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Abstract: Cancer is one of the most dangerous health problems in the millennium and it is the third
foremost human cause of death in the universe. Traditional cancer treatments face several disadvan-
tages and cannot often afford adequate outcomes. It has been exhibited that the outcome of several
therapies can be improved when associated with nanostructures. In addition, a modern tendency
is being developed in cancer therapy to convert single-modal into multi-modal therapies with the
help of existing various nanostructures. Among them, gold is the most successful nanostructure
for biomedical applications due to its flexibility in preparation, stabilization, surface modifications,
less cytotoxicity, and ease of bio-detection. In the past few decades, gold-based nanomaterials rule
cancer treatment applications, currently, gold nanostructures were the leading nanomaterials for
synergetic cancer therapies. In this review article, the synthesis, stabilization, and optical properties
of gold nanostructures have been discussed. Then, the surface modifications and targeting mecha-
nisms of gold nanomaterials will be described. Recent signs of progress in the application of gold
nanomaterials for synergetic cancer therapies such as photodynamic and photo-thermal therapies
in combination with other common interventions such as radiotherapy, chemotherapy, and will
be reviewed. Also, a summary of the pharmacokinetics of gold nanostructures will be delivered.
Finally, the challenges and outlooks of the gold nanostructures in the clinics for applications in cancer
treatments are debated.

Keywords: cancer therapy; gold nanostructures; synergetic therapies; nanomaterials; biomedical applications

1. Introduction

Cancer is a leading public health issue and the second primary reason for death
at the global level. In 2020, nearly 10 million deaths were reasoned due to cancer as re-
ported by the World Health Organization. Incredibly, about six out of one death globally
is thought to be because of cancer [1]. The rising awareness of the molecular and cellular
facts that reason cancer has permitted the advancement of novel approaches to handle
this disease [2]. Still, the most general and traditional therapy surgery for clearing the
tumor tissue is tailed by chemo/radiotherapy, either single or multi-modal, which is
commonly based on the category and spreading of cancer. There is no united method
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to handle all categories of cancer, however, single-mode treatment not exhibiting a cent
percentage efficiency for each case [3,4]. The conventional interventions for cancer have
exhibited certain boundaries because of the absence of targeting ability toward the malig-
nant consequently it rises several side effects. Moreover, these conventional treatments
are incapable to eliminate the tumors from the body. These traditional approaches can
also generate strong specific pressure aids to develop resistance against the therapy [5–7].
The golden standard method depends on the surgical clearances of cancer-affected parts,
which is a promising way for the initial stage of the disease. Though, imperfect resec-
tion may again seed the malignant cells at the infected region, which then are prone
to cancer regeneration [8]. Chemotherapy utilizes organic molecules-based drugs to
control and abolish the cancer cell multiplications, whose restricted efficiency, heavy
cytotoxicity, and multi-drug resistance of cancer cells have induced the advancement of
novel organic/inorganic compounds [9–11]. Commonly, chemotherapy is jointly applied
with surgery, radiotherapy, and immunotherapy [7]. Radiotherapy utilizes high-energy
ionizing radiation to destroy the tumor sites. Usually, radiotherapy is a supportive
approach to chemotherapy to enhance the ablation of tumor sites [8,12,13]. Based on
these limitations of these traditional therapies have led to the development of modern
approaches, from synergetic therapies that depend on regular anticancer drugs to radial
novel strategies that make use of advanced equipment [14].

Among these modern treatments, phototherapy has gained enormous attention and
emerged as an alternative to traditional cancer therapies. Phototherapy abolishes cancer
cells by selectively triggering photochemical and/or photothermal processes. The purpose
of phototherapy is to abolish cancer cells by generating reactive oxygen species (ROS) or
heat using photoactive agents. Phototherapy can be divided into two types according
to their different mechanisms of action: photodynamic therapy (PDT) and photothermal
therapy (PTT) [15]. Nanoparticle-based phototherapies have encouraged novel strategies
that involve the specific targeting ability of biomolecules to the tumor microenvironments,
the prospect of applying novel forms to combine various treatments such as photodynamic
therapy and photothermal ability, in combination or single mode. Nanotechnology-based
cancer therapies may provide various exciting opportunities for the advancement of novel
approaches for imaging and therapy as well as enhances the efficiency of currently existing
treatments [5,7,8,15,16].

In recent years, many multifunctional nanocarriers have been reported applying nu-
merous kinds of organic/inorganic nanoparticles in which different components may be
joined into one nanoplatforms for synergetic imaging and therapy of cancer. Commonly,
organic-based nanocarriers comprise dendrimers, polymers, and liposomes nanoparticles;
whereas inorganic-based nanocarriers prominently consist of magnetic, plasmonic, meso-
porous silica nanoparticles, quantum dots, and carbon-mediated nanomaterials, among
others [17,18]. Heterocyclic structure-based organic nanoparticles have several for clinical
photodynamic treatments, such as quick chemical functionalization, minimum cytotoxicity,
hemocompatibility, and biodegradability in physiological conditions [18,19]. Though or-
ganic nanoparticles are only triggered by ultraviolet-visible sources and in some specific
cases include near-infrared radiation also, which may restrict direct application and spe-
cific targeting ability to therapy [17]. On the other hand, inorganic-based nanoparticles
particularly noble metals nanoparticles (Au, Ag, Pt, Pd) usually have good near-infrared
(NIR) radiation absorption, which is more promising for deep penetration on photother-
apies. For instance, Zhu et al., (2016) have reported the excellent photothermal effect of
poly(diallyl dimethylammonium chloride)-coated porous Pt nanoparticles where more
than 70% of cancer cells are photothermally ablated after 808 nm laser irradiation for
3 min at 8.4 W cm−2 [19]. Further, NIR dye (CyOH)–coated silver nanoparticle/carbon dot
nanocomposite exhibited excellent photodynamic potential by the production of a high
singlet oxygen yield upon 660 nm laser irradiation leading to mitochondrial accumulation
of nanophotosensitizer, superior tissue penetration, and enhanced significant antitumor
effect [20]. These inorganic-based nanocarriers are usually non-biodegradable and accu-
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mulate on various healthy parts of the body, consequently inducing inflammations [19].
In recent years, several varieties of inorganic nanoparticles have been reported among
them gold nanoparticles owing to their special physicochemical characteristics have
been extensively applied for the advancement of novel therapeutic strategies [21]. Gold
nanoparticles (GNPs) are easy to prepare on a large scale in an aqueous medium, which
can quickly surface modified with a variety of therapeutic agents, encouraging them to
optimal nanocarriers for synergetic bio-imaging and therapeutic applications. There are
many opportunities for bioconjugation either through quick chemical bonding with thiol
groups or dual functionalization or complex chemical conjugations [5,22–24]. However,
the approach applied for the surface modifications of gold nanoparticles (GNPs) is the
precise and quantitative measurement of the functionalized ligands and is essential to
be considered as the major factor for succeeding uses. The localized surface plasmon
resonances of GNPs are of outstanding merit toward the advanced photo-stimulated
treatments, photodynamic therapy (PDT), and photothermal therapy (PTT) which offer
more specific targeting ability and higher therapeutic efficiency [25,26]. The light energy
transported by photons resources may be transformed into thermal energy or acoustic
waves [15]. Even though the successful reports from approaches in the combat against
cancer, the combination of GNPs mediated phototherapies associated with traditional
therapies offers more therapeutic efficiency. Over the three last decades, PDT has been
investigated pre-clinically for various cancer types, particularly for specific cancers for
instance oropharyngeal, esophageal, and cutaneous [7]. Because of the minimum pene-
tration power of ordinary ultraviolet-visible resources into the organ, PDT has not been
applied for the therapies of various cancers that are originating inside the vital organs
to date. The issue of low penetration is still a more challenging one and needs to be
overwhelmed. Moreover, to enhance PDT for cancer, further standardization and the
advancement of therapy approaches using PDT combined with already existing cancer
therapies are required. Herein, the review focus on the applications of GNPs in light-
triggered phototherapies in cancer. The combination of various other therapies with
phototherapies based on gold nanostructure is the special focus of this review, together
with the current challenges pebbledash the pre-clinical translation of these GNPs pho-
totherapies. Additionally, chemotherapy, phototherapies, and immunotherapy, among
others, are outstanding synergetic therapies for PDT. Moreover, the optical properties, side
effects, the mechanisms of PDT based on GNPs are also highlighted. Finally, this review
provides a better understanding of PDT combination approaches using gold nanostructure
as the core and also how gold-based nanomedicine can aid to improve the therapeutic
efficacy of these combinations.

