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Abstract: Current needs for increased drug delivery carrier efficacy and specificity in cancer neces-
sitate the adoption of intelligent materials that respond to environmental stimuli. Therefore, we
developed and optimized pH-triggered drug delivery nanoassemblies that exhibit an increased
release of doxorubicin (DOX) in acidic conditions typical of cancer tissues and endosomal vesicles
(pH 5.5) while exhibiting significantly lower release under normal physiological conditions (pH 7.5),
indicating the potential to reduce cytotoxicity in healthy cells. The hybrid (polymeric/lipid) compo-
sition of the lyotropic non-lamellar liquid crystalline (LNLCs) nanoassemblies demonstrated high
encapsulation efficiency of the drug (>90%) and high drug loading content (>7%) with colloidal sta-
bility lasting at least 4 weeks. Confocal microscopy revealed cancer cellular uptake and DOX-loaded
LNLCs accumulation near the nucleus of human hepatocellular carcinoma cells, with a large number
of cells appearing to be in apoptosis. DOX-loaded LNLCs have also shown higher citotoxicity in
cancer cell lines (MDA-MB 231 and HepG2 cell lines after 24 h and in NCI-H1299 cell line after
48 h) when compared to free drug. After 24 h, free DOX was found to have higher cytotoxicity than
DOX-loaded LNLCs and empty LNLCs in the normal cell line. Overall, the results demonstrate that
DOX-loaded LNLCs have the potential to be explored in cancer therapy.

Keywords: cancer; chemotherapeutic agents; doxorubicin; drug-delivery systems; lyotropic non-
lamellar liquid crystalline nanoassemblies

1. Introduction

Cancer is one of the leading causes of death globally [1]. In 2020, the International
Agency for Research on Cancer reported 19.3 million new cancer cases and approximately
10 million cancer deaths [2]. Furthermore, cancer incidence and mortality are rising world-
wide, with 28.4 million new cases expected by 2040.

Cancer treatment is extremely complex because each tumour cell presents a unique
genetic profile and may be resistant to available chemotherapeutic agents [3]. Doxorubicin
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(DOX) is a common chemotherapeutic agent used to treat cancers such as carcinomas,
sarcomas, and hematologic neoplasms [4]. DOX’s mechanism of action is quite complex,
involving DNA intercalation that inhibits a key enzyme, topoisomerase II, as well as
the production of reactive oxygen species (ROS) [5]. Despite its high efficacy, DOX has
some drawbacks in clinical use, including poor specificity and dose-dependent irreversible
cardiotoxicity [6,7]. As a result, drug delivery nanosystems that control DOX release and
uptake at the tumour site while minimizing toxicity to healthy cells are required [8,9].

In recent decades, lyotropic non-lamellar liquid crystalline (LNLCs) nanoassemblies,
formed by amphiphilic lipids and surfactants (lipids or polymers) mixed in a specific ratio,
have received increased attention in both scientific and applied research [10–13]. The inter-
nal structures of LNLCs are made up of inverse bicontinuous cubic mesophases, which can
accommodate a wide range of therapeutic agents, from small drug molecules to biomacro-
molecules that are both hydrophilic and hydrophobic, or even amphiphilic [14]. Because
of their large internal surface area, LNLCs achieve high loading contents of chemothera-
peutic agents [15–19] as well as the combined delivery of different active agents [20–24].
Furthermore, the existence of an internal structure of bicontinuous water and oil channels
allows drugs to be located differently depending on their ionization. In this regard, we
developed pH-triggered LNLCs composed of a lipid, glyceryl monooleate (GMO), and
a polymer, poloxamer P407 (P407), loaded with DOX in order to improve its anticancer
effect, minimizing the cytotoxic effect in healthy cells. At the low-pH environment of
cancer tissues and endosomal cancer cell vesicles (pH 5.5), DOX is fully protonated and
thus located in the aqueous channels of the LNLC nanoassemblies with a higher release
rate. However, at higher physiological pH (pH 7.4), typical of healthy cells, the protonated
fraction of the drug decreases while the DOX zwitterionic fraction increases, making it
more lipophilic and preferentially located in the lipidic domains, resulting in significantly
delayed drug release [25,26] (Figure 1).
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the lipid matrix of the LNLCs at physiological pH (7.5), but it locates in water regions at acidic pH
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DOX-loaded LNLCs have been the focus of other studies [20,21,25–28] due to the great
potential of the mesophases to control the delivery of the drugs carried. However, our
study proposes a rational development of the LNLCs methods of preparation and loading
regarding colloidal stability which the other authors have failed to take into account. The
storage colloidal stability of the LNLCs involved a comprehensive physicochemical charac-
terization and was evaluated to determine if the mean particle size, PDI, surface charge and
drug loading changed over time, as this could be a sign of membrane rupture, aggregation,
or sedimentation of the nanoassemblies or a sign of loss therapeutic efficiency due to early
drug release, and thus can have a strong impact in biological performance [29]. Further-
more, to achieve safer formulations, a different proposed lipid:polymer ratio was used,
favoring the reduction in polymeric coating, since it has been reported that P407, although
generally accepted as safe, is non-biodegradable and in higher doses has demonstrated
cellular toxicity [30]. Finally, in addition to assessing the cytotoxic effect against breast
cancer cells and fibroblasts (normal cells highly affected by DOX toxicity), the cellular
uptake and cytotoxic effect of DOX-loaded LNLCs in hepatic and lung cancer cells was
investigated for the first time.

