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Abstract: Since their discovery, cancer stem cells have become a hot topic in cancer therapy research.
These cells possess stem cell-like self-renewal and differentiation capacities and are important factors
that dominate cancer metastasis, therapy-resistance and recurrence. Worse, their inherent character-
istics make them difficult to eliminate. Colorectal cancer is the third-most common cancer and the
second leading cause of cancer death worldwide. Targeting colorectal cancer stem cells (CR-CSCs)
can inhibit colorectal cancer metastasis, enhance therapeutic efficacy and reduce recurrence. Here,
we introduced the origin, biomarker proteins, identification, cultivation and research techniques of
CR-CSCs, and we summarized the signaling pathways that regulate the stemness of CR-CSCs, such
as Wnt, JAK/STAT3, Notch and Hh signaling pathway. In addition to these, we also reviewed recent
anti-CR-CSC drugs targeting signaling pathways, biomarkers and other regulators. These will help
researchers gain insight into the current agents targeting to CR-CSCs, explore new cancer drugs and
propose potential therapies.

Keywords: colorectal cancer stem cells; Lgr5; Wnt signaling pathway; single-cell omics technology

1. Introduction

In 1994, John and Bonnet isolated and identified cancer cells with stemness from
leukemia cells and proposed the concept of “leukemia stem cells (LSCs)” [1]. This was the
first confirmation of the existence of stem cells in cancer, a major breakthrough in the field
of cancer stem cell (CSC) research. In 2003, Dontu and colleagues isolated CSCs from breast
cancer cells [2], providing the first proof of the existence of CSCs in solid tumors. In the
following years, CSCs were found in brain tumors, prostate cancer, lung cancer, colorectal
cancer and other tumors [3–6]. Nowadays, the theory of CSCs has gained consensus and has
attracted much attention in cancer treatment research. CSCs are a small population of cancer
cells with stemness like stem cells. They can achieve self-renewal through symmetrical
division and asymmetric division to produce daughter cells with stemness or normal
cancer cells [7]. Moreover, CSCs are capable of forming cancer cells with different degrees
of differentiation and reassembling the complete cancer cell repertoire of the original cancer.
In addition, normal cancer cells without CSC properties can dedifferentiate back into
CSCs through a bidirectional interconversion process [8,9]. Normal cancer cells without
CSC properties can dedifferentiate back into CSCs through a bidirectional interconversion
process [10]. This is a major reason for cancer cell heterogeneity [11]. Cancer cells with or
without CSC characteristics must be eradicated to achieve good therapeutic effects. During
cancer development, CSCs are important factors that lead to metastasis, therapy-resistance
and recurrence [12–14]. CSCs are often accompanied by an epithelial to mesenchymal
transition phenotype, and they interact with stromal cells, endothelial cells and others
to promote angiogenesis, promote stem-like cancer cell differentiation and accelerate
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metastasis [15]. The cell cycle of CSCs arrests in the G0 phase, so they are resistant to cycle
specific chemotherapy drugs [16]. Due to their DNA synthesis asynchrony and enhanced
DNA repair, CSCs are resistant to DNA damaging drugs [16]. Moreover, CSCs highly
express drug transporters and anti-apoptotic proteins such as Bcl-2, which endows them
with the ability to pump chemotherapy drugs out of the cell and resist programmed cell
death [16]. Recent research has suggested that resting cancer stem cells can evade immune
surveillance and lay the seeds for cancer recurrence [17,18]. This makes CSCs more difficult
to eliminate than other cancer cells.