2. Light-Based Cancer Therapies

Light develops physiological changes in cells and stimulates an endogenous biological
chemical reaction either directly or indirectly [8,24]. The light-based biochemical activity
can be extensively classified into those relying on the applications of photoconversion
efficiency. In PDT, organic/inorganic nanoparticles can absorb light, this will then stimulate
the chemical changes leading to the therapeutic outcome. While in PTT, the absorbed
light by inorganic nanoparticles will stimulate the transformation of irradiating laser into
localized thermal energy [8,19]. Other approaches utilize the capacity of GNPs to develop
high energetic radiation (radiotherapy) to focus therapy on the cancer region. The potential
merits of phototherapies are minimal cytotoxicity, invasive, and specific tumor ability [17].
Commonly, lasers are applied as radiation sources for photo-based cancer theranostics
which can produce a monochromatic light that can be allowed via an optical fiber and
attainted the target region directly [25]. The wavelength of the laser irradiation should
depend on the capability to absorb the light by photosensitizers (PS), the location of the
tumor, size, and various other factors to standardize the activation of the PS [27,28]. For
effective clinical practice, phototherapies are strongly dependent on wavelength, exposure
duration, penetration power, mode of delivery, and total dose of the light [29]. From 600 to
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800 nm is the common wavelength range applied for phototherapies named a therapeutic
window, within this wavelength, the energy of radiation can excite the PS permitting
efficient tissue penetration but restricting the absorption of light by other cellular parts
(cytochromes) [28]. PDT consists of three potential components as Oxygen, PS, and light
source for cancer therapy [30]. One major advantage of PDT, it can proceed in the repetitive
mode without generating immune/myelosuppressive effects and is also administered even
after traditional therapies. The standard PS ligand should be a single pure molecule that
permits quality assurance research with resonance stability. The PS can administer via
topical or intravenous injections. However, the alteration in biodistribution over a long
duration gets affected; the alternative path to regulate the impact of PDT is the duration of
light exposure.

The laser absorption, the sensitizer, is transformed from a single state (short-lived) to a
triplet state (long-lived). This triple state responds in two types such as (i) triple state reacts
directly to the cell membrane and transfers the molecules into free radicals. When these free
radicals react with oxygen molecules to form the oxygenated products (type I). (ii) Another
way, the triple state can transfer its energy to the oxygen molecules and transform the
singlet oxygen into a reactive oxygen species (type II). However, commonly all PDT drugs
are oxygen-dependent, this therapy does not work in the anoxia region of the infected
organ. Several reported in vivo investigations showed that holding tissue hypoxia reduces
the PDT effects [31]. Types I and II are generated through specific mechanisms, which are
occurred mutually and depend on the sensitizer type, substrate, and the number of oxygen
molecules that exists in the tumor microenvironment. PDT-based tumor ablation involves
three major pathways. First, PDT produced reactive oxygen species that directly attack
the cancer cells and injured the tumor-combined vasculature, consequently removing the
tumors. The three pathways can also influence each other [32]. The major limitations of
PDT, are only applicable in the cancer region where laser radiation penetration is accessible,
thus this PDT is chiefly adaptable for the lining organs, considering that laser cannot pass
throughout the body tissues. PDT cannot be applied to clear large tumors and cancers that
blow out to the majority of sites. The types of PSs applied in PDT circulate in the body
for a longer time, which makes the patient more sensitive to laser radiation for a short
while. Thus, attention should be considered after the administration of the PSs inside the
body [33–37].

Near-infrared radiation has been widely applied to produce thermal spots and serve
the resolution. Compared to other techniques, PTT has a great attraction to offer excellent
therapeutic value because of its low invasiveness, enhanced therapeutic efficiency, low
side effects, no need for long-lasting therapy, and fast recovery [38]. A photothermal agent
can be allowed in the tumor microenvironment region and absorb the NIR laser lights to
generate kinetic energy that releases thermal energy on the cancer cells and lead to cell
death [39]. The permitted capacity of NIR absorption on healthy organs in the wavelength
between 650–1350 nm develops crucial interpenetration in the patient’s body and destroys
the tumors [40]. Additionally, this technique develops thermal waves to generate trouble
in the cell membrane of the adjacent cancer cells [41]. Hyperthermia via absorption of NIR
laser develops some problems such as short inter-penetrating power and strong absorption
which leads to developing injury on normal cells and reducing the therapeutic efficiency. In
the case of surface plasma resonances holding nanostructures, showed the electrons on the
conduction band were localized on the surface of the nanomaterials upon NIR applications,
and subsequently the localization attaints the target at the resonant frequency to develop
resonances, thereafter absorbed NIR transforming into thermal waves. Therefore, it is
probable to control NPS via local intravenous injection and consequently, exciting them in
the NIR open windows I and II. Additionally, the nanomaterials incline to deposits in the
spleen, kidney, and liver inducing injury irreversibly [42,43]. Hence, it is very essential to
develop the PTT approach more safely and effectively.



Pharmaceutics 2023, 15, 433 5 of 27

3. Gold Nanostructures in Nanomedicine

Inorganic nanomaterials have more potential properties than organic nanomaterials
due to colloidal stability, ease of synthesis in various adjustable sizes, and optical, mag-
netic, and quick surface modifications make them biocompatible materials in the area of
biomedical applications [44,45]. Moreover, organic-based nanoparticles showed a higher
degradation rate when compared to inorganic nanomaterials, this advantage makes them
more colloidal stable in physiological conditions [46]. Among several types of inorganic
nanoparticles, GNPs are promising candidates for photo therapies, due to their bioin-
ertness, low cytotoxicity, as well as ease of preparation, and surface modifications [47].
Additionally, gold nanostructures are capable to improve the passive cellular uptake of
phototherapies carriers in cancer sites through the enhanced permeability and retention
(EPR) effect [48,49]. Further, GNPs hold a great surface area, which can aid in quick surface
modifications with different bioactive molecules for active targeting in cancer therapy [50].
With the high binding affinity of GNPs with thiol and amine groups, the surface of GNPs
can be modified with nucleic acids, proteins, and antibodies, which enable specific target-
ing ability and improve PSs delivery in tumor microenvironments [51]. The photostability
of the GNPs leads to the high efficiency of absorbed laser radiation to thermal conversion
which is photothermal conversion efficiency. The most important characteristics of GNPs
is optical property originating from the localized surface plasmon resonance (LSPR) and
huge surface-to-volume ratio that permits bioconjugation to bioactive molecules by a
combination of various strategies of surface chemistry leads to develop conjugation of anti-
cancer drug, targeting agent, and imaging probe in single nanoplatform [52]. In 1857, first
time Faraday reported the synthesis of a colloidal solution of GNPs from the reduction of
gold chloride (AuCl4) by phosphorus [44]. Turkevich and co-authors reported the colloidal
GNPs through the chemical reduction of gold salt with trisodium citrate [53]. Currently,
apart from spherical GNPs, various types of gold nanostructures of different morphology
have been reported, such as nanoshells, nanostars, nanorods, and nanocages [54–57]. The
LSPR indicates the coherent oscillation of excited electrons from the surface of the metals
by absorbing strong NIR radiation [54]. The rise of this oscillation increased absorption
of the electromagnetic radiation in the combination of SPR of the metallic nanomaterials,
which is estimated by the morphology and size of the nanostructures.