2. Materials and Methods
2.1. Materials

Doxorubicin hydrochloride (DOX), with purity ≥98%, was purchased from Sigma
Aldrich (St. Louis, MO, USA). Glyceryl monooleate (GMO; Peceol®) was kindly provided
by Gattefossé (Lyon, France). PluronicTM F-127, also known as poloxamer P407 (P407), was
obtained from Merck KGaA (Darmstadt, Germany). Dulbecco’s Modified Eagle’s Medium
(DMEM), AmnioMax, supplement, fetal bovine serum (FBS), L-glutamine, antibiotics
(penicillin G and streptomycin), and sulforhodamine B (SRB) were purchased from Thermo
Fisher Scientific (Waltham, MA, USA).

All other reagents were acquired from Merck KGaA (Darmstadt, Germany) with p.a.
quality and used without further purification. All aqueous solutions were prepared with
ultrapure water produced by Millipore Sigma (Burlington, MA, USA) Milli-Q® system
(resistivity = 18.2 MΩ·cm).

2.2. Methods
2.2.1. LNLCs Preparation Method

Empty-LNLCs were prepared using three different methods: hydrotrope, lipid film
hydration, and emulsification.

The hydrotrope-based method was adapted from a study performed by
Abdelaziz et al. [31]. Briefly, an isotropic mixture of GMO (4% w/v) and absolute ethanol
(450 µL) was prepared and dropwise added into 5 mL of aqueous polymeric solution of
poloxamer P407 (0.5% w/v). The mixture was then kept at room temperature (25 ◦C) for
24 h. Following that, the remaining 15 mL of polymeric solution was added to the mixture
under stirring. Finally, the mixture was homogenized (Ultraturrax, Polytron® PT 2500,
VWR International, Radnor, PA, USA) for 3 min at 13,500 rpm to obtain the final dispersion.

The lipid film hydration method was adapted from a study conducted by
Freag et al. [32]. In brief, GMO (4% w/v) and P407 (5% w/v) were dissolved in absolute
ethanol and evaporated to dryness for 2 h in a rotary evaporator (IKA, Staufen, Germany).
The lipid film was then hydrated with 20 mL of ultrapure water heated above the GMO
phase transition temperature (45 ◦C). After, the mixture was homogenized (Ultraturrax,
Polytron® PT 2500, VWR International, Radnor, PA, USA) for 3 min at 13,500 rpm, and then
sonicated for 3 min at 18 W (Misonix S-4000 sonicator, Misonix™, Farmingdale, NY, USA).
The final dispersion was obtained by extruding the sample (Lipex extruder, Northern Lipids
Inc., Burnaby, BC V5J 5G7, Canada) at 6–8 bar pressure through a 400 nm polycarbonate
filter (IsoporeTM membrane filter, Millipore Sigma (Burlington, MA, USA).

The emulsification method was adapted from a study performed by Freag et al. [32].
In summary, lipid and polymer (GMO, 4% w/v, and P407, 5% w/v) were mixed and heated
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in a water bath at 70 ◦C to dissolve the polymer. This mixture was dropped into ultrapure
water, which was preheated to 70 ◦C for 15 min with magnetic stirring (IKA®C- MAG
HS 4, IKA®-Werke GmbH & Co. KG, Staufen, Germany). The final dispersion was ho-
mogenized (Ultraturrax, Polytron® PT 2500, VWR International, Radnor, PA, USA) for
3 min at 13,500 rpm, and then sonicated for 3 min (Misonix S-4000 sonicator, Misonix™,
Farmingdale, NY, USA) at 18 W.

To select the best LNLC preparation method, the colloidal stability of LNLCs obtained
by each method was evaluated in terms of mean particle size and polydispersity index
(PDI) by dynamic light scattering (DLS), and zeta potential (ZP) by electrophoretic light
scattering (ELS) using the Anton Paar Litesizer® 500 (Anton Paar GmbH, Graz, Austria)
over a 4-week period at refrigerated conditions (4 ◦C) and room temperature (25 ◦C).

2.2.2. DOX Loading Method

For each LNLCs preparation method selected, three different procedures were used
to prepare DOX-loaded LNLCs (DOX-LNLCs): direct mixing, hydration, and incubation.
DOX (0.03 mg/mL) was added directly to the lipid phase in the direct mixing procedure,
or to the aqueous phase in the hydration procedure, and the LNLCs preparation process
followed the same steps as previously described. In the incubation procedure, DOX
(0.03 mg/mL) was dissolved in absolute ethanol and evaporated to dryness for 2 h in
a rotary evaporator (IKA, Staufen, Germany) and then incubated with the previously
prepared LNLCs at a temperature above the melting point (Tm) of GMO for one hour. To
select the best DOX-loading method, the colloidal stability of DOX-LNLCs was evaluated
as previously described. Then, different DOX concentrations (0.03 mg/mL, 0.33 mg/mL,
0.98 mg/mL, and 3.26 mg/mL) were loaded in LNLCs to determine whether the produced
nanoassemblies have a maximum loading capacity and the ways in which the increase in
concentration affects the physicochemical characteristics of the LNLCs.

2.2.3. LNLCs Physicochemical Characterization

The final selected empty LNLCs and DOX-LNLCs were characetreized for mean
particle size, PDI, and ZP by DLS and ELS using the Anton Paar Litesizer® 500 (Anton
Paar GmbH, Graz, Austria). To avoid multiple scattering effect due to the high particle
concentration, the formulation was previously diluted with ultrapure water and placed in
Omega cuvette Mat. No. 225288 (Anton Paar GmbH, Graz, Austria) at 25 ± 1 ◦C. Size and
PDI results were obtained from the correlogram using Anton Paar Litesizer® 500 software
(Anton Paar GmbH, Graz, Austria) after cumulant analysis according to ISO 22412:2008 [33]
and ZP results were obtained via the conversion of electrophoretic mobility according to
the method used by Helmholtz–von Smoluchowski [34].