Colorectal cancer (CRC) is the third most common malignant tumor type. In recent
years, with the popularization of early screening for colorectal cancer and the advancement
of treatment methods, the mortality rate associated with colorectal cancer has decreased [19].
However, metastasis and recurrence are still the leading causes of death in most end-stage
CRC patients. Reducing metastasis and recurrence remains an urgent problem in CRC
therapy. Colorectal cancer stem cells (CR-CSCs) may be the initial cells of colon cancer [20],
promoting colon cancer metastasis [21,22] and also one of the main culprits of therapy-
resistance and recurrence [23] (Figure 1). Eliminating CR-CSCs can promote therapeutic
effects against colon cancer [24–26]. Here, we reviewed the origin and identification of
colorectal stem cells, and we summarized the potential therapeutic targets of CR-CSCs
and the current research status of agents targeting CR-CSCs. This will help researchers to
gain insight into the current agents targeting CR-CSCs, explore new drugs and propose
potential therapies.
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Figure 1. Illustration of metastasis, therapy resistance and recurrence promoted by CR-CSCs.

CR-CSCs not only divide into CR-CSCs, but can also produce ordinary cancer cells
through proliferation or differentiation. Due to their quiescent state, high differentiation
activity, secreting cytokines to make normal cells malignant and other properties, CR-CSCs
can promote metastasis, therapeutic resistance and recurrence.
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2. Colorectal Cancer Stem Cells
2.1. Origin of CR-CSCs

Researchers generally consider CSCs to have two main origins, derivation from normal
cells that acquire mesenchymal properties [27] or transformation from normal adult stem
cells [28]. The same holds true for the origin of CR-CSCs. In intestine, leucine-rich repeat-
containing G-protein coupled receptor 5 (Lgr5) is expressed selectively in the crypt-base
columnar cells [29] and was the first proven biomarker of CR-CSCs. In mouse models,
genetic inactivation of the key colorectal cancer (CRC) driver gene Adenomatous Polyposis
Coli (Apc) in Lgr5+ cells precipitated rapid tumor induction [30]. By downregulating
β-Catenin and YAP signaling pathways, Protein kinase C ζ (PKC ζ) can inhibit intesti-
nal stem cell function. PKC ζ deficiency can lead to an increase in stem cell activity in
organoid cultures. Furthermore, tumorigenic activity increased in Lgr5+PKC ζ deficient
mice [31]. This evidence suggests that CR-CSCs seem to originate from intestinal stem
cells. However, selective and effective killing of Lgr5+ cells had no impact on primary
tumor growth [24], and cells that disseminate and colonize distant organs were frequently
Lgr5− [32]. Recent research using single cell sequencing technology has shown that the
rDNA transcription and protein synthesis of Lgr5+ and Lgr5− cancer cell subsets were
increased, which showed the characteristics of functional stem cells [33] and that lineage
conversion between cell types can be driven by a combination of key CRC driver genes and
microenvironmental extracellular signaling [34].Vazquez and colleagues also confirmed
that the intestine contains two types of stem cells, Lgr5+ crypt-base columnar stem cells
(CBCs) and Lgr5 regenerative stem cells (RSCs) using single cell sequencing technology.
The two stem cell populations can coexist during tumorigenesis, exhibit dynamic plasticity,
and complement each other to achieve homeostasis. The relative abundance of CBC-RSC
is related to epithelial mutation and microenvironment signal destruction [35]. With the
advancement of research technology, it is certain to uncover the origin of CR-CSCs.

2.2. Identification of CR-CSCs

The sorting of cancer stem cells mainly relies on flow cytometry and magnetic acti-
vation sorting. The most commonly used basis is for sorting cancer stem cell biomarker
proteins. Previous studies have found that CSCs have specific biomarkers, including CD133,
ALDH1, CD44 and EpCAM [36]. CSC biomarkers vary with the tumor type. There are
also some biomarkers for CR-CSCs. The marker proteins located on the cell membrane
include Lgr5 [37], CD133 [38,39], CD44 [40], CD26 [41], CD24 [42], CD29 [43], CD166 [44]
and EpCAM [45]. Aldehyde dehydrogenase1 (ALDH1) is an intracellular enzyme that
oxidizes aldehydes and mediates the control of differentiation pathways. It is currently
widely used as a marker for identifying and isolating various types of normal stem cells
and CSCs [44,46]. Oct4 [47], Sox2 [48] and Nanog [49] are transcription factors used as
biomarker located in the nucleus (Figure 2). The biological functions of most biomarkers
are related to cell stemness.