The optical properties of metal nanomaterials have been extensively used in nanomedicine,
from real-time molecular imaging to multimodal therapeutic based on the use of light, for
instance, gaining from the efficient light to thermal conversion gold nanostructures [58].
One major issue that was raised on the usage of nanomaterials in clinical practice is the
potential cytotoxicity of these nanoparticles. Many nanoparticles have been shown to
indicate cytotoxicity for both cancer and healthy cells, because of oxidative stress and
the stimulation of inflammatory effects [58–61]. These cytotoxicity effects are commonly
based on the structure and size of the nanomaterials [62]. The GNPs with sizes ranging
from 20–60 nm showed low cytotoxicity for biomedical applications. Their use has been
progressively permitted by regulatory frameworks advanced by the Federal Food and
Drug Administration [63,64]. Moreover, surface charge shows a strong influence on acute
cytotoxicity, in GNPs with positive charges showed much more toxicity to tissues when
compared to negatively charged nanomaterials [65,66]. Currently, GNPs are extensively
applied in biomedical science, particularly in molecular diagnosis, biosensing, nanocar-
rier for drug delivery, and phototherapy agents owing to their electronic, optical, and
colloidal stability. In presence of LSPR, GNPs may be suitable for therapy depending on
the variety of wavelengths in the NIR, adapting them for nanomedicine as carriers in PDT
or photothermal agents in cancer phototherapy. Indeed, when GNPs are treated by NIR
laser radiation, most often in the NIR region (650–900 nm), they appear to be effective in
converting photons to thermal waves. When GNPs are irradiated, they will scatter thermal
waves in a localized path, generating an effective flow in temperature (40–42 ◦C), which
sequentially has a deep influence on the survival of cancer cells that are lowly resistant to
localized thermal waves when compared to healthy cells. From these results, hyperthermia
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has been suggested as a unique non-invasive cancer theranostics with localized thermal
effects and without side effects to healthy tissues or cells. Many light sources have been
suggested, from radiofrequency to laser are applied to stimulate the irradiation in gold
nanostructures for phototherapy [67–72].

4. Optical Properties
Effects of Size and Shape on Optical Properties of Gold Nanostructure

The optical properties of gold nanostructures differ from other metallic nanomaterials.
When gold nanostructures are treated with light, the excited electrons from the GNPs
surface generated coherent oscillations which are named LSPR [73]. Due to this LSPR,
deep amplified and localized electromagnetic fields are produced in the gold nanostruc-
ture surface upon irradiation with a suitable wavelength of the laser. The absorbed NIR
radiation by GNPs would decay radiatively by dispersing the emitting light with the same
wavelength as the incident light, meanwhile the nonradiative relaxation, potentially the
delivery of localized thermal energy. Hence, GNPs concentrate the orders of magnitude
optical absorption, which in turn open the window for using the gold nanostructures as
various bioimaging and biosensing agent beyond photo-associated therapies. As LSPR is
influenced by the density and motion of electrons on the GNPs surface, the distinct size and
variety of morphology of gold nanostructures depend on their scattering and plasmonic
absorption. Gold nanostructures are commonly prepared through the reduction of gold salt
using various reducing agents, and suitable reaction methodology has been widely applied
to attain different sizes and shapes. Gold nanorods, nanoshells, nanocages, and nanorings
have been widely studied as promising candidates for phototherapy. Based on biomedical
applications, the NIR ranging from 750 to 1700 nm is better for tissue penetration because
of low tissue scattering. Especially, the radiation ranging from 1000 to 1350 nm (second NIR
window) can penetrate deepest than the range from 750 to 1000 nm (first NIR window).
However, very low assessable biocompatible probes exist for pre-clinical applications in the
NIR window. Incidentally, the probability of shifting the laser absorption and the plasmonic
band of gold nanostructures from visible to NIR region by tuning their sizes and varying
the shapes makes them hopeful replacements for in vivo applications in the phototherapy
of cancer [21]. Currently, the appreciation of translation of LSPR within the suitable NIR
region from anisotropic gold nanostructures has stimulated the preparation of a variety
of gold nanostructures such as gold nanoclusters, nanostars, and nanoplates. Among
many, certain common functional groups are associated with the gold nanostructures to
attain favorable multi-functionality for cancer theranostics. Advanced nanotechnology
area provides the chance to build GNPs of different sizes and morphology.

The physicochemical characteristics of GNPs differ among various functionalization
and these characteristics could be accurately regulated through nanotechnology with the
drive of connecting interdisciplinary fields (chemistry, biological, and physical) needs of the
multifunctional phototherapies. Currently, five potential kinds of gold nanostructures have
been widely investigated in the preclinical trials and they are hopeful for phototherapies:
gold nanostructures (rods, shells, spheres, cages, and stars) are shown in Table 1.

Each of these gold nanostructures of various shapes holds certain special natures and
their feature change openly depending on any rule. Important features of phototherapies,
for instance, NIR absorbance and clearance rate, are majorly based on the shapes and sizes of
these gold nanostructures. Materials science scientists must conduct various investigations
to analyze the properties of these gold nanostructures to find those GNPs holds most
desirable for phototherapies. Commonly, for a specific type of GNPs, the maximum
extinction wavelength (λmax) increases with the increasing size of the gold nanostructures.
As shown in Table 2. GNPs with smaller sizes exhibit much better absorption capacity and
a minimum scattering-to-absorption efficacy ratio. Hence, the GNPs have larger size that
exhibits higher scattering efficiency. In this regard, large-sized GNPs are recommended
for good resolution and sensitive imaging-guided phototherapies in cancer and small-
sized GNPs have higher absorption capability that is suggested for good photothermal
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conversion efficiency in phototherapies. As shown in Table 2. Determined maximum
wavelength (λmax) and the ratio of scattering efficiency (µs) to absorption efficiency (µa)
for GNPs with various shapes and sizes [74,75].

Table 1. The most common types of GNPs for efficient phototherapies application [75–78].

Types of Gold Nanostructures Suitable Size of Phototherapies Special Features
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Nanostructures 

Suitable Size of Photothera-
pies 
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40–100 nm in length with an as-
pect ratio of 2–4 

Nanorods have two SPR bands that might be used for biosens-
ing applications. 

 
Nanoshells 

100–150 nm diameter Core@Shell 
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Nanostructure
Types Dimensions (nm) λmax

(nm) µa µm−1 µs µm−1 µs/µa

Silica@gold
nanoshells

R1 = 50; R2 = 70 704 20.57 44.57 2.17
R1 = 60; R2 = 70 892 35.66 22.73 0.64
R1 = 120; R2 = 155 1160 7.26 15.44 2.13

Gold
nanospheres

D = 20 521 73.72 0.45 0.01
D = 80 549 67.88 45.94 0.68

Gold nanorods
R = 3.1; reff = 11.43 727 741.86 54.7 0.07
R = 4.6; reff = 11.43 863 1003.37 102.05 0.1
R =3.9; reff = 17.90 815 601.47 172.32 0.29

R—Aspect ratio; reff—Effective radius.

5. Phototherapies-Based Clinical Trials in Gold Nanostructure

Over the past many eras, ongoing efforts have been made toward achieving an op-
timum association of nanoparticles and hyperthermia to overwhelm the issues of con-
ventional thermal therapies. Among several reported nanoparticles for phototherapies
applications, GNPs have been widely studied because of their high photothermal conver-
sion efficiency and rapid surface modifications for improved targeted delivery of PS [79].
Plasmon resonance is a combined motion of a more number of mobile electrons [80–82]. In
nanoparticle-mediated hyperthermia, GNPs can absorb strong NIR radiation and then pro-
duce the primary source of heat and reverse the direction of heat loss to stimulate thermal
ablation on tumor cell [83–86]. Currently, various gold nanostructures have been translated
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for clinical trials (Table 3), potential struggle has resulted in the reports of multiple re-
search works on gold-based phototherapies in the recent literature such as gold nanocages,
nanobipyramids, nanoflowers, nanoshell, nanorods, hollow nanospheres, nanostars, na-
noechius and plasmonic blackbodies [87–101]. However, significant translations of these
nanomaterials to pre-clinical trials have not yet been attained. The potential clinical trial on
phototherapies is mostly based on irradiation duration, gross irradiation dose, and mode
of radiation delivery. Moreover, traditional passive targeting phototherapies based on gold
nanostructures have been circumscribed in clinical trials because of their non-specific ability
and generate side effects on normal tissues. Hence, currently designing active targeting
GNPs-based phototherapies are under clinical trials.

