endometrial carcinoma (EC) tissue samples. Hsa_circ_0001610 in
exosomes released from TAMs significantly downregulated the radiosensitivity of EC cells
by upregulating cyclin B1 expression in a competitive manner with miR-139-5p [93]. A
report indicated that exosomal miR-194-5p released from irradiated tumor cells potentiated
the survival of residual tumor-repopulating cells (TRCs) after radiotherapy by inducing
G1/S arrest in pancreatic cancer [94].

The radiation-induced bystander effect and radiation-induced abscopal effect refer
to a biological response in which irradiated cells influence adjacent and distant unirra-
diated cells through intercellular signal transduction. A study found that HaCaT skin
keratinocytes exposed to α-particles and X-rays secrete exosomes containing more miR-
27a. Exosomal miR-27a was taken in by recipient unirradiated WS1 skin fibroblasts and
inhibited migration of WS1 cells by targeting MMP2 [95]. Autophagy occurs in recipi-
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ent cells receiving exosomal miR-7-5p from irradiated human bronchial epithelial BEP2D
cells via the EGFR/Akt/mTOR signaling pathway [96]. Human prostate cancer PC3 cells
secrete exosomes containing L-plastin after exposure to ionizing radiation. Exosomal L-
plastin is constitutively Ser5-phosphorylated in malignant cancer and normal cells and
induces the reduction of mitogenic/clonogenic activity [97]. Compared with the control
group, exosome-like vesicles in the serum of four Gy-irradiated mice carried amplified
mitochondrial DNA (ND1, ND5), which could induce DNA damage in fibroblasts [98].
Similarly, exosomes released by irradiated cells activated ATM and ATR, which impaired
DNA replication in recipient FaDu cells [99].

Table 1. Exosome components involved in cancer therapy resistance.

Exosome Components Resistance Effects References

Gastric cancer miR-155-5p Paclitaxel Induce EMT [43]

Breast cancer miR-155 Doxorubicin and
paclitaxel Induce EMT [46]

Non-small cell lung cancer miR-210-3p Osimertinib Induce EMT [48]
Non-small cell lung cancer miR-136-5p Anlotinib Targeting PPP2R2A [54]

Pancreatic ductal
adenocarcinoma miR-365 Gemcitabine Up-regulate the triphospho-nucleotide [55]

Colon cancer miR-208b Oxaliplatin Promote regulatory T cells expansion [79]
Pancreatic cancer miR-194-5p Radiotherapy Induce G1/S arrest [95]

Glioblastoma InCSBF2-AS1 Temozolomide Up-regulate X-ray repair cross
complementing 4 [60]

Esophageal squamous
cell carcinoma lncRNA PART1 Gefitinib Up-regulate Bcl-2 [61]

Colorectal cancer hsa_circ_0005963 Oxaliplatin Up-regulate PKM [66]
Endometrial carcinoma hsa_circ_0001610 Radiotherapy Up-regulate cyclin B1 [94]

Glioma circ-nuclear factor I X Temozolomide Repress cell apoptosis [67]

Glioblastoma circ-METRN Radiotherapy Activate miR-4709-3p/
GRB14/PDGFRα pathway [91]

Aggressive B-cell
lymphoma CD20 antigen Rituximab Bound rituximab [80]

Lung cancer Wild type EGFR protein Osimertinib Activate PI3K/AKT and MAPK
signaling pathways [53]Pharmaceutics 2023, 15, x FOR PEER REVIEW 10 of 20 
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mor drug resistance by directly mediating drug efflux, regulating anti-tumor immune re-
sponses, inducing epithelial–mesenchymal transition (EMT) phenotype, and delivering drug
resistance [39–43,47,48,53–55,60,61,66,77,79–81,91,95].