Biomarker proteins and regulators in the pathway are the most prominent targets in
CR-CSC therapy.

By combining fluorescent labeled antibodies with cancer stem cell biomarkers, flow
cytometry can be used to select CSCs expressing the related biomarkers from cancer cells.
The side population (SP) cells with strong drug resistance are also considered to have the
stemness of tumor stem cells. The characteristic of these cells is that they can expel the
fluorescent dye hoechst33342 out of the cell, and it is shown as a non-fluorescent cell when
detected via flow cytometry. CSCs with strong drug resistance in SP cells can be obtained
by flow sorting [50]. Magnetic activated cell sorting utilizes antibodies attached to magnetic
beads to bind to CSC biomarkers, adsorbing the corresponding cancer stem cells onto a
separation column, while unbound cells pass through the separation column. Cancer stem
cells with positive surface labeling can be obtained by mean of elution from the separation
column [51,52] Single-cell omics technology is a powerful tool for exploring CSCs [53,54].
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Single-cell omics technology can characterize and type CSCs in tumors, and establishing a
stemness model has prospective clinical implications for prognostic evaluation [35,55].
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2.3. Cultivation of CR-CSCs

It is worth emphasizing that although the research results on cancer stem cells have
broad prospects for practical clinical applications, they are still in the initial stage. In order
to successfully unleash the enormous potential of cancer stem cell research achievements,
there are still many urgent issues to address. To understand the physiological activity of
CSCs, the first step is to obtain them. For solid tumors, the most commonly used method
to enrich cancer stem cells is non-adhesive culture with serum-free culture [56,57]. CSCs
with self-renewal capacity are able to survive under non-adherent conditions and maintain
clonogenic activity, whereas non-CSCs undergo anoikis by loss of anchorage.

Three-dimensional (3D) culture has emerged as a cell culture method in vitro in recent
years. By using hydrogel to mimic the extracellular matrix and applying different culture
conditions, 3D culture can mimic in vivo microenvironment [58]. Different gel materials
have different porosity, permeability, surface chemical and mechanical properties, which
will have different effects on cell growth and differentiation [59]. Three-dimensional culture
can be used to enrich stem cells or study cell differentiation [60]. Organoid is an advanced
version of 3D culture, which is a 3D micro cell cluster formed by directional differentiation
of stem cells [61]. Organoids have the abilities to self-renew and self-organize, and can
highly mimic the structure and function of organs in vivo. They have been widely used in
the study of organ diseases, drug toxicity and cancer therapy [62,63].

3. Agents Targeting CR-CSCs
3.1. Targeting CR-CSC Biomarkers

Biomarker proteins are targets for the rapid screening of CRCs. In order to enhance
the specificity of therapeutic strategies, researchers often choose ligands or antibodies
against CSC surface makers (Table 1). MCLA-158 is an EGFR and Lgr5 targeting bispecific
antibody with strong growth inhibitory effects on CRC organoids. Simultaneously, it
exhibits strong anti-tumor activity in xenograft models derived from patients with high
expression of Lgr5 and EGFR [64]. In mouse orthotopic xenograft models derived from
CRC patients, MCLA-158 treatment not only reduced the size of the primary tumor but
also effectively suppressed metastasis, including that of KRAS mutant tumors resistant to
Cetuximab. Currently, researchers are conducting clinical trials of MCLA-158 in various
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solid tumors (NCT03526835) [64]. Catumaxomab was the first T cell binding bispecific
antibody approved by the European Medicines Agency (EMA) in 2009 for the treatment of
malignant ascites [65]. Catumaxomab is a trifunctional bispecific antibody that binds to
EpCAM on cancer cells and CD3 on T cells. It also binds to FcγR to recruit immune helper
cells [65]. Catumaxomab can effectively eliminate CD133+/EpCAM+CSCs in malignant
ascites in patients with advanced ovarian cancer, gastric cancer and pancreatic cancer, which
indicates that it has potential therapeutic applications in eradicating CSCs of epithelial
cancers [66,67]. Similar to catumaxomab, solidomab is also a bispecific antibody targeting
EpCAM and CD3. Solidomab treatment was found to effectively eradicated EpCAM+CSCs,
originating from colon or pancreatic cancer patients that were inoculated into NOD/SCID
mice [68,69].