Table 3. Clinical trials on GNPs for phototherapies and other cancer-related health issues.

Clinical Trial ID Product Name Gold Nanostructures Pathology Therapies Ref.

NCT01270139 NANOM FIM Silica-gold nanoparticle Atherosclerotic
lesions

Plasmonic photothermal
therapy [102]

NCT01436123 NANOM PCI Gold nanoparticles with
silica-iron oxide shells Atherosclerosis Plasmonic photothermal

and stem cell therapy [103]

NCT00848042 AuroLaseR Silica-gold nanoshells
coated with PEG

Head and neck
cancer

Thermal ablation of solid
tumors via NIR laser [104]

NCT03020017 NU-0129 A spherical nucleic acid
(SNA) gold nanoparticle

Gliosarcoma,
glioblastoma

Safety evaluation of
NU-0129 [105]

NCT02755870 CNM-Au8 Nanocrystal of gold Healthy
volunteers tolerability of CNM-Au8 [106]

NCT01420588 AuNPs Gold nanoparticles benign gastric
lesions Gastric lesions detection [107]

NCT02782026 AuNPs Gold nanoparticles heritable PAH
Detection of pulmonary

arterial hypertension
(PAH)

[108]

NCT00436410 CYT-6091
(Aurimune)

TNF-bound colloidal
Gold metastatic cancer Selective tumor trafficking [109]

6. PS Conjugated Gold Nanocarriers for PDT

Even though the PDT has significant efficiency for cancer therapy, still it’s mainly
limited to in vivo investigations and loss-efficient translation into the clinical trial [110]. In
this regard, nanomaterials conjugated PS-based PDT has developed as a modern approach
in which nanoparticles act as carriers for PS gaining from the special properties that generate
them as PS themselves [111]. Various chemotherapeutic agents have been delivered by
functionalizing the surface of GNPs. Thus, GNPs have aided the specific-targeted delivery
to cancer sites of different biomolecules utilized as therapeutic agents. PS-conjugated GNPs
result in significantly increased electron transfer between the gold nanostructure and the
photoactive dyes which improves the photodynamic efficiency [112]. Up to date only
a few of these gold-conjugated PS-mediated PDT nanoplatforms achieved clinical trials.
Recently, Anine Crous reported the application of AuNPs as a carrier for the AlPcS4Cl PS. In
this study, synthesized gold nanoparticles were conjugated AlPcS4Cl, and in vitro models
revealed that phototherapy using the AlPcS4Cl-gold nano bioconjugate was potential
against human lung (A549) cancer cells [113]. In another approach, specific targeted
PDT was carried out with folic acid (FA) and protoporphyrin IX (PPIX) conjugation on
surface-modified AuNPs. The authors initially applied 6-mercapto-1-hexanol (MH) on
the surface of AuNPs and it enhances the bioconjugation of FA/PPIX on nanoparticles
to form a nanosystem (PPIX/FA-MH-AuNP). In this study, the synthesized nanosystem
showed high cytotoxicity against HeLa cancer cells, due to the presence of targeting
ligands FA and folate-mediated endocytosis. The results show that the PPIX/FA-MH-
AuNP nanosystem increases the targeting nature and also phototoxicity efficiency of HeLa
cells when compared with the traditional PDT [114]. In another approach, gold-based
core@shell nanostructure was utilized to conjugate with PS for effective PDT. Ping and
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co-authors developed the nanosystem of Au@TiO2 nanostructure with hematoporphyrin
monomethyl ether (HMME). The PDT efficiency of Au@TiO2-HMME was studied in KB
cancer cells [115]. Dimakatso and co-authors fabricated the physically loaded hypericin
(Hyp) on gold nanoparticles through sonication. The non-covalent bonds between the
AuNPs and Hyp increase the PS accumulation in MCF-7 breast cancer cells and hence
improve PDT efficiency with the minimum concentrations. From this study, it is revealed
that physically loaded Hyp PS on AuNPs is a hopeful strategy for hydrophobic PS drug
delivery to improve PDT efficiency [116]. The recent studies involving PS-conjugated
AuNPs for PDT against cancer using in vitro models are listed in Table 4.

Table 4. Most recent studies involving PS conjugated AuNPs for PDT against cancer using in vitro models.

Gold Nanostructures Nanosystem Photosensitizers In Vitro Cell Studies Ref.

AuNPs AlPcS4Cl-AuNPs AlPcS4Cl A549 [113]
AuNPs PPIX/FA-MH-AuNP PPIX HeLa [114]

Au@TiO2 Au@TiO2-HMME HMME KB [115]
Au NPs Au-Hyp Hyp MCF-7 [116]
AuNPs Au-AlPcS4Cl AlPcS4Cl A375 [117]

AuNPs Au-(OH)2P(V) (py)Ga(III) A3
type meso-triarylcorroles

A3 type
meso-triarylcorroles MCF-7 [118]

Au nanocage PTX-PP@Au NPs PP PC-3 cancer cells [119]
Au nanostars GNS@BSA/I-MMP2 NPs MMP2 NA [120]

AuNPs g-C3N4-AuNPs g-C3N4
A549, MCF-7 and

HeLa cells [121]

Au Nanorods AuNR@SiO2-TCPP TCPP A549 cells [122]
Au Nanorods ICG loaded Au@SiO2@mSiO2 ICG HepG2 cells [123]
Au nanocage GC-pep@SiNC-AuNC SiNC U87 cells [124]

In another approach, Liand and coworkers developed novel nanocage-based core@shell
gold@manganese dioxide (Au@MnO2) nanoparticles to produce oxygen to PDT against
breast cancer shown in Figure 1. Under NIR irradiation, self-producing oxygen from
gold nanocages improved the PDT efficiency, on the other hand stimulating immunogenic
cell death (ICD) through damage-associated molecular patterns [125]. Similarly, Dai and
coworkers fabricated the g-C3N4 nanosheets functionalized with gold (gC3N4-Au NPs). In
this study, below 670 light treatments on gC3N4-Au NPs, the results showed that nanoparti-
cles can produce more ROS and destroy tumors [121]. Thus, attention should be considered
in the selection of PDT drugs, carriers, and the mode of administration of the PSs inside the
body to prolong their circulation in the body to obtain an improved prognosis [32].
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Figure 1. Schematic representation of (a) synthesis of AuNC@MnO2 (AM) and (b) imaging-guided
PDT ef-ficiency of AuNC@MnO2 (AM) reproduced with permission [125]. Copyright 2018 Elsevier.

7. Gold Nanostructures-Based Targeting Hypoxia for PDT

Hypoxia commonly exists in the tumor microenvironment due to the excess prolifera-
tion of cancer cells that surpass the blood circulation and oxygen supply for the growth
of weak vasculature tumors. It has been revealed that hypoxic efficiently promotes cancer
development and invasion [126]. The potentiality of PDT is restricted by hypoxia since the
traditional PDT is oxygen dependent to generate reactive oxygen species (ROS). Hence,
targeting hypoxia in the tumor sites in absence of oxygen-based PDT has developed as a
potential tool to enhance PDT. A recent review by Lou-Franco reported that gold nanos-
tructures hold efficient enzymatic activities for instance reductase, peroxidase, oxidase, and
superoxide dismutase, which can be leveraged to relieve hypoxia [127]. In a recent study,
an oxygen self-producing nanosystem containing metal-organic frameworks, AuNPs and
Ce6 PS was utilized to diminish the hypoxic which consequently improves PDT. In this
approach, AuNPs are applied to catalase efficiently by catalyzing the high H2O2 developed
in the tumor sites to generate oxygen molecules to reduce hypoxia and improve ROS
generation with high cytotoxicity [128]. Moreover, to reduce hypoxia and improve PDT,
core@shell Au@Rh nanoparticles based on Au and rhodium (Rh) with catalase activities
were applied as nanoenzyme. The ICG was conjugated with Au@Rh and functionalized
with a cancer cell membrane (CM) to develop Au@Rh-ICG-CM nanosystem. The nanosys-
tem catalyzed the H2O2 in the tumor sites to form oxygen via the action of Au@Rh to
improve ROS generation for efficient PDT. The functionalization with CM permits specific
targeting via homology adsorption [129]. In a similar approach to rise the oxygen range
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in the hypoxia, Au@MnO2 core@shell nanoparticles based on Au and MnO2 (manganese
dioxide) were formulated for oxygen-improving immunogenic PDT shown in Figure 2. The
nanosystem responds to lower pH at the tumor site and is also assisted as the tumor stimu-
lates oxygen production upon light irradiation to generate ROS. In the presence of hypoxia,
the slow degradation of the MnO2 shell in the lower pH of the tumor sites consequently
produces oxygen, thereby improving the PDT efficiency through light irradiation. In this
study, the nanosystem diminishes hypoxia at the tumor site and stimulates immunogenic
ablation of cancer kills [130].
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Figure 2. Schematic representation of synthesis and PDT efficiency of AuNC@mSiO2@ MnO2 (H2O2)
nanosystem. Reproduced with permission [131]. Copyright 2021 ACS.