Pharmaceutics 2023, 15, 462 10 of 19

5. Modification of Exosomes for Tumor Therapy

With the unveiling of the physiological and pathological mechanisms of exosomes,
novel tumor therapeutic strategies using exosomes themselves or as delivery agents are
being actively explored. Traditional drug delivery systems are represented by liposomes,
which are non-toxic spherical vesicles composed of the phospholipid bilayer wrapped
around a water core and have been successfully used for the delivery of many drugs [100].
However, the clearance rate of liposomes by the reticuloendothelial system is high, and
there is a risk of liposomes triggering hypersensitivity reactions. Exosomes, as naturally
secreted vesicles of cells, are emerging as a very promising tool for anti-tumor drug deliv-
ery based on their low immunogenicity and excellent biocompatibility. There are several
strategies available to load therapeutic drugs, proteins, or nucleic acids into exosomes. Elec-
troporation is an effective method to passively load exogenous substances into exosomes.
The use of specific electric fields can temporarily increase the permeability of exosome
membranes, at which time substances are loaded into the exosomes, and the exosome
membranes are then restored to integrity [101]. Co-culture of cisplatin with tumor cells
can produce vesicles containing cisplatin that can be preferentially taken up by tumor-
repopulating cells. These vesicles reverse chemoresistance in tumor-repopulating cells by
interfering with drug efflux [102]. Likewise, engineered exosomes loaded with therapeutic
miRNAs produced by co-culture delivered miRNAs to neuroblastoma cells in vivo, thereby
inhibiting tumor growth [103] (Figure 3A).

In addition, several other strategies for exosome loading have been compared: freeze-
thaw cycles, saponin permeabilization, extrusion, or sonication. It was found that exosomes
generated by extrusion, sonication, or saponin permeabilization had the highest loading
efficiency [104]. Exosomes successfully loaded with specific substances are able to in-
crease the sensitivity of tumor cells to drugs. Adipose tissue-derived mesenchymal stem
cells cultured with miR-122 secrete miR-122-encapsulated exosomes, which increased the
sensitivity of hepatoma cells to sorafenib by delivering miR-122 to hepatoma cells [105].
Tumor-cell-derived engineered CRISPR/Cas9 exosomes enhance the chemosensitivity of
ovarian cancer cells to cisplatin [106].

In addition to molecular loading, improving exosome targeting is also important.
Genetic engineering and chemical modifications can improve the tumor cell targeting speci-
ficity of exosomes. Genetic engineering enables the expression of this specific protein on the
exosome surface via cloning the gene sequence of the specific protein to the gene sequence
of the exosome transmembrane protein. Cloning of the Apo-A1 gene into the downstream
sequence of the CD63 in donor cells produced exosomes that expressed Apo-A1 on the
surface of bilayer lipid membranes, and these exosomes were specifically recognized by
scavenger receptor class B1 positive hepatocellular carcinoma cells, thereby enhancing the
tumor targeting of the exosomes. These exosomes were then loaded with therapeutic miR-
26a by electroporation. The modified exosomes were confirmed to inhibit the growth and
invasion of cancer cells [107] (Figure 3B). The sigma receptor is a membrane-bound protein
highly expressed in lung cancer cells, but its role in cancer remains unclear. Exosomes
modified with 1, 2-Distearoyl-sn-glycero-3-phosphoethanolamine-N-polyethylene glycol-
aminoethylanisamide (DSPE-PEG-AA) and loaded with paclitaxel can target tumor cells
expressing the sigma receptor and inhibit tumor cell lung metastasis. DSPE-PEG-AA and
paclitaxel were loaded on macrophage-derived exosomes by a special sonication method,
and this modification protected PTX from mononuclear phagocyte system clearance and
prolonged the circulation time [108] (Figure 3C).