Table 1. Agents targeting to CR-CSC biomarkers and Wnt pathway.

Agents Targets of CR-CSCs Efficacy References

MCLA-158 EFGR and Lgr5 Effective in preclinical
models [64]

Catumaxomab EpCAM

Approved in the
European Union for the
treatment of malignant

ascites

[65–67]

Solidomab EpCAM Effective in vitro [68,69]

CD133-directed CAR
T cells CD133 Effective in a phase I trial [70]

Cetuximab EFGR Effective in
combination therapies [71–73]

CD133-targeted
oncolyticvirus CD133 Effective in mice [74]

NCB0846 Wnt pathway Effective in mice [75]

Epigallocatechin gallate Wnt pathway Effective in mice [76,77]

XAV939 Wnt pathway Effective in vitro [78]

Phenethyl isothiocyanate
and sulforaphane Wnt pathway Not proven

effective in trials [79–81]

Salinomycin Wnt pathway Effective in mice [82]

JIB04 Wnt pathway Effective in mice [83]

CBB1003 Wnt pathway Effective in vitro [84]

YW2065 Wnt pathway Effective in mice [85]

LF3 Wnt pathway Effective in mice [86]

Dickkopf-2 Wnt pathway Effective in vitro [87]

ICG-001 Wnt pathway Effective in vitro [88]

4-Acetyl-antroquinonol B Wnt pathway and
JAK-STAT pathway Effective in mice [89,90]

Diallyl trisulfide Wnt pathway Effective in vitro [91]

36-077 Wnt pathway Effective in vitro [92]

Evodiamine Wnt and Notch
pathway Effective in vitro [93]

Farnesyl dimethyl
chromanol Wnt pathway Effective in mice [94]

FH535 Wnt pathway Effective in vitro [95]
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In addition to antibodies, there are oncolytic virotherapies and CSC vaccines for
targeted biomarker therapies. Oncolytic viruses are a class of viruses with tumor-killing
functions. Oncolytic virotherapy is an emerging new tumor treatment that utilizes oncolytic
viruses to selectively destroy tumor cells while leaving normal cells intact. Using the
properties of oncolytic viruses combined with receptors on tumor cells, researchers have
screened or engineered oncolytic viruses that target cancer stem cells [96]. Due to the
characteristics of virus vectors, oncolytic virotherapy can trigger immunogenic cell death,
release tumor-related antigens and elicit anti-tumor immune response, which can exert
stronger anti-cancer effect [96]. Oncolytic viruses with a CD133-targeting motif effectively
infected and killed CD133+CR-CSCs, and inhibited the growth of CRC xenotransplantation
models [74]. Oncolytic virotherapy is one potential therapy strategy, but it still needs
further research. CSCs vaccines are also a type of immunotherapy under research. For
example, B16F10 CD133+/CD44+CSCs vaccine can effectively inhibit melanoma growth
in mice and reduce the CSC population within tumors [97]. Although no cancer stem
cell vaccine has entered clinical trials at this time, the demonstrated efficacy of a vaccine
targeting metastatic CRC is reassuring and raises hope [98].

3.2. Targeting Signaling Pathway

Multiple signaling pathways are involved in the self-renewal, proliferation, apoptosis
and angiogenesis processes of CR-CSCs. Currently, it is believed that specifically targeting
cell signaling pathways to inhibit the effects of CR-CSCs is a major development direction
for CRC therapy.