In a very recent study, Yin and co-authors reported gold nanoclusters (AuNCs),
mesoporous silica (mSiO2), and MnO2-based nanoenzyme system with oxygen gener-
ators for improved PDT and magnetic resonance imaging. In this study, the nanosys-
tem made up of AuNCs doped on mSiO2 was coated with MnO2 and acted as a shell
(AuNCs@mSiO2@MnO2). In lower pH, becomes turn ‘on’ the nanoenzyme is treated with
H2O2 consequently resulting in the degradation of MnO2. The slow degradation of MnO2
generates massive oxygen molecules, which in turn enhances Magnetic Resonance Imaging
and PDT [131].

8. Synergetic Phototherapies Based on Gold Nanostructures

The boundaries of cancer nanotheranostics are constantly being altered as better
thought of biomedical characteristics of nanomaterials is expanding. Over the last two
decades, there is an outstanding evolution in the fabrication and advantages of various
nanostructures in cancer nanotheranostics [132]. In this regard, GNPs have currently
emerged as the most hopeful theranostic agent [133,134]. The gold nanostructures are the
potential ability for passive accumulation and preferentially reach the tumor microenviron-
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ment through enhanced permeability and retention effect of the infected organs [135]. In ad-
dition to that, the surface of gold nanostructures can be readily modified with biomolecules
such as peptides, monoclonal antibodies, and proteins to overcome the non-specific tar-
geting ability of theranostics agents [136–139]. Due to their natural biointerness, surface
area-to-volume ratio, and surface chemistry, gold nanostructures are widely applied as
nanocarriers for targeted drug delivery [140]. The high atomic numbers in gold are capable
to afford a higher X-ray absorption cross-section, making them promising nanomaterials
to act as potential radiosensitizers for improving radiotherapy (RT) [141]. Moreover, the
photothermal conversion efficiency of gold nanostructures can be used to produce localized
thermal for tumor ablation [142]. In recent years, the thermal efficiency of gold nanomate-
rials has been discovered and utilized to help hyperthermia in curing cancer. According
to this, the radiofrequency (RF) electrical field absorption efficiency of gold nanostructure
combined with their sonosensitizing characteristics has been employed to enhance the RF
and ultrasound-stimulated hyperthermia therapeutic efficiency [143]. In addition to these,
the thermal efficiency of gold nanostructures can be applied to stimulate responsive drug
payload delivery with good specific and resolution upon external triggering through hy-
perthermia materials [144,145]. Currently, many biomaterials scientists have also revealed
that gold nanostructures are capable to produce cytotoxic ROS upon laser and ultrasound
treatments, and could therefore be applied to promote PDT and sonodynamic therapy
simultaneously [146,147]. With these characteristics combined into a single nanoplatform,
gold nanostructures have emerged as an entirely irreplaceable nanostructure ability to
combine various therapies to attain improved therapeutic outcomes. Hence, they could
deliver a golden choice to combine various therapies in a single mode, thus emphasizing
the influence of gold nanostructure in synergetic cancer theranostics. Taking the benefit
of gold nanostructures for real-time co-delivery of various therapies cannot only improve
the potentiality of every individual cancer treatment but fascinatingly may also deliver
an extra advantage by the synergistic interactions that happen among different therapies,
which results in very powerful therapeutic outcomes. This synergistic therapy also aids
to limits high dose concentrations and associated side effects by permitting a reduction
in administered drugs level for cancer treatments [148]. However, a lot of synergetic ther-
apy modals have been reported for the gold nanostructures, the upcoming section only
focuses on phototherapies-based synergetic therapies using various gold nanostructures
especially; the combination of photodynamic therapy with others will be discussed. Table 5,
provides a summary of the therapeutic aids of various gold nanostructures for synergetic
phototherapies for cancer theranostics.

Table 5. The summary of the therapeutic aids of various gold nanostructures for synergetic pho-
totherapies for cancer theranostics.

Gold
Nanostructures

Multifunctional
Nano Platforms

Therapeutic
Agents Imaging Model Therapy

Model
In Vitro
Models Ref.
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BPQD-AuNCs DOX and QUR FL PDT-CT MCF-7/ADR [149] 
DOX/ICG-biotin-PEG- 

AuNC-PCM DOX and ICG FL PDT-CT-PTT MCF-7/ADR [150] 
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Nanocluster 

Ce6-GNCs-DOX Ce6 and DOX FL PDT-CT A549 [152] 

Ce6-GNCs-Ab-CIK Ce6 and CD3 anti-
body 

FL PDT-IT MGC-803 [153] 

AuS-U11 5-ALA and Cy5.5 FL PDT-PTT PANC1-CTSE [154] 
Gd2O3-AuNCs-ICG ICG MRI/CT PDT-PTT HeLa [155] 

Nanocages

BPQD-AuNCs DOX and QUR FL PDT-CT MCF-7/ADR [149]
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AuNC-PCM DOX and ICG FL PDT-CT-PTT MCF-7/ADR [150]

AuNCs-HA HA PA PDT-RT-CT 4T1 [151]
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AuNCs-HA HA PA PDT-RT-CT 4T1 [151] 

 
Nanocluster 

Ce6-GNCs-DOX Ce6 and DOX FL PDT-CT A549 [152] 

Ce6-GNCs-Ab-CIK Ce6 and CD3 anti-
body 

FL PDT-IT MGC-803 [153] 

AuS-U11 5-ALA and Cy5.5 FL PDT-PTT PANC1-CTSE [154] 
Gd2O3-AuNCs-ICG ICG MRI/CT PDT-PTT HeLa [155] Nanocluster

Ce6-GNCs-DOX Ce6 and DOX FL PDT-CT A549 [152]

Ce6-GNCs-Ab-CIK Ce6 and CD3
antibody FL PDT-IT MGC-803 [153]

AuS-U11 5-ALA and
Cy5.5 FL PDT-PTT PANC1-CTSE [154]

Gd2O3-AuNCs-ICG ICG MRI/CT PDT-PTT HeLa [155]
Au NCs-INPs ICG NIRF/PA PDT-PTT 4T1 [156]
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Pharmaceutics 2023, 15, x FOR PEER REVIEW 14 of 28 
 

 

Au NCs-INPs ICG NIRF/PA PDT-PTT 4T1 [156] 

 
Nanorods 

GNRs-MPH-ALA/DOX-PEG 5-ALA and DOX NIRF/PA PDT-CT-PTT MCF-7 [157] 
FA-PEG-P(Asp)- 

DHLA-AuNR100-SS-Ce6 
Ce6 - PDT-PTT MCF7 and 

A549 
[158] 

AuNR-PEG-PEI-APP/Ce6—
ADSC 

Ce6 - PDT-PTT MCF-7 [159] 

AuNRs-Ce6-MSNRs Ce6 NIRF/PA PDT-PTT 4T1 [160] 
PEG-GNR-ACPI PpIX FL PDT-PTT SCC-7 [161] 

 
Nanoshells 

GGS-ICG ICG  PDT-PTT 4T1 [162] 
Pt@UiO-66-NH2-Aushell-Ce6 Ce6 FL PDT-PTT MCF-7 [163] 