The shape and morphology of the LNLCs was examined by scanning transmission
electron microscopy, STEM (Hitachi HD-2700 scanning transmission electron microscope,
Tokyo, Japan). First, 10 µL of LNLCs was added to carbon grids and left standing for
2 min. The liquid in excess was removed with filter paper, and afterwards, 10 µL of 4%
neodymium acetate was added to the grids for 10 s for negative staining. Visualization was
carried out on a Hitachi HD-2700 scanning transmission electron microscope at 200 kV.

To evaluate the chemical composition of the LNLCs, Fourier transform infrared spec-
troscopy (FTIR) analysis was performed using a FTIR spectrophotometer (Spectrum Two™
FTIR Perkin-Elmer, Waltham, MA, USA) equipped with an attenuated total reflectance unit
(ATR-FTIR). Samples (free DOX, empty LNLCs and DOX-LNLCs) were prepared by adding
200 µL of DOX aqueous solution (0.98 mg/mL) or LLCNs into aluminium crucibles, and
water was evaporated at room temperature to form a film. Measurements were performed
by pressing the film against the crystal of the ATR accessory in the range between 400 and
4000 cm−1, with a resolution of 4 cm−1 and accumulating 64 scans per spectrum.

The phase transition temperature of empty LNLCs and DOX-LNLCs was performed
by differential scanning calorimetry (DSC). Briefly, 10 to 13 mg of the LNLCs samples were
placed into sealed aluminium crucibles with perforated caps. The thermal analysis profiles
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were obtained under a nitrogen dynamic atmosphere (20 mL/min). The thermal program
involved cooling down to 5 ◦C (at a rate of 10 ◦C/min), followed by an isotherm of 8 min
and subsequent heating from 30 to 70 ◦C (at a rate of 5 ◦C/min). Thermograms of free
DOX, empty LNLCs and DOX-LNLCs were recorded using DSC 200 F3 Maia® instrument
(NETZCH, Bobingen, Germany).

The thermodynamic behaviour of LNLCs was also studied by DLS. In brief, 1 mL of
each sample was placed in a disposable polyester cell, and the size was measured using
the DLS technique as previously described. The intensity and average count rate of light
intensity scattered by the LNLCs were measured at temperatures ranging from 30 ◦C to
70 ◦C, with a 1 ◦C difference between measurements, and three measurements were taken
at each temperature.

Encapsulation efficiency (EE) was determined by ultrafiltration technique [35]. In
brief, DOX-LNLCs previously diluted in water (1:2, v/v) were transferred to filter units with
50 kDa pores (Amicon® Ultra-15, Millipore Corporation, Burlington, MA, USA) and cen-
trifuged at 3000 rpm for 10 min (Hettich® Universal 320 centrifuge, Kirchlengern, Germany).
The encapsulated DOX was quantified by an International Conference on Harmonization
(ICH)-validated UV/Vis spectrophotometry method using a Shimadzu UV/Vis-NIR 3101
PC spectrophotometer (Kyoto, Japan) at the maximum absorption wavelength of DOX,
which was estimated to be 478 nm in agreement with previous reports [36,37].

EE and drug loading (DL) content were calculated indirectly by applying the following
Equations:

EE (%) =
[DOX]Initial− [DOX]Free

[DOX]Initial
× 100 (1)

DL (%) =
([DOX]Initial × EE (%))

[LNLCs]
× 100 (2)

where [DOX]Free represents the concentration (M) of DOX present in the supernatant,
[Drug]Initial refers to the concentration (M) that was firstly added, and [LNLCs] refers to
the formulation concentration (M). In all cases, DOX solubility in water was assured as the
concentrations used never reached its maximum solubility (50.0–52.0 mg/mL according to
supplier information).

2.2.4. Potential Therapeutic Performance

In vitro drug release studies were performed by the dialysis method [35]. DOX-LNLCs
(1.0 mL) with DOX concentration of 0.03 mg/mL were added to dialysis membranes (Float-
A-Lyzer®, 3.5 kD, VWR International, Radnor, PA, USA) that were immersed in 40 mL
of dissolution medium, ensuring sink conditions. The dissolution medium composed of
buffer solutions used to mimic the pH values found in vivo: pH of 5.5 mimicking more
acidic conditions found in tumour microenvironment tissues, specifically at endosomal
vesicles and pH of 7.4 mimicking the physiological environment of normal tissues or
plasma [38]. This system was kept at 37 ± 1 ◦C under orbital stirring (IKA® KS 3000 i
control, Staufen, Germany), at 250 rpm, to also mimic the body temperature. At predefined
intervals, 1.0 mL of each sample was collected and replaced with 1.0 mL of fresh dissolution
medium until the assay ran for 25 h. The amount of DOX released in the dissolution
medium was determined using a validated fluorescence spectrophotometric method at the
maximum emission wavelength of DOX, which was estimated to be 595 nm, in agreement
with the previously reported value [37]. The cumulative DOX released was expressed as a
percentage of the theoretical maximum drug content value.