3.2.1. Wnt Signaling Pathway

The Wnt pathway plays a critical role in controlling epithelial stem cell self-renewal,
and its dysregulation causes colorectal carcinogenesis [99,100]. The canonical Wnt pathway
downstream signaling is regulated by the level of β-catenin (Figure 2). TRAF2- and
NCK-interacting kinase (TNIK) is an essential activator of Wnt target genes [99]. The
inhibitory activity of TNIK inhibitors such as NCB0846 on CR-CSCs has been confirmed [75].
Epigallocatechin gallate (EGCG) is a kind of the catechins found in green tea. It has been
proven to effectively inhibit stem cells from various cancers [101,102]. EGCG can inhibit
the stemness of CRC cells by downregulating the expression of biomarkers such as CD133,
CD44, NANOG, OCT4, ALDH1 and Wnt/β-catenin signaling pathway [76,77]. The small
molecule inhibitor XAV939 was shown to significantly downregulate CSC biomarkers in
colon cancer cells and increased apoptosis induced by chemotherapy drugs [78]. Phenethyl
isothiocyanate (PEITC) and sulforaphane are natural products extracted from cruciferae
plants with anti-cancer activities [79,103]. PEITC suppressed the characteristics of CR-
CSCs by reducing the activity of the Wnt/β-catenin pathway, leading to a decline in
the proportion of CD133+ cells [79,80]. Salinomycin, an anti-bacterial polyether isolated
from Streptomyces albus, was found to selectively eliminate CD133+ cells in CRC [104].
Salinomycin induced apoptosis of human CR-CSCs by activating caspase, increasing DNA
damage and disrupting of the Wnt/β-catenin/TCF complex. Tumor growth and expression
of CSC-related Wnt genes, including Lgr5 were decreased [82,105]. In addition to these,
there are many drugs that reduce CSC stemness by targeting the Wnt signaling pathway,
such as pan-inhibitor of histone demethylases JIB04 [83] and lysine-specific demethylase 1
inhibitor CBB1003 [84] (Table 1).

3.2.2. Hedgehog Signaling Pathway

The Hedgehog (Hh) signaling pathway plays an essential role in the growth and
differentiation of gastrointestinal tissue [106]. The canonical Hh signal involves Hh ligands
(sonic Hh, Indian Hh or desert Hh) binding to the patched (PTCH) receptor, releasing
smoothened (SMO) and causing the receptor to activate. In this process, GLI protein will
be activated and become transcriptional activators of the downstream targets of the Hh



Pharmaceutics 2023, 15, 2763 7 of 17

signaling pathway. The Hh-GLI pathway is involved in maintaining the self-renewal ability
of CR-CSCs [107,108] (Figure 2).

Vismodegib (also named Ericdge, GDC-0449) is a Hedgehog signaling pathway in-
hibitor used in clinical practice and approved by the US Food and Drug Administration
for the treatment of basal cell carcinoma. Vismodegib targets a subpopulation of CSCs in
basal cell carcinoma [109]. Studies have shown that vismodegib can inhibit the stemness
of CR-CSC and the expression of biomarkers CD44 and ALDH1 [110]. Cyclopamine is a
natural alkaloid that can inhibit the Hh-GLI signaling pathway by inhibiting SMO. After
cyclopamine treatment, the mRNA levels of CSC biomarkers and genes related to Hh
signaling, including PTCH1, SMO and GLI1 were found to decreased in stem cells derived
from HCT116 [111]. Given the regulation of CR-CSCs by Hh signaling pathway, more new
inhibitors are being developed (Table 2).

Table 2. Agents targeting to signaling pathway.