Similarly, the gene sequences encoding GE11 or EGF were cloned into pDisplay vectors
to produce exosomes expressing GE11 or EGF membrane proteins. Engineered exosomes
target tumor cells through specific binding of GE11 or EGF to EGFR on the surface of
cancer cells [109]. Chemical modifications are equally capable of loading ligands onto the
surface of exosomes. Neuropilin-1-targeted peptide (RGERPPR, RGE) can be conjugated to
exosome membranes through click chemistry, which enables curcumin-carrying exosomes
to target glioma cells [110]. Donor cells are labeled with biotin and anti-biotin proteins
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using a chemical editing strategy and loaded with the drug in the cytoplasm. Microfluidic
microarray technology was then used to isolate exosomes secreted by such cells that carry
anti-cancer drugs and express biotin and anti-biotin proteins. These exosomes have been
proven to be highly effective in targeting tumor cells and enhancing the effect of anti-cancer
drugs [111] (Figure 3D). In addition, artificially synthesized extracellular nanovesicles have
recently been developed and are expected to become a new generation of drug delivery
systems [112–114].
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neuroblastoma cell growth. Reprinted with permission from Ref. [103]. 2019, CC BY. (B) Engi-
neered exosomes that can specifically bind to hepatoma cells were obtained by loading miR-26a into
exosomes from 293T cells overexpressing scavenger receptor class B type 1 (Apo-A1) through electro-
poration.Reprinted with peimisson from Ref. [107].2018, CC BY. (C) Targeting of exosomes to sigma
receptor-expressing lung cancer was enhanced by expressing aminoethylanisamide-polyethylene
glycol (AA-PEG) on the phospholipid bilayer plasma membrane of paclitaxel-loaded macrophage-
derived exosomes (exoPTX). Reprinted with permission from Ref. [108]. 2018, Elsevier. (D) Microflu-
idic chips were used to efficiently isolate and collect biotin and avidin-labeled drug-encapsulated
exosomes, which were taken up by recipient cells and induced apoptosis. Reprinted with permission
from Ref. [111]. 2017, American Chemical Society.

As most tumors are immunosuppressed, activation of the immune system is an effec-
tive anti-tumor strategy. As early as 1996, exosomes from B lymphocytes were found to
carry major histocompatibility complex (MHC) class II molecules and participate in antigen
presentation in vivo [115]. Dendritic cell-derived exosomes express T-cell costimulatory
molecules, MHC class I, and class II molecules. These exosomes can activate T cell-mediated
immune responses in vivo and suppress tumor growth [116]. Subsequently, molecules such
as liposome-associated membrane protein 1 (LAMP1), CD81, and rab7 were also found to
be enriched in exosomes [117,118]. In addition to antigen presentation function, exosomes
can stimulate the migration of natural killer cells [119], promote the proliferation of T
cells [120], and enhance the anticancer immune response of helper T cells [121]. Modified
exosomes have also been used to activate anti-tumor immune responses. Exosomes with
CpG on the surface of the lipid membrane can activate Toll-like receptor 3, eliminating
chemotherapy resistance and immunosuppression and enhancing the anti-tumor immune
response to advanced ovarian cancer in vivo. Prostate-specific antigen (PSA) and prostatic
acid phosphatase (PAP) were loaded onto exosomal membranes by fusing them to the
lactadherin protein, which increases the antigenicity of PSA, enhances the immune re-
sponse to PAP in mice with prostate cancer, and improves the anti-tumor effect. In another
study, exosomes expressing anti-human HER2 antibodies were genetically engineered to
attack HER2-positive breast cancer cells via activating cytotoxic T cells [122]. It should
be noted that exosomes can also promote tumor immune escape by suppressing the im-
mune response. Some exosomes could impair NK cell cytotoxicity, inhibit T cell function,
inhibit DC activity, promote macrophage M2 polarization, and increase the proliferation of
myeloid-derived suppressor cells [123].