Human dermal fibroblast neonatal (HDFn), human hepatocellular carcinoma (HepG2),
human non-small cell lung cancer (NCI-H1299) and human breast metastatic adenocarci-
noma (MDA-MB-231) cell lines were acquired from the American Type Culture Collection
(ATCC, USA). Cells were maintained and grown at 37 ◦C under 5% CO2 in DMEM enriched
with 10% (v/v) FBS, 13% (v/v) AmnioMax, 0.5% (v/v) supplement, 1% (v/v) L-glutamine and
antibiotics (10,000 U/mL penicillin G and 100 mg/mL streptomycin).
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To evaluate growth inhibition (i.e., the concentration that causes 50% inhibition of
cell proliferation—GI50)/cytotoxicity of the formulations, a previously described sulforho-
damine B assay method (SRB) was used [39]. Briefly, cell lines were seeded in 96-well
flat-bottomed polystyrene multiwell plates at a density of 3 × 104 cells/well and incubated
under humidified 5% CO2 atmosphere at 37 ◦C for approximately 2 to 3 h to promote
conditions for cell adhesion. After seeding, the medium was removed and the attached
cells were incubated for 24 and 48 h with different concentrations of free DOX, empty
LNLCs, and DOX-LNLCs, at a range of DOX concentrations from 180 to 0.05 µM. Untreated
cells constituted the negative control. After the treatment, the cells were fixed with 10%
(w/v) trichloroacetic acid (TCA) cold solution at 4 ◦C for 1 h, then they were washed with
slow-running tap water and dried. Afterwards, when the cells completely dried, a staining
step with SRB solution (0.057% (w/v) SRB in 1% (v/v) acetic acid) for 30 min at room tem-
perature was performed. The plates were then washed with 1% (v/v) acetic acid solution
and dried thoroughly. The protein-bound dye was finally solubilized in a 10 mM Tris base
solution with a pH of 10.5 and shaken on a rotary shaker until complete solubilization
of SRB. Finally, the optical density (OD) was measured in a microplate reader at 510 nm.
Dose–response curves were obtained for each tested compound and cell line, and the GI50
values were calculated as described by Vichai and Kirtikara [39] and expressed as mean ±
standard deviation (SD) of three independent experiments.

In the uptake cellular studies, HepG2 cells were seeded in glass slides at a density of
3 × 104 and incubated under humidified 5% CO2 atmosphere at 37 ◦C for approximately
5 h to promote cell adhesion. After seeding, the medium was removed, and the attached
cells were incubated for 24 h with DOX-LNLCs at DOX concentrations of 10, 5 and 0.05 µM.
Untreated cells constituted the control. After treatment, the glass slides were double washed
with phosphate-buffered saline solution (PBS 1x) at 37 ◦C, fixed with paraformaldehyde
solution in PBS 1x (2% w/v) for 20 min at room temperature, and then washed again with
PBS 1x at room temperature three times, to completely remove any paraformaldehyde
remnants. Finally, the glass slides were mounted with medium containing 4′-6-diamidino-
2-phenylindole (DAPI) (Vector Laboratories, Newark, CA, USA) and stored in the dark
at 4 ◦C until observation. Following that, confocal images of the cells were acquired on
an LSM 510 META with a Zeiss Axio Imager Z1 microscope (Carl Zeiss, Oberkochen,
Germany) and LSM 510 software (version 4.0 SP2) (Carl Zeiss, Oberkochen, Germany). The
same microscope settings were applied to all images to allow results normalization. The
lasers used were helium–neon (543 nm) set at approximately 50% and diode (405 nm) set at
approximately 69%. The pinhole was set to 102 mm (0.98 airy units) for helium–neon laser,
and 112 mm for diode laser using a 63× objective. Images were captured at a scan speed
of 6 with 1 µm-thick Z sections, deconvolutioned using the 3D deconvolution tool of the
AutoQuant X3 software (Media Cybernetics, Rockville, MD, USA) and processed in TIFF
images with ImageJ (1.47v) (National Institutes of Health, Bethesda, MD, USA).

2.2.5. Statistical Analysis

All data are represented as the mean ± standard deviation (SD) of three independent
assays. Data were analysed with the ANOVA test followed by the Bonferroni post hoc
pairwise comparison procedure used to determine whether changes were statistically
significant (p-value < 0.05). The GI50 sigmoid curves were obtained using GraphPad®

Prism® software version 8.0 (Boston, MA, USA) and GI50 values and standard deviation
were calculated using non-linear regression analysis.

3. Results and Discussion
3.1. Selection of the LNLCs Preparation Method

The empty LNLCs were prepared using three different methods, one by the bottom-
up approach (hydrotrope method (M1)) and the other two by the top-down approach
(lipid film hydration method (M2) and emulsification method (M3)). The physicochemical
properties (particle sizes, ZP and PDI) of the empty LNLCs in the moment of preparation
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(Figure 2) and the stability of those properties during storage (Figure 3) were evaluated to
select the best preparation method(s).
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The mean particle size and PDI of empty LNLCs M1 (233 ± 53 nm; 0.25 ± 0.04),
empty LNLCs M2 (208 ± 32 nm; 0.19 ± 0.02)) and empty LNLCs M3 (241 ± 35 nm;
0.23 ± 0.013) were statistically similar and were not significantly different from those
obtained by other authors [14,18,19,40–46]. All three methods proved to be effective in
producing LNLCs with an acceptable PDI value for these types of nanoassemblies [47],
confirming the formulation’s homogeneity.

In addition, the LNLCs surface charge was determined by measuring their ZP values
(Figure 2B). Although the nanoassemblies are coated with a non-ionic polymer (P407),
the ZP values of empty LNLCs M1 (−17.6 ± 7.9 mV), M2 (−13.9 ± 1.94 mV) and M3
(−18.4 ± 4.2 mV) indicate a negatively charged surface, in agreement with other reports
using non-ionic coatings [40,48,49], possibly due to some free fatty acids resultant from
lipid or polymer hydrolysis.