Agents Targets of CR-CSCs Efficacy Reference

Vismodegib SMO of Hedgehog pathway
Approved by FDA for the

treatment of basal cell
carcinoma

[110,112]

Cyclopamine SMO of Hedgehog pathway Effective in vitro [111]

RO4929097 γ-secretase of Notch pathway Not proven effective in a
phase II trial [113]

Anti-DLL4 DLL4 of Notch pathway Effective in a phase I trial [114]

Honokiol γ-secretase of Notch pathway Effective in mice [115]

Quercetin γ-secretase of Notch pathway Effective in mice [116]

α-Mangostine Notch pathway Effective in vitro [117]

BEZ235 PI3K/Akt/mTOR pathway Not proven effective in a
phase Ib trial [118,119]

LY294002 PI3K/Akt/mTOR pathway Effective in vitro [120]

Piplartine PI3K/Akt/mTOR pathway Not proven effective
in trials [121,122]

Rapamycin mTOR of PI3K/Akt/mTOR
pathway

Not proven effective
in trials [123,124]

Metformin mTOR of PI3K/Akt/mTOR
pathway

Effective in
combination therapies [125]

Atractylenolide I PI3K/Akt/mTOR pathway Effective in mice [126]

Torin-1 PI3K/Akt/mTOR pathway Effective in vitro [127]

Buparlisib Akt of PI3K/Akt/mTOR
pathway

Effective in a phase
Ib trial [128,129]

MK-2206 Akt of PI3K/Akt/mTOR
pathway

Not proven effective in a
phase II trial [130,131]

Curcumin and
GO-Y030

STAT3 of JAK/STAT3
signaling pathway Effective in mice [132]

Napabucasin STAT3 of JAK/STAT3
signaling pathway

Not proven effective in a
phase III trial [133]

3.2.3. Notch Signaling Pathway

Notch signaling is involved in the regulation of cell differentiation, proliferation
and tumorigenesis [134]. The pathway consists of four receptors (Notch1-4) and five
ligands (Jagged-1, Jagged-2, Delta-1, Delta-3, Delta-4) and DNA-binding proteins. The
interaction between receptors and ligands initiates protein cleavage cascade reactions,
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leading to the activation of Notch target genes [135]. Gamma secretase inhibitors (GSIs)
can inhibit Notch signaling by preventing the proteolytic cleavage of Notch receptors [136]
(Figure 2). However, RO4929097, one of the GSIs, failed to achieve excellent results in
clinical trials [113]. More GSIs are under investigation. DLL4 is an activator protein of
the non-canonical Notch signaling pathway.DLL4 antibody was confirmed to be effective
against both KRAS wild-type and mutant CRC cells, effectively eradicating CR-CSCs and
enhancing the antitumor effect of irinotecan [114,137]. In addition, Honokiol, Quercetin
and others have also been shown to have the ability to inhibit CR-CSC stemness [115,116]
(Table 2).

3.2.4. PI3K/Akt/mTOR Signaling Pathway

The PI3K/Akt/mTOR signaling pathway plays a crucial role in cell metabolism
and proliferation, and it is closely related to the CR-CSC phenotype [138]. Studies have
demonstrated that components of the PI3K/Akt signaling pathway are overexpressed
in CRC in vitro and in vivo [130,139]. PI3K and MEK inhibitors used in combination
can induce CR-CSC death and the regression of tumor xenografts [140]. BEZ235, a dual
pathway inhibitor of mTOR and PI3K, could inhibit the proliferation of CR-CSCs and
the expression of its biomarkers CD133 and Lgr5, thus suppressing the stemness of CR-
CSCs [118]. LY294002 is a PI3K inhibitor based on the flavonoid quercetin. LY294002
blocked Akt phosphorylation through the PI3K/Akt signaling pathway and inhibited liver
CSC proliferation and tumorigenicity in vitro and in vivo [120]. LY294002 treatment led
to a decrease in proliferation, spheroid formation and self-renewal properties, as well as
a decrease in Akt phosphorylation and cyclin D1 expression in CR-CSCs in vitro [120].
Piplartine is an alkaloid amide isolated from peppers. It was reported to inhibit stemness
properties in leukemia and oral cancer [121,140]. In combination with auranofin, piplartine
reduced the expression levels of surface biomarker CD44v9, eliminated CR-CSCs and
inhibited CRC growth [121]. Rapamycin is an mTOR inhibitor and is used clinically as an
immunosuppressive drug. In CRC cell lines, it has the potential to decrease the spheroid-
forming ability and ALDH1 activity [123]. In cotreatment with 5-FU and oxaliplatin,
rapamycin reduced the CR-CSCs subpopulation. Metformin is also reported to reduce
the CSC population in different types of cancers [141]. Metformin not only reduced the
proliferation of CSC population in mouse xenografts [125], but also effectively reduced
CSC population in colorectal and other gastrointestinal cancers in a pilot clinical trial [142].
There are also many drugs that target the PI3K/Akt/mTOR signaling pathway to inhibit
CR-CSCs, such as Atractylenolide I and Torin-1 [126,127].