ICG-Au@BSA-Gd ICG 
NIRF/PA/

CT/MR PDT-PTT 4T1 [164] 

 
Nanostars 

GNS@CaCO3/Ce6-NK Ce6 NIRF/PA PDT-IT-PTT A549 [165] 
GNS-PEG-Ce6 Ce6 FL PDT-PTT A549 [102] 

GNS@BSA/I-MMP2 MMP2 NIRF/PA PDT-PTT A549 [166] 
GNS@CaCO3/ICG ICG NIRF/PA PDT-PTT MGC803 [167] 

8.1. Synergetic PDT-CT-PTT 
In recent years, traditional single-modal cancer treatment has become hopeless be-

cause of the complex formulation and alterable tumor microenvironment of growing can-
cer. For instance, Chemotherapy (CT) is the main treatment method for curing cancer, but 
this method suffers from poor biological barriers, non-specific nature, and drug resistance, 
and causes heavy injury to the healthy cells in the clinic [168]. Therefore, establishing com-
bined therapeutic approaches based on various therapy modalities retains considerable 
efficiency in the area of both basic and clinical research. Several investigations have shown 
that nanoparticle-based synergetic therapy is a very hopeful approach to overwhelm the 
above-mentioned restrictions due to its combined therapeutic efficiency and low drug 
dosage [169–172]. Currently, the combination of CT, PDT, and PTT is creating more atten-
tion because of the outstanding sustainable drug release, improved tumor ablation, and 
low cytotoxicity [168]. The remarkable therapeutic abilities of synergetic PDT-PTT, [173–
175] CT-PDT, [176,177] and CT-PTT [178,179] are also established. Even though several 
double-modality therapy nanocarriers have been extensively well-organized, the 
nanostructure-dependent synergetic triple-modality PDT/PTT/CT therapy remains in the 
beginning stage. Furthermore, this combined therapy is vital to enhance therapeutic effi-
ciency, low drug dosage, and minimum laser radiation for phototherapy [180]. Recently, 
certain multifunctional nanocarrier systems based on carbon nanotubes [181], MnO2 [182] 
and upconversion nanocarriers [183] have been developed for multi-modal PDT-CT-PTT 
treatments. 

In recent years, several multimodal therapies based on gold nanostructure have been 
reported. Among them, phototherapies combined with chemotherapies have great inter-
est due to the surface plasmon resonance property of gold nanostructure. In this regard, 
recently Li and co-authors developed a multifunctional nanosystem with gold-based 
core@shell nanostructure that was fabricated as a single nanoplatform for the synergetic 
PDT-PTT-CT against breast cancer. In this work, initially, the gold nanostars (AuNS) were 
functionalized with gambogic acid (GA) and Zr4+ with tetrakis (4-carboxyphenyl) porphy-
rin (TCPP) to form the nanosystem as AuNS@ZrTCPP-GA (AZG). The functionalized gold 
nanostars were coated with PEGylated liposome (LP) to generate core@shell 
AuNS@ZrTCPP-GA@LP (AZGL) nanosystem. At low pH of the tumor microenvironment, 
the resultant nanosystem under slow degradation of liposomes the core materials of 
AuNS, GA, TCPP, and Zr4+ was released to perform the synergistic therapy towards can-
cer through the combination of AuNS-based PTT and TCPP-based PDT. The entire GA 

Nanoshells

GGS-ICG ICG PDT-PTT 4T1 [162]

Pt@UiO-66-NH2-
Aushell-Ce6

Ce6 FL PDT-PTT MCF-7 [163]

ICG-Au@BSA-Gd ICG NIRF/PA/CT/MR PDT-PTT 4T1 [164]

Pharmaceutics 2023, 15, x FOR PEER REVIEW 14 of 28 
 

 

Au NCs-INPs ICG NIRF/PA PDT-PTT 4T1 [156] 

 
Nanorods 

GNRs-MPH-ALA/DOX-PEG 5-ALA and DOX NIRF/PA PDT-CT-PTT MCF-7 [157] 
FA-PEG-P(Asp)- 

DHLA-AuNR100-SS-Ce6 
Ce6 - PDT-PTT MCF7 and 

A549 
[158] 

AuNR-PEG-PEI-APP/Ce6—
ADSC 

Ce6 - PDT-PTT MCF-7 [159] 

AuNRs-Ce6-MSNRs Ce6 NIRF/PA PDT-PTT 4T1 [160] 
PEG-GNR-ACPI PpIX FL PDT-PTT SCC-7 [161] 

 
Nanoshells 

GGS-ICG ICG  PDT-PTT 4T1 [162] 
Pt@UiO-66-NH2-Aushell-Ce6 Ce6 FL PDT-PTT MCF-7 [163] 

ICG-Au@BSA-Gd ICG 
NIRF/PA/

CT/MR PDT-PTT 4T1 [164] 

 
Nanostars 

GNS@CaCO3/Ce6-NK Ce6 NIRF/PA PDT-IT-PTT A549 [165] 
GNS-PEG-Ce6 Ce6 FL PDT-PTT A549 [102] 

GNS@BSA/I-MMP2 MMP2 NIRF/PA PDT-PTT A549 [166] 
GNS@CaCO3/ICG ICG NIRF/PA PDT-PTT MGC803 [167] 

8.1. Synergetic PDT-CT-PTT 
In recent years, traditional single-modal cancer treatment has become hopeless be-

cause of the complex formulation and alterable tumor microenvironment of growing can-
cer. For instance, Chemotherapy (CT) is the main treatment method for curing cancer, but 
this method suffers from poor biological barriers, non-specific nature, and drug resistance, 
and causes heavy injury to the healthy cells in the clinic [168]. Therefore, establishing com-
bined therapeutic approaches based on various therapy modalities retains considerable 
efficiency in the area of both basic and clinical research. Several investigations have shown 
that nanoparticle-based synergetic therapy is a very hopeful approach to overwhelm the 
above-mentioned restrictions due to its combined therapeutic efficiency and low drug 
dosage [169–172]. Currently, the combination of CT, PDT, and PTT is creating more atten-
tion because of the outstanding sustainable drug release, improved tumor ablation, and 
low cytotoxicity [168]. The remarkable therapeutic abilities of synergetic PDT-PTT, [173–
175] CT-PDT, [176,177] and CT-PTT [178,179] are also established. Even though several 
double-modality therapy nanocarriers have been extensively well-organized, the 
nanostructure-dependent synergetic triple-modality PDT/PTT/CT therapy remains in the 
beginning stage. Furthermore, this combined therapy is vital to enhance therapeutic effi-
ciency, low drug dosage, and minimum laser radiation for phototherapy [180]. Recently, 
certain multifunctional nanocarrier systems based on carbon nanotubes [181], MnO2 [182] 
and upconversion nanocarriers [183] have been developed for multi-modal PDT-CT-PTT 
treatments. 

In recent years, several multimodal therapies based on gold nanostructure have been 
reported. Among them, phototherapies combined with chemotherapies have great inter-
est due to the surface plasmon resonance property of gold nanostructure. In this regard, 
recently Li and co-authors developed a multifunctional nanosystem with gold-based 
core@shell nanostructure that was fabricated as a single nanoplatform for the synergetic 
PDT-PTT-CT against breast cancer. In this work, initially, the gold nanostars (AuNS) were 
functionalized with gambogic acid (GA) and Zr4+ with tetrakis (4-carboxyphenyl) porphy-
rin (TCPP) to form the nanosystem as AuNS@ZrTCPP-GA (AZG). The functionalized gold 
nanostars were coated with PEGylated liposome (LP) to generate core@shell 
AuNS@ZrTCPP-GA@LP (AZGL) nanosystem. At low pH of the tumor microenvironment, 
the resultant nanosystem under slow degradation of liposomes the core materials of 
AuNS, GA, TCPP, and Zr4+ was released to perform the synergistic therapy towards can-
cer through the combination of AuNS-based PTT and TCPP-based PDT. The entire GA 

Nanostars

GNS@CaCO3/
Ce6-NK Ce6 NIRF/PA PDT-IT-PTT A549 [165]