The colloidal stability of the LNLCs was evaluated to determine the physicochemical
properties under different storage conditions. Figure 3 depicts mean particle size, PDI,
and ZP values of empty LNLCs prepared using various methods and stored at different
temperatures (4 ◦C vs. 25 ◦C).

Overall, the maintenance of physicochemical properties in long term-storage con-
firmed the colloidal stability of any of the prepared empty LNLCs, indicating a lack of
aggregation during the time period evaluated and at the storage conditions tested. There-
fore, contrastingly to other authors that indicate top-down methods as producing more
stable cubosomes dispersions [50], we did not detect significant differences between the
methods of LNLCs production, and we believe that the differences found in the literature
may be more dependent on the ratio of lipid:polymer than on the method of production
used. Indeed, the polymeric surfactant P407 has an important role in the colloidal stabil-
ity as it sterically stabilizes the interface by adsorbing and maintaining its hydrophobic
poly(propylene oxide) (PPO) blocks on the surface of the nanoassemblies, thereby main-
taining the internal structure of the inverted non-lamellar mesophases [50]. Furthermore,
the steric effect conferred by polymeric coating compensates the relatively large sizes of
the LNLCs. Indeed, such polymeric coating is described as a means of avoiding detection
by the immune system’s macrophages and phagocytic system due to minimal protein
binding on the surface of the nanoassemblies, which may be also beneficial for in vivo
stability [51,52], maximizing formulation circulation time, as well as for taking advantage
of the enhanced permeability and retention (EPR) effect [53].

Although no significant differences in either storage condition or production methods
were observed, LNLCs prepared using the top-down approach (i.e., lipid film hydration
(M2) and emulsification (M3) methods) and the storage condition at 25 ◦C were chosen due
to smaller oscillations (i.e., smaller error bars) in mean particle size, PDI and ZP over time
when compared to M1 and storage at 4 ◦C.

3.2. Selection of the DOX Loading Method

Following the selection of LNLCs M2 and M3, we evaluated three DOX loading
methods to determine the more efficient one. The data in terms of mean particle size, PDI,
and ZP values of LNLCs prepared with and without DOX stored for 4 weeks at 25 ◦C are
presented in Figure 4.

After 4 weeks, there were no significant changes, indicating a lack of clustering which
is supported by a PDI value less than 0.25, an acceptable value that is consistent with a
homogeneous population of nanoassemblies.

Overall, the changes in size, PDI, and surface charge over time are not statistically
significant, which may lead to the conclusion that these formulations (DOX-M2 and DOX-
M3) for the three encapsulation methods (incubation, hydration, and direct mixing) are
stable. However, macroscopic color changes in the formulations were observed after
4 weeks compared to measurements taken immediately after formulation preparation
(Figure S1, Supplementary materials) indicating that DOX may have been located at the
lipid/water interface of the LNLCs over time.
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of storage at 25 ◦C: (A) incubation method, (B) hydration method, and (C) direct mixing method.
Blue data are the empty LNLCS obtained by the lipid film hydration method (M2); yellow data
are the empty LNLCS obtained by the emulsification method (M3); and pink data represents the
DOX-LNLCs (LNLCs prepared by M2 are lighter pink, while M3 is darker). The data are expressed
as mean ± standard deviation of at least three experiments.

The DOX loading procedures were tested to determine the most effective one. Figure S2
(Supplementary materials) depicts the encapsulation efficiency (EE%) and drug loading
(DL%) of DOX-LNLCs M2 and M3 using different loading methods.

The direct mixing method was the encapsulation method chosen as it proved to be the
most efficient, with significantly higher encapsulation efficiency (EE%) and drug loading
(DL%) (p-value < 0.05) for DOX-LNLCs M2 (84.9 ± 6.6% and 0.06 ± 0.005%, respectively)
and DOX-LNLCs M3 (89.9 ± 6.2% and 0.06 ± 0.004%, respectively) compared to the
hydration and incubation methods (Figure S2, Supplementary Materials). The differences
between the methods are explained by the way that DOX is encapsulated in the LNLCs, as
each method offers a different structural organization.

3.3. LNLCs Physicochemical Characterization

The mean size, PDI, and ZP values were used to evaluate the LNLCs produced by the
chosen method of preparation (M3) and loaded with different DOX concentrations by the
chosen loading method (direct mixing) (Figure 5).

The LNLCs with DOX at 0.98 mg/mL (165.8± 1.7 nm) showed a statistically significant
size reduction (p-value < 0.05) when compared to the empty LNLCs (240.6 ± 35.3 nm)
(Figure 5A), which can be explained by the effect of DOX concentration in lipid packing
causing some lipid restruturing and size changes. The PDI did not differ significantly
from empty LNLCs, remaining approximately 0.25 for all formulations, indicating an
homogenous dispersion. These physicochemical properties were maintained over time,
confirming their colloidal stability.

At the highest DOX concentrations (0.33, 0.98, and 3.26 mg/L), the ZP value increased
significantly (−1.03 ± 0.95, +0.28 ± 0.28, and +1.42 ± 0.98 mV, respectively, p-value < 0.05)
(Figure 5B) which can be explained by the positively charged drug screening the negative
surface charge at the lipid/water interface.

Figure 6A shows the characteristic LNLCs structure, with the facets of the nanoassem-
blies consistent with crystallographic planes of a cubic and/or hexagonal morphology and
a hydrodynamic diameter of less than 250 nm (Figure 6B), confirming the data obtained by
DLS (Figure 5A).
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Figure 5. Physicochemical properties of empty LNLCs and DOX-LNLCs with different DOX con-
centrations (0.03–3.26 mg/mL): (A) size and PDI, and (B) surface charge (zeta potential, ZP). Yellow
data are the empty LNLCS obtained by the emulsification method (M3); pink data represents the
DOX-LNLCs (the colour progression (lightest to darkest) represents the increase in DOX concentra-
tion (0.03–3.26 mg/mL)). The data are expressed as mean ± standard deviation of three independent
measurements. * p value < 0.05. One-way ANOVA followed by the Bonferroni post hoc comparative
test were performed.
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 Figure 6. (A) STEM photograph of empty LNLCs M3 at 200 kV × 80.00 k. (B) Size distribution
histogram of empty LNLCs M3.