3.2.5. JAK/STAT3 Signaling Pathway

JAK/STAT signaling is closely related to cancer growth and metastasis. In cancer cells,
JAK/STAT signaling can be activated by multiple mechanisms, most notably by STAT3
activation [143]. High STAT3 activity was found in CRC-SCs, but not in normal colon
epithelial cells [144]. Another study revealed that the JAK2/STAT3 signaling pathway
promoted the persistence and radio-resistance of CR-CSCs [145]. Curcumin is a polyphenol
from Curcuma longa, and GO-Y030 is a novel curcumin analog. Curcumin and its analog
GO-Y030 were proposed drug candidates to eliminate CR-CSCs by suppressing STAT3
activity [132]. Napabucasin, also named BBI608, is an orally administered STAT3 inhibitor
with anti-CSC activity against various types of cancer [146,147]. However, unfortunately,
napabucasin failed to achieve satisfactory results in phase 3 clinical trials for the treatment
of colorectal cancer [133]. ls. Napabucasin may be the first anti-CRC drug approved for
clinical use targeting CSCs

There are other signaling pathways such as TGF-β and Hippo, regulating CSCs
stemness. These various signaling pathways do not operate independently and often act
via crosstalk to influence cancer progression [22,106,148–150] (Table 2).



Pharmaceutics 2023, 15, 2763 9 of 17

3.3. Other Agents Targeting CR-CSCs

FBXL5 E3 ligase plays an important role in maintaining the stemness of CR-CSCs.
The anandamide uptake inhibitor AM404 can suppress FBXL5 expression and inhibit
CR-CSC dedifferentiation, migration and drug resistance [151]. Prexasertib, also named
LY2606368, is an investigational checkpoint kinase inhibitor. By inhibiting checkpoint
kinase (CHK) 1, LY2606368 affected DNA replication in most CR-CSCs [152]. ASR352
and NSC30049 are both CHK1 inhibitor [153,154]. RAB5/7, which is associated with
the endo lysosomal pathway, plays an important role in the survival and maintenance
of CSCs through the mitophagic pathway. Mefloquine, an anti-malaria drug, has been
identified as a new inhibitor of RAB. In the PDX model of colorectal cancer, mefloquine
can target RAB5/7 to inhibit the mitophagic pathway and induce mitochondrial-induced
apoptosis, thereby exerting anti-tumor effects without significant side effects [155]. At
present, there are many other types of CR-CSC antagonists, such as pitavastatin [156],
histone deacetylase inhibitor trichostatin A [157] and inhibitors of the post-translational
sumoylation modification pathway [158]. They may play an important role in targeting
CR-CSCs in future (Table 3).

Table 3. Agents targeting CR-CSCs.