GNS-PEG-Ce6 Ce6 FL PDT-PTT A549 [102]
GNS@BSA/I-MMP2 MMP2 NIRF/PA PDT-PTT A549 [166]
GNS@CaCO3/ICG ICG NIRF/PA PDT-PTT MGC803 [167]

8.1. Synergetic PDT-CT-PTT

In recent years, traditional single-modal cancer treatment has become hopeless because
of the complex formulation and alterable tumor microenvironment of growing cancer. For in-
stance, Chemotherapy (CT) is the main treatment method for curing cancer, but this method
suffers from poor biological barriers, non-specific nature, and drug resistance, and causes
heavy injury to the healthy cells in the clinic [168]. Therefore, establishing combined thera-
peutic approaches based on various therapy modalities retains considerable efficiency in the
area of both basic and clinical research. Several investigations have shown that nanoparticle-
based synergetic therapy is a very hopeful approach to overwhelm the above-mentioned
restrictions due to its combined therapeutic efficiency and low drug dosage [169–172].
Currently, the combination of CT, PDT, and PTT is creating more attention because of the
outstanding sustainable drug release, improved tumor ablation, and low cytotoxicity [168].
The remarkable therapeutic abilities of synergetic PDT-PTT, [173–175] CT-PDT, [176,177]
and CT-PTT [178,179] are also established. Even though several double-modality therapy
nanocarriers have been extensively well-organized, the nanostructure-dependent synergetic
triple-modality PDT/PTT/CT therapy remains in the beginning stage. Furthermore, this
combined therapy is vital to enhance therapeutic efficiency, low drug dosage, and minimum
laser radiation for phototherapy [180]. Recently, certain multifunctional nanocarrier systems
based on carbon nanotubes [181], MnO2 [182] and upconversion nanocarriers [183] have
been developed for multi-modal PDT-CT-PTT treatments.

In recent years, several multimodal therapies based on gold nanostructure have
been reported. Among them, phototherapies combined with chemotherapies have great
interest due to the surface plasmon resonance property of gold nanostructure. In this re-
gard, recently Li and co-authors developed a multifunctional nanosystem with gold-based
core@shell nanostructure that was fabricated as a single nanoplatform for the synergetic
PDT-PTT-CT against breast cancer. In this work, initially, the gold nanostars (AuNS)
were functionalized with gambogic acid (GA) and Zr4+ with tetrakis (4-carboxyphenyl)
porphyrin (TCPP) to form the nanosystem as AuNS@ZrTCPP-GA (AZG). The function-
alized gold nanostars were coated with PEGylated liposome (LP) to generate core@shell
AuNS@ZrTCPP-GA@LP (AZGL) nanosystem. At low pH of the tumor microenviron-
ment, the resultant nanosystem under slow degradation of liposomes the core materials
of AuNS, GA, TCPP, and Zr4+ was released to perform the synergistic therapy towards
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cancer through the combination of AuNS-based PTT and TCPP-based PDT. The entire GA
acts to decrease the thermal resistance of the cancer cells to improve PTT and the devel-
oped nanoplatform exhibited outstanding therapeutic efficiency in vivo model as shown
in Figure 3. The fabricated AuNS@ZrTCPP-GA@LP (AZGL) nanosystem demonstrated a
pH-responsive therapeutic efficiency for the potential gold nanostructure-based synergistic
treatment of breast cancer (Figure 3) [184].
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Figure 3. (A) In Vivo FL images (B) mean fluorescence curve after i.v. of AZGL (C) Ex-vivo fluores-
cence imaging of organs (D) mean fluorescence intensity of tumor and organs after i.v. of AZGL
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(G) the temperature change curves after i.v. of PBS and AZGL with 980 nm laser treatment for 10 min.
Reproduced with permission [184]. Copyright 2022 Springer Nature.

In another system, Xu and co-authors designed a PEG functionalized gold nanorods
mediated nanosystem with pH-dependent drug release character for triple-modality PDT-
PTT-CT treatment against cancer. In this approach, the surface of GNRS was functionalized
with mercapto propionyl hydrazide (MPH) and thiolated PEG which consequently linked
with therapeutic agents doxorubicin (DOX) and PS 5-aminoevulinic acid (ALA) through
hydrazine bonds. The resulting nanosystem GNRs-MPH-ALA/DOX-PEG demonstrated
good stability in normal physiological pH and unstable in acidic pH due to the presence of
hydrazone bonds between drug and MPH conjugated gold nanostructures. In this study,
in vitro investigations exhibited that nanosystem could potentially be uptake by MCF-7
cells and release the payload of DOX and ALA into the nucleus. On laser irradiation, PS
generated ROS for PDT, on the other hand, GNRs could potentially stimulate thermal
efficiency for PTT. Compared with mono or dual therapies, the triple modal CT-PDT-PTT
therapies could more potentially destroy cancer cells through super-additive anticancer
effects [157]. Thus, the combination of CT, PDT, and PTT is creating more attention because
of the outstanding sustainable drug release, improved tumor ablation, and low cytotoxicity.
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8.2. Synergistic PDT-PTT

To improve antitumor efficiency and precise therapy, the combination of multimodal
therapeutic approaches leading to synergistic effects are successful approach [185,186]. Co-
assembly of various therapeutic agents has received significant research attention in cancer
therapy [186–190]. Among all the cancer therapies PDT-PTT involving laser radiation has
unique benefits, including minimal cytotoxicity, non-invasive, remote controllability, and
low side effects [191]. The NIR photo-therapeutic window for cancer ranges from 700 to
1100 nm, where the absorption of the laser radiation by soft tissues and blood is low, per-
mitting curing cancers through thermal ablation. For PDT, NIR-stimulated PSs can produce
ROS, such as free radicals, peroxides, and singlet oxygen, which can destroy the tumor
cells [192–194]. The combination of various nanostructure with photosensitizers provides
the dual PDT-PTT in a single nanoplatform and improve the therapeutic efficiency for
cancer. The gold nanostructure can perform photothermal agents in PTT and nanocarrier
for photosensitizers in PDT, hence gold nanostructure-based phototherapies are promising
synergistic therapies in cancer treatments. Recently, Sun and coworkers fabricated a novel
gold nanostructure “nanodendrite” by standardizing the geometrical configurations, fur-
ther gold nanodendrite (AuND) was functionalized with mitochondria targeting molecules
(triphenyl phosphonium, TPP), and photosensitizers (indocyanine green, ICG), further
coated with the macrophage cell membrane (MCM) for encapsulation of AuND, TPP, and
ICG to form the nanosystem (AuND-TPP-ICG@MCM). The novel nanosystem can carry out
multimodal imaging (fluorescence-photoacoustic-surface enhanced Raman imaging) and
therapy in NIR-II (PTT) and NIR I (PDT) for cancer therapy. Improved hyperthermia and
higher generation of ROS in the tumor microenvironment through MCM functionalization
and mitochondria targeting provide a synergistic efficiency for tumor ablation with low
side effects.

In this approach, the nanosystem exhibited biocompatibility, multimodal imaging, and
efficient therapeutic conditions indicating the significance of this nanosystem for clinical
practice in cancer treatments [195]. In another approach, Li and co-workers, designed
the gadolinium ions covered gold nanoparticles (ultra-small size) form, similar to the
core@shell type nanosystem. Further, gold nanostructures were functionalized with matrix
metalloproteinase-2 (MMP-2) and pay loaded with IR820 for synergistic therapies (PTT-
PDT) for liver cancer. In this approach, the prepared nanosystem was metabolized in vivo
through biodegradation under bimodal imaging due to its acidic stimulated degradation na-
ture. Moreover, the nano-materials exhibited outstanding specific targeting capability due
to the presence of MMP-2. In vivo investigations showed that the nanomaterials attainted
improved synergistic PDT-PTT therapies under laser treatments and effectively reduced
tumor growth. From this study, it concludes that the gold nanostructure-based nanosystem
has great efficiency against liver cancer with a dual imaging system [196]. Synergistic pho-
totherapies have been shown to encourage therapeutic efficiency against various types of
cancers. Designing a delivery approach for specific targeting and deep-penetrating tumors
is still the main challenge for advancing these synergistic phototherapies. Chanung and
co-authors designed a novel method by using stem cells for the delivery of photodynamic
and photothermal agents for cancer treatments. In this approach, gold nanorod (AuNRs)
functionalized PEG, PEI, and Chlorin e6 (Ce6), further loaded with stem cell (ADSC). In
this system, AuNRs act as photothermal agents, while Ce6 for PDT. The photothermal
treatment was stimulated by applying NIR light irradiation at 808 nm encouraged the
release of Ce6 from the stem cells into the tumor microenvironment [159]. Although Among
combinational therapies, PDT-PTT provides multiple benefits, including minimal cytotoxic-
ity, non-invasive, remote controllability, and low side effects, however, there is a need for
clinical studies to evaluate the post-treatment complications.