The biophysical and thermodynamic properties of LNLCs are consistent with the crys-
tallographic planes observed (Figure S3, Supplementary materials). The thermodynamic
characterisation of DOX-LNLCs M3 by DLS and corroborated by DSC reveals a phase
transition, which may correspond to the transition between the P-type cubic phase and the
D-type cubic phase (Figure S3C,D).

EE was greater than 90% for the higher DOX concentration tested (Figure 7), which
was comparable to the findings of Godlewska et al. (93 ± 4%), Nazaruk et al. (92 ± 4%)
and Muheem et al. (92.3 ± 4.99%) [25,42,54]. DOX concentration increment resulted in a
significant increase in DL (p-value < 0.05), up to 7.12% (Figure 7). After 4 weeks, the EE and
DL values for DOX-M3 (0.98 mg/mL) formulation were 84.63 ± 4.7% and 1.84 ± 0.102%,
respectively, indicating no significant changes over time.
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are expressed as mean ± standard deviation of three independent measurements. * p value < 0.05.
One-way ANOVA followed by the Bonferroni post hoc comparative test were performed.

The chemical characterization of hybrid nanoassemblies was evaluated using ATR-
FTIR (Figure 8).

1 

 

 Figure 8. ATR-FTIR spectra of free DOX (pink data—upper spectrum), empty LNLCs (dark yellow
data—middle spectrum) and DOX-LNLCs (magenta data—lower spectrum). The shaded area
highlights the characteristic functional groups (A). Regions B, C (typical vibrations of the chemical
groups Vs(CH2) at 2860 cm−1 and Vas(CH2) at 2930 cm−1 present in this type of nanoassemblies),
and D (v(OH) band between 3200–3400 cm−1 assigned to the O-H stretching mode of water, GMO,
and P407) are assigned to the regions where functional groups are highlighted. (B) Maximization
of shaded area (band B). V = stretching vibrations (bond vibrations); δ = deformation vibrations
(bending vibrations); s = symmetric; as = antisymmetric.

The ATR-FTIR spectra of empty LNLCs M3 (Figure 8A) present (CH3) and (CH2)
bending vibrations at 1375 and 1470 cm−1, and Vs(CH2) and Vas(CH2) stretching vibrations
at 2860 and 2930 cm−1 (band C) characteristic of aliphatic chains [55,56] present in both
polymer (P407) and lipid (GMO). The asymmetric stretching vibrations of the unsaturation
(trans) C=C assigned at 962 and 1670 cm−1 are only due to GMO component of LNLCs
(Figure 8B) [55,57]. In addition, the stretching vibration of the carbonyl group (C=O)
from the ester bond at 1670 cm−1 can only be attributed to GMO component of LNLCs.
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Both empty LNLCs and DOX-LNLC contain -C-O groups, but their assignment is slightly
different permitting to identify the drug component (Figure 8B, Vs(C-O)). P407 has several
ether groups that appear at lower frequencies (1100 cm−1), whereas in the case of DOX,
the -C-O group is part of the ester bond (O-C=O) and thus appears more intense at higher
frequencies (Figure 8B, Vs(C-O)) [55,58]. At roughly the same frequencies and probably
superimposed are the stretching modes of the hydroxyl groups from GMO (–C–OH β at
≈1116 cm−1 and –C–OH γ at ≈1150 cm−1) (Figure 8B). The broad absorption band at
3200–3400 cm−1 (band D) is also attributed to the O–H stretching mode of the water, GMO
and P407 [55,57]. Another slightly different aspect between the spectra of empty LNLCs
and DOX-LNLC is located at the 808–878 cm−1 and might be attributed to C=H bending
vibration also present in DOX spectrum (Figure 8B, δ(C=H)) as reported [59,60].

3.4. Potential Therapeutic Performance

Several parameters can be used to predict formulation therapeutic potential in vitro.
Firstly, the DOX release profile from LNLCs was evaluated at different pH values, as it is a
critical feature for the formulation’s in vivo performance (Figure 9). Compared to normal
tissues, which have a pH range of 7.4–7.5, tumour tissues have an acidic microenvironment
(pH 6.0 to 7.0) due to hypoxia and extensive cell death, and this acidity increases (pH 5.0 to
6.0) upon intracellular delivery by endocytic vesicles [52,61,62].
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first-order model. 
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Figure 9. Cumulative DOX release profile from the LNLCs M3 at pH 5.5 (stimulated endosomal
environment) (light green data) and pH 7.5 (stimulated physiological/plasma environment) (dark
green data) as a function of time (25 h). The data are expressed as mean ± standard deviation of
three independent measurements. The lines represent the best kinetic fit obtained according to the
first-order model.