The feasibility of exosomes to inhibit cancer progression and stimulate anti-tumor
immune responses in vivo makes exosome-based cancer vaccines a new cancer treatment
strategy. Exosome-based vaccines have been proven to inhibit tumor growth, stimulate Th1
immune responses, and suppress tumor metastasis [124,125]. Due to immunosuppression
in the tumor microenvironment, exosome-based vaccines alone produce limited antitumor
immune responses. Therefore, exosome-based vaccines in combination with antitumor
drugs are an effective strategy to improve anti-tumor responses. Tumor exosome-loaded
dendritic cell vaccination combined with all-transretinoic acid, sunitinib, and gemcitabine
inhibited myeloid-derived suppressor cells, increased the number of activated T cells, and
prolonged the survival time [126]. Increasing the immunogenicity of exosomes can improve
the efficacy of cancer vaccines. For example, compared to untreated exosomes, heat-treated
exosomes are enriched with heat shock proteins, which stimulate TH1 immune responses
in vivo and exert anti-tumor effects [127]. In addition, for breast cancer patients who
are resistant to the anti-HER2 monoclonal antibody trastuzumab, a novel HER2-specific
exosome-T vaccine was developed using exosomes released from HER2-specific dendritic
cells to target CD4+ T cells. The new vaccine bypassed HER2 tolerance and primed the
immune system of mice against HER2-positive breast cancer [128]. Other modification
strategies for cancer vaccines have been well-reviewed [123]. Several clinical trials have also
been conducted for exosome vaccines [129–132]. However, currently, the FDA has approved
TheraCys® for early bladder cancer, PROVENGE® for castration-resistant prostate cancer,
and IMLYGIC® for metastatic melanoma.
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6. Conclusions and Perspectives

In conclusion, resistance to therapy remains the greatest challenge in cancer treatment.
The mechanisms of resistance to tumor therapy are complex and constantly change with
tumor development and treatment. As a type of messenger, exosomes have an extensive
influence on tumor cell therapy resistance, including direct drug efflux, induction of EMT,
promotion of immune escape, and delivery of therapy-resistant-associated molecules. Fully
understanding the signal transduction between exosomes in the tumor microenvironment
and cells may help reduce therapy resistance, improve the therapeutic effect on malignant
tumors, and improve the prognosis of tumor patients. With an in-depth understanding
of exosomes, researchers have begun to pay attention to their potential in translational
medicine, such as in disease diagnosis [133–135] and therapeutic application [136–138].
Detection of proteins and nucleic acids loaded in exosomes or exosome surface proteins in
saliva, blood, and body fluids can assist in disease diagnosis, tumor staging, fetal sex deter-
mination, and patient prognosis prediction [139]. However, there is no consensus on the use
of exosomes as a standard for the diagnosis and prognosis of diseases. Given the ability of
exosomes to carry peptide-MHC complexes and activate immune cells, several engineered
exosomes have emerged as tumor vaccines. These exosomes were artificially modified
to enhance their immunogenicity and induce potent anti-tumor effects in vivo [140]. In
some research institutions, exosomes are exploited and engineered as drugs for the treat-
ment of diseases and tumors [141,142]. However, the drug-loading capacity and targeting
specificity of exosomes need to be further optimized. Among the current exosome loading
strategies, extrusion, sonication, or saponin permeabilization showed excellent loading
efficiency. However, whether exosomes derived from different types of cells have the same
cargo delivery ability is not yet clear.

Finding ways to improve the production and purity of exosomes is also an important
cornerstone for the future clinical transformation of exosomes. At present, there is no
single method of exosome isolation that can be applied to all studies. Therefore, researchers
may consider choosing one of the most appropriate or combining two methods to obtain
exosomes, depending on the purpose of the study. For the future clinical application of
exosomes, it is necessary to consider the ability to handle large volumes of clinical samples
and the reliability of the results. Based on this, ultrafiltration, label-free microfluidic tech-
niques, and EXODUS have great potential to become the technical support for the clinical
application of exosomes. In the future, it will be necessary to comprehensively explore
the biological functions, pharmacokinetics, toxicology, and other aspects of exosomes and
promote relevant clinical trials to better apply exosomes in clinical diagnosis and treatment.
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