8.3. Synergistic PDT-RT

Radiation therapy (RT) is a class of extensively applied methods for cancer therapy in
clinical practice. The therapeutic efficiency of RT is significant because it destroys tumor
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regions with no depth limitation using high energy [197]. Several approaches have been
applied to reduce the dose level of X-rays to decrease the side effects of x-ray radiation [198].
However traditional radiosensitizers lack specific targeting ability for tumors [199,200].
Currently, several high atomic number nanomaterials have been developed such as gold
nanostructures, MoS2/Bi2S3, and CuS nano materials perform as radiosensitizers [201,202].
Due to the specific tumor-targeting ability, strong NIR absorption, and deposition of energy
from photo-electrons, the above-mentioned nanomaterials can improve the RT efficiency
of the cancer region and minimum side effects to healthy cells, resulting in the improve-
ment of mean survival of case studies [203,204]. Hence, synergistic radiotherapy with
chemotherapy is often applied in clinical practice. In PDT, most of the clinically applied
organic photosensitizers can be stimulated by visible light, for surface tumors only [205].
Compared to organic photosensitizers, metal-mediated therapeutic agents have high molar
extinction coefficients, good photostability, and minimum enzymatic degradation rate [206].
Noble metal-based gold, silver, and platinum nanomaterials have been showing the gen-
eration of singlet oxygen with the treatment of visible light [207]. Hence, it is essential
to develop a NIR-absorbing PDT agent for deep-tissue tumor therapy. Recently, gold
nanocages have been established that it can generate ROS under laser irradiation [208].
In addition, gold nanocages can act as radiosensitizers for improved radiotherapy [209].
Hence, the synergistic therapies of PDT-RT would potentially enhance its therapeutic
efficiency [210,211]. The gold nanostructures can absorb strong NIR radiation, which
can stimulate thermal efficiency for PTT and thermoelastic expansion for photoacoustic
imaging [212–215]. It is important to note that hyperthermia holds dangerous side effects
for the radio-resistant cells of the S-phase, consequently improving cell sensitivity.

8.4. Synergetic PDT-IT

In the last decade, cell-mediated delivery nanocarriers for cancer therapy have become
a novel research interest in the area of nanomedicine. Various types of stem cells have been
reported for specific targeting abilities to cancer cells because of their property of cancer
homing. The developed immune cells loaded with therapeutic agents can potentially pass
into the tumor microenvironment through the blood vessels, and attain combined therapeu-
tic efficiency [216,217]. Currently, gold nanostructures-based theranostics applications had
reached a peak in the area of cancer imaging, PTT, and PDT [218]. In recent years, multiple
research work has been reported based on the combination of immune therapy with other
therapies using various nanoparticles for cancer theranostics. In this regard, Fangfang
and co-authors reported the gold nanostructure-based synergistic immune therapy (IT)
and PDT for cancer treatment. In this approach, gold nanoclusters were self-assembled
with Ce6 molecules to form Ce6-GNCs. Further, the nanostructure was labeled with CD3
antibody and CIK cells to generate a CIK cell-mediated nanosystem (Ce6-GNCs-Ab-CIK).
The nanosystem showed good specific targeting ability and therapeutic efficiency against
MGC-803 tumor-bearing mice. This approach revealed that the synergistic therapeutic
effect of GNCs-Ce6-Ab-CIK exhibits the combination of PDT and IT therapy [155]. In the
human body, the immune system consists of NK cells, these cells plays important role
in the prevention of the formation and growth of cancer cells. NK cells can identify and
remove the cancer cells which were independent antigens and antibodies [219]. In addition
to that no requirement of grafting host disease due to the absence of T cell receptors in
the NK cell surface [220]. The immune response-based NK cells are majorly by the release
of various kinds of cytokines, which take part in a potential role in the research area of
synergistic therapies in cancer [221,222]. In this regard, Liu and co-authors designed a
novel nanosystem based on NK cells with gold nanostructure for synergistic therapies of
PDT-PTT-IT. In this approach, the gold nanostars (GNSs) loaded with Ce6 molecules and
NK cells, further encapsulated with CaCO3 to form GNS@CaCO3/Ce6-NK nanoplatform.
In this approach, the prepared nanoplatform exhibited good specific targeting ability to-
ward A549 cancer-bearing mice models [165]. This novel platform provides a synergistic
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approach for improved photodynamic, photothermal, immunotherapy, radiotherapy, and
chemotherapy in the war against cancer soon.

9. Major Challenges in Using Gold Nanostructures for Medical Applications

Currently, there are various golden standard approaches for testing the cytotoxicity
of nanostructure in vitro. Moreover, biomedical scientists have designed suggestions for
finding the acute/chronic cytotoxicity of several nanoparticles [223]. For various cancer
cells, the effect of gold nanostructure occurs at various amounts of concentrations. In this
regard, it can be established that it is essential to generate various universal procedures
that subsequently assess the biosafety of gold nanostructure in each particular case study,
which will be applied to all same nanostructures throughout the world [224,225] The devel-
opment of a novel model or structure that would change the surface could aid in naturally
exhibiting the characteristics of nanostructure by their physicochemical properties [226].
Even though investigations on gold nanostructure are very appropriate, still not been
comprehensive analysis on their renal clearance, release kinetics, and bioavailability in the
physiological system. There is a less accurate number of investigations on the pharmacoki-
netics of gold nanostructures at the physiological condition, which limits the probability of
the large use of gold nanomaterials in curing cancer diseases. It is significant to note that
gold nanostructures are flexible materials for investigating inside the organism, compared
with various other nanomaterials, due to their good extinction coefficient and localized
surface plasma resonance [227]. An investigation reported by Wilhelm S and co-authors
revealed the nanoparticles proceed to cancer sites and observed that, on average, only
0.7% of nanoparticles achieved the cancer sites. Moreover, when nanoparticles are admin-
istrated in vivo, the phagocytic system and the renal clearance pathway shallow almost
all nanoparticles, consequently reducing therapeutic efficiency and severely injuring the
phagocytic system [228]. Currently, there are some clinical trials applying gold nanostruc-
tures (https://clinicaltrials.gov accessed on 15 January 2023), which do not yet permit
future investigations on several factors such as clearance, biodistribution, and protein
sorption. Hence limit the applications of gold nanomaterials in the medical field. The
beginning of clinical trials could establish and understand the therapeutic and imaging
importance of nanoparticles [229].

10. Conclusions and Outlook

Over many decades, abundant novel designs of gold nanostructures with good optical
properties have been established. Even though outstanding trust and advancement in
plasmonic gold nanostructures in nanomedicine applications, still there is a large gap be-
tween basic research and clinical translations for the gold nanostructure. For cancer-based
applications, now it is beginning the synergistic therapies use gold nanostructure and takes
duration to achieve the clinical trials. The combination of phototherapies with other tradi-
tional therapies allows for minimizing toxic doses and retaining the therapeutic potential
efficiency. It is expected that the applications of gold nanostructures for phototherapies will
progressively be transformed into the clinics they deliver the controlled action. When com-
bined, gold nanostructures may transport not only various therapeutic agents to achieve
the specific cancer region but also localize the thermal waves at particular locations, which
would standardize clinical producers and be regulated by the clinician. The synergistic
therapeutic approaches are capable to decrease the side effects of a mono-modal therapy,
resulting in a better quality of life.
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