At pH 5.5, DOX was released from LNLCs M3, up to a maximum of 23.3 ± 2.4% with
a first-order kinetic constant rate of 0.63 ± 0.24 h−1. However, at pH 7.4, significantly less
DOX was released (8.5 ± 0.8%, p-value < 0.05) with a a first order kinetic constant rate of
0.88 ± 0.33 h−1 (Figure 9). The non-linear drug release profile was fitted with other math-
ematical models (Weibull and Gallagher–Corrigan, shown in Table S1 of Supplementary
Materials). In agreement with other reported studies [20,25–27,54], DOX-LNLCs higher
drug release at acidic pH may be explained by DOX ionization properties. In the low-pH
environment of cancer tissues (pH ≈ 6.0) and at pH of endocytic vesicles (pH 5.5), the drug
is almost completely protonated (99.8 %) and is located in the aqueous channels of the
LNLC nanoassemblies with a higher release rate than in the lipid domain. However, at
higher physiological pH (pH 7.4), the DOX protonated fraction decreases to 38.7 %, with the
remainder in the zwitterionic state. The drug’s electroneutrality makes it more lipophilic,
and thus its location is preferentially in the lipidic domains, resulting in significantly de-
layed drug release (p-value < 0.05) under these conditions. Overall, accelerated DOX release
in a simulated tumour environment and significantly smaller release (p-value < 0.05) under
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normal physiological conditions were observed, indicating that these formulations have a
pH-triggering strategy with potential to reduce cytotoxicity in healthy cells.

By measuring cell growth, the in vitro cytotoxicity of empty LNLCs and DOX-LNLCs
was evaluated in different tumor cell lines (MDA-MB-231, human breast adenocarcinoma;
NCI-H1299, human non-small cell lung cancer; HepG2, human hepatocellular carcinoma);
and in comparison to free DOX. In addition, a normal cell line (HDFn) was used to evaluate
the cytotoxicity of the nanoassemblies in off-target tissues (Figure S4, supplementary
materials). The cytotoxicity was evaluated using Generally Recognized As Safe (GRAS)
standards, which classify in vitro as potentially cytotoxic if a reduction in cell viability by
30% or more [63] is observed.

The empty LNLCs generally showed minimal cytotoxic activity at lower concentra-
tions (≤5.0 µM); however, at higher concentrations, cytotoxic activity increased, and cell
growth decreased more abruptly (Figure S4, supplementary materials). This suggests
that empty LNLCs are biocompatible at selected doses. DOX-LNLCs resulted in a greater
decrease in cell growth (p-value < 0.05) than the free DOX at 48 h, at concentrations of 20
and 45 µM, in all tumor cell lines tested, and at 24 h, at 20 µM, in MDA-MB 231 and HepG2
cell lines (Figure S4, supplementary materials). These findings are consistent with the find-
ings of Li et al., who hypothesized that the nanoassemblies’ cytotoxicity compared to free
DOX is due to the DOX-encapsulated LCNPs’ sustained release properties [20]. However,
when the different tumor cell lines were compared, higher cytotoxicity was detected in
MDA-MB-231 cells, possibly due to higher sensitivity of this cell line, as confirmed by
Gagliardi et al. [64].

DOX-LNLCs were potentially cytotoxic to HepG2 and MDA-MB 231 cell lines after
24 h at concentrations of 1.5 µM or more. On the other hand, DOX-LNLCs were determined
to be potentially cytotoxic in normal cell line (HDFn) at concentrations of 3.0 µM or
more (Figure S4, Supplementary Materials). Therefore, we can conclude that at 1.5 µM
concentration, there was tumor selectivity in HepG2 and MDA-MB 231 cell lines after
24 h. There was no tumor selectivity of the DOX-LNLC in the NCI-H1299 cell line, as
the effects were similar to the observed in normal cells. However, it should be noted
that the cytotoxicity tests were performed in cells that come into direct contact with the
formulations. In the context of in vivo administration, the formulations are first distributed
through tissues, and both the triggering effect of acidic pH and the EPR effect, which were
not tested in these in vitro cellular assays, could provide tumour selectivity. Moreover, as
these tumour cell lines are originated from different tissues (breast, lung, and hepatic), it
is possible that variable sensitivities are exhibited as a result of their distinct molecular
phenotyping, and thus metabolism when exposed to a specific formulation.

GI50 values represent the calculated concentration at which the drug causes 50% inhibi-
tion of cell proliferation and are presented, accompanied by the standard deviation (SD) of
three independent experiments, in Table 1, as a function of cell line and time. Significantly
higher GI50 values (p-value < 0.05) were obtained for empty LNLCs, confirming that the
unloaded nanoassemblies are biocompatible at selected doses. The lower GI50 values for
DOX, either free or encapsulated, were obtained at 48 h for all the cell lines under analysis.
When specifically analysing DOX-LNLCs in comparison to free DOX, it is possible to
observe a significant decrease (p-value < 0.01) in the GI50 in MDA-MB 231 and a smaller
decrease in NCI-H1299 after 48 h and in HepG2 after 24 h (p-value < 0.05). Therefore,
encapsulation of DOX in LNLCs increased its therapeutic potential in comparison to free
DOX, and thus a reduction in off-target cytotoxicity risk, which is consistent with those
reported in the literature [24,59,65,66] and reinforced by the higher GI50 values observed in
the normal cell line.
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Table 1. GI50 values and respective deviation standard (SD) of three independent experiments for
free DOX, DOX-LNLCs and empty LNLCs as a function of cell lines and incubation time.