Agents Targets of CR-CSCs Efficacy Reference

AM404 FBXL5 Effective in mice [151]

LY2606368 Checkpoint kinase 1 Effective in a phase II
trial of ovarian cancer [152,159]

ASR352 Checkpoint kinase 1 Effective in vitro [153]
NCS30049 Checkpoint kinase 1 Effective in vitro [154]

Mefloquine RAB5/7 Effective in vitro [155]
Pitavastatin —— Effective in vitro [156]

Trichostatin A histone deacetylase Effective in vitro [157]

Dabrafenib BRAF
Approved by FDA for

the treatment of
elanoma

[160]

Mithramycin A SP1 Effective in vitro [161]
Parthenolide USP47 Effective in vitro [162]

Gambogic acid ZFP36 Effective in a phase
IIa trial [163,164]

4. Future Prospects

Despite significant progress in research on therapeutic drugs for CR-CSCs, cancer
treatment still faces many challenges. Tumor microenvironment (TME) plays a major role
in determining cell fate and behavioral choices [165,166]. Under the complex interaction
of the TME, reversible transformation can be achieved between tumorigenic and non-
tumorigenic cells. This is the reason why it is difficult to completely remove CSCs [167].
Cancer-associated fibroblasts (CAFs) play a significant positive role in the development and
transfer of CR-CSCs [168]. A tumor is an entity composed of multiple heterogeneous cells.
Different subtypes of CSCs may have different resistance mechanisms, and therefore, each
cancer subtype may require unique therapies [169]. The plethora of contributing factors in
cancer and the complex regulatory network make it difficult to eradicate cancer via a single
therapeutic intervention.

Fortunately, researchers never give up. In order to achieve effective treatment, more
extensive and in-depth research has been conducted to examine molecular and cellular
aspects, including the synergistic targeting of CR-CSCs and TME in cancer treatment.
Fibroblast activation protein (FAP) is a type II membrane-bound glycoprotein that is
overexpressed in CAFs and activated fibroblasts at wound healing/inflammatory sites.
FAP inhibitor has been developed to target CAFs to improve TME [170]. In response to the
problem of tumor stem cell heterogeneity, anti CSC drugs with diverse targets have been
or are currently being developed. Many of them have been incorporated into clinical or
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preclinical trials. In the face of the differing responses of different patients to therapeutic
approaches, prognosis prediction and personalized treatment are the best solutions. Single
cell omics and organoid technology can assist in achieving this goal. Using large-scale
omics technologies, we can subtype cancers and build predictive models for treatment
response [35,55]. In vitro culture of patient derived tumor organoids can enable prediction
of drug sensitivity and resistance, and achieve precision treatment [171]. In summary, in
the face of differing treatment responses in patients, the heterogeneity of cancer stem cells
and the complex regulatory mechanisms of cancer, researchers have been struggling to
decipher them.

5. Conclusions

CR-CSCs are a small group of stem cells in colon cancer that have unlimited prolifera-
tion, self-renewal and differentiation ability, playing an important role in drug resistance,
metastasis and recurrence. CSCs are like cancer seeds, which cannot be ignored in can-
cer treatment. The advancement of modern medical technology has given us a certain
level of understanding of colon cancer stem cells, but we have not yet fully understood
them. Regarding the current situation of CR-CSCs targeted inhibitors, it is important to
strengthen the synergistic effect between drugs. By combining drugs targeting CR-CSCs
with other treatment methods, we can prevent cancer metastasis and recurrence while
reducing the occurrence of drug resistance, which will improve the effectiveness of current
CRC treatment. Cancer and the tissue involved are integrated, and treatment should adopt
a systematic approach, striving to completely eliminate the seeds to prevent metastasis and
recurrence. Targeted inhibitors of CRCSCs are an emerging treatment method for CRC.
Although there are still many unclear mechanisms to be discovered, it can be expected that
in the future, these drugs will play an undeniable role in preventing colon cancer metastasis
and recurrence. Certainly, a complete cancer treatment requires not only targeted treatment
for CR-CSCs, but also targeted combination therapy for non-CR-CSCs and TME, as well
as the entire tumor. In order to benefit all patients, personalized therapy is the ultimate
goal. Single-cell omics technology and organoid technology have contributed to a deeper
understanding of the different aspects of cancer stem cells and to the development of more
effective treatments for cancer. Achieving this goal still requires considerable efforts and
collaboration from researchers.
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