Cell Line Incubation Time (hours)
GI50 (µM)

Free DOX DOX-LNLCs Empty LNLCs

HDFn
24 3.62 ± 0.79 7.83 ± 0.26 36.47 ± 2.64
48 1.73 ± 0.40 1.03 ± 0.26 17.55 ± 1.63

MDA-MB 231
24 19.43 ± 0.85 1.69 ±

0.25
3.48 ± 0.17 12.51 ± 1.36

48 1.90 ± 0.78 16.55 ± 1.55

HepG2 24 6.84 ± 1.34 6.48 ± 1.22 19.48 ± 1.35
48 0.43 ± 0.09 1.05 ± 0.10 22.99 ± 2.09

NCI-H1299
24 6.81 ± 0.71 20.74 ± 2.23 41.98 ± 3.9
48 7.30 ± 1.79 5.25 ± 0.95 51.50 ± 2.67

To elucidate whether the selected LNLCs were efficiently internalized to deliver their
drug payload, cell internalization experiments were carried out on the HepG2 tumour
cell line and imaged using confocal microscopy. As shown in Figure 10, DOX-LNLCs was
mostly internalized and accumulated in the cytoplasm of HepG2 cells at concentrations of
0.05 and 5.0 µM.
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Figure 10. Representative confocal images of cellular internalization and subcellular distribution of
DOX-LNLCs nanoassembly in HepG2 cells (63×), after 24 h incubation with DOX concentrations
of 10, 5 and 0.05 µM. Cells’ nuclei are counterstained with DAPI (blue, left column); DOX-LNLCs
appear in red (middle column), as a result of the emission of DOX. The right column depicts the
merged images for each DOX concentration.
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On the other hand, it was observed that at 10 µM concentration, the nanoassemblies
tended to accumulate in the cells’ nucleus, and that at this same concentration, a great num-
ber of cells were apparently in apoptosis when compared to DOX-LNLCs with lower DOX
concentration. Having said that, we can conclude that the intracellular concentration of
DOX-LNLCs (10 µM) corresponded well with the limited impact on survival rate observed
in the in vitro cytotoxicity assay (Table 1).

4. Conclusions

Our study proposes a rational development of LNLCs preparation and loading meth-
ods in terms of colloidal stability. We detected no discernible differences between the
methods of producing LNLCs, in contrast to other authors who claim that top-down meth-
ods produce more stable cubosome dispersions. We hypothesize that the differences found
in the literature may be more influenced by the lipid:polymer ratio than by the method of
production. In general, the direct mixing method with the highest EE% and DL% was de-
termined to be the most efficient one when compared to the other drug-= loading methods.
Furthermore, when all physicochemical properties were considered, it was determined
that DOX-LNLCs M3 (emulsification method) presented a small size (217.4 ± 11.4 nm), an
acceptable PDI consistent with a single population type (PDI < 0.25), a high encapsulation
efficiency (>90%), a high drug loading content (>7%), and colloidal stability for at least
4 weeks. Furthermore, colloidal stability conferred by polymeric coating compensates
for the larger particle sizes in a manner similar to PEGylation strategies. Due to minimal
protein binding on the surface of the nanoassemblies, the polymeric coating is also cru-
cial for in vivo serum stability as it may help avoid detection by the immune system’s
macrophages and phagocytic system, increase circulation time, and take advantage of the
EPR effect. Future assays that are being planned for in vivo studies will confirm the serum
stability of these LNLCs nanoassemblies.

Regarding the potential therapeutic performance, the LNLCs have shown a sustained
and significantly (p-value < 0.05) higher DOX release in a simulated endosomal environment
(pH 5.5) when compared to a physiological/plasma environment (pH 7.4). These findings
permitted to classify the LNLCs developed as pH-responsive nanoassemblies as the higher
drug release triggered by pH decrease being, in turn, a good predictor for achieving
successful EPR effect. In addition, the findings indicate the potential of these formulations
to minimize cytotoxicity in healthy cells. However, effective selectivity of LNLCs to cancer
cells must be confirmed in vivo. Furthermore, encapsulation of the chemotherapeutic
agent in LNLCs resulted in a greater decrease in cell growth when compared to DOX
free treatment in different tumour cell lines at concentrations of 20 and 45 µM after 48 h
and 20 µM after 24 h in HepG2 and MDA-MB 231 lines. The GI50 values support these
findings, indicating that encapsulating DOX in LNLCs increased its therapeutic potential
over the free form. Cellular internalization of the DOX-LNLCs confirmed citotoxicity
studies, demonstrating the ability of these hybrid nanoassemblies to increase drug cellular
uptake. Furthermore, at higher concentrations, apoptosis and nuclear accumulation of
DOX-LNLCs were observed.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/pharmaceutics15020326/s1, Table S1: Fittings of DOX release
kinetics of LNLCs in buffer with pH of 5.5 and 7.4 using mathematical models; Figure S1: Macroscopic
changes in DOX-LNLCs M3 by direct mixing loading method over 4 weeks. (A) After preparation of
formulation; (B) After 4 weeks storage at 25 ◦C; Figure S2: Encapsulation efficiency (EE%) and drug
loading (DL%) of DOX-LNLCs by different loading methods. Pink data represents the DOX-LNLCs
(LNLCs prepared by M2 are lighter pink, while M3 is darker). The data are expressed as mean ±
standard deviation of three independent measurements; Figure S3: Thermodynamic study of phase
transition temperature of the empty LNLCs M3 (yellow data) or the DOX-LNLCs M3 (pink data)
obtained by DLS method by the measurement of mean count rate as a function of temperature (A and
C) or by DSC by the measurement of heat flow into or out of a sample as a function of temperature (B
and D); Figure S4: Evaluation of in vitro cytotoxicity of LNLCs M3 containing DOX (0.98 mg/mL)
on HDFn, MDA-MB-231, HepG2 and NCI-H1299 cell lines as a function of DOX concentration and
incubation time (24 and 48 h). Yellow data are the empty LNLCs M3 obtained by the emulsification
method; pink data represents the DOX-LNLCs; and red data are the free DOX (0.98 mg/mL). The
data are expressed as mean ± standard deviation of three independent experiments [67–70].
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