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Abstract: Brain cancers and neurodegenerative diseases are on the rise, treatments for central nervous
system (CNS) diseases remain limited. Despite the significant advancement in drug development
technology with emerging biopharmaceuticals like gene therapy or recombinant protein, the clinical
translational rate of such biopharmaceuticals to treat CNS disease is extremely poor. The blood–brain
barrier (BBB), which separates the brain from blood and protects the CNS microenvironment to
maintain essential neuronal functions, poses the greatest challenge for CNS drug delivery. Many
strategies have been developed over the years which include local disruption of BBB via physical and
chemical methods, and drug transport across BBB via transcytosis by targeting some endogenous
proteins expressed on brain-capillary. Drug delivery to brain is an ever-evolving topic, although there
were multiple review articles in literature, an update is warranted due to continued growth and new
innovations of research on this topic. Thus, this review is an attempt to highlight the recent strategies
employed to overcome challenges of CNS drug delivery while emphasizing the necessity of investing
more efforts in CNS drug delivery technologies parallel to drug development.

Keywords: blood–brain barrier (BBB); focus ultrasound; nanocarrier; drug delivery to the brain;
receptor-mediated transcytosis; brain tumor; neurodegenerative disease

1. Introduction

Despite the recent advances in genomics and neurobiology, central nervous system
(CNS) diseases from brain tumors to neurological diseases continue to remain a global
concern due to its complex protective structure [1]. As per the estimation of WHO in 2016,
one-third of the global population is impacted by neurological or psychiatric conditions
at some point in their lifetime with Alzheimer’s disease (AD) alone is estimated to cost
US$2 trillion by 2030 [2]. In addition, brain tumor remains to be the most diagnosed solid
tumor in children and adolescents and the leading cause of cancer death among young
adults [3]. In spite of the advancement of drug discovery technologies, drug development
for CNS diseases remains a formidable task with a probability of only a few percentage
(~8.2%) of drugs developed to be translated for clinical use [4]. The heterogeneity of CNS
diseases and the lack of proper preclinical models to accurately mimic human pathology
play crucial roles, these challenges of drug delivery to the brain are the major factors behind
the poor clinical translation rate of CNS drugs.

Introducing drugs into the brain poses a unique set of challenges compared to other
body tissues due to protective mechanisms that safeguard brain tissue externally and
internally. Externally, the brain is protected by the skull and three inner layers of mem-
branes known as meninges which regulate intracranial tissue pressure by constraining
the volume [5] while it is cushioned by cerebrospinal fluid (CSF) that flows within the
meninges and acts as a shock absorber to protect the brain from injury. Internally, the brain
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benefits from the presence of the blood–brain barrier (BBB). BBB prevents random entry of
solutes, including bloodborne pathogens and neurotoxins to maintain the highly regulated
CNS microenvironment essential for neuronal functions while permitting the exchange
of nutrients and metabolic waste to maintain brain homeostasis. The intracranial tissue
pressure in addition to the hurdle of invasive drilling of the skull largely limits the scope
of local drug delivery to the brain while the systemic drug delivery to the brain is greatly
hampered by the blood–brain barrier which rejects ~98% of substances. Biopharmaceuticals
such as recombinant proteins or monoclonal antibodies (mAb) which have emerged as a
promising part of drug development in the past two decades have failed in treating CNS
disease due to their poor access to the brain across the BBB. For instance, Bevacizumab
(Avastin) [6] and Natalizumab (Tysabri) [7], which are FDA approved monoclonal antibody-
based therapeutics for treating brain cancer and multiple sclerosis, respectively, do not cross
the BBB [8]. Thus, there is an urgent need for efficient technology that can effectively deliver
pharmaceuticals to brain with minimum adverse effect. To this end, several strategies have
been developed and evaluated in pre-clinical and clinical settings over the past decades,
but none of these have yet turned out to be groundbreaking.

Herein, we have provided a overview on the structural aspects of the blood–brain
barrier limiting the systemic drug delivery to the brain and discussed the drug delivery
strategies to overcome it with a focus on the physical and cellular stimulation of BBB for
enhanced permeation of pharmaceutics across BBB. In addition, we have discussed the
localized drug delivery strategies for getting drugs into the brain and finally, have shed
light on the importance of research efforts not only to drug development but also to delivery
strategies for brain.

2. Structure and Function of Blood–Brain barrier

BBB is an endothelial membrane barrier within brain microvascular formed by tight
junction of brain capillary endothelial cells (BCEC) sheathed by mural cells and astrocytes
end-feet that separate CNS from systemic blood circulation (Figure 1A,B) [9,10]. The BBB
protects the brain by preventing random entry of substances like neurotoxins and blood-
borne pathogens while maintaining the brain homeostasis by selective passage of nutrients.
BBB is composed of a continuous layer of BCEC tightly connected by junction proteins
sheathed by mural cells (pericyte at the microcapillary and vascular smooth muscle cells
in arteries and arterioles), basement membrane, glial cells (astrocyte, microglia and oligo-
dendrocyte) and neurons which are together known as neurovascular unit (NVU) [1,11].
Cellular components of NVU functionally interact to maintain integrity of microvasculature
including BBB and regulate cerebral blood flow. The CNS microvascular differs from the
peripheral microvascular, the former can be extremely thin (thickness ~200 nm) and the
intercellular junction of BCEC is ~50–100 times tighter compared to the peripheral. In
addition, there is no fenestration in BCEC with limited number of pinocytotic vesicles
unlike peripheral blood endothelial cells. This requires energy dependent active trans-
port pathway for nutrient transport across BBB which further supports the presence of
~5–6 times more mitochondria in BCEC. Furthermore, presence of proteolytic enzymes ca-
pable of rupturing neuroactive bloodborne solutes and drugs in BCEC offers an additional
enzymatic barrier [11].

Pericytes are embedded in vascular basement membrane and cover approximately 20%
of abluminal (outer) surface of the BBB. These cells possess contractile proteins, allowing
them to regulate blood flow in brain capillaries through contraction and relaxation. There
are two basal lamina basement membranes (BMs), the inner vascular BM is formed by the
extracellular matrix (ECM) secreted by BCEC and pericytes and the outer parenchymal BM
is formed by secreted ECM from astrocytic process. The BMs anchor for signaling process
and acts as an additional barrier. Astrocytes, a major glial cell type, play essential role in
maintaining structure and function of the BBB [12]. The end-feet of astrocytes create an in-
tricate network that surrounds BCECs, strengthening the tight junctions, almost completely
ensheathe the brain endothelial capillary and maintain structural integrity of the BBB. It
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also connects BCEC with neurons and mediate inter-cellular communication to regulate
vascular contraction/dilution and blood flow in response to neuronal response [12]. In
addition, astrocytes play crucial role in maintaining brain homeostasis, clearing synapses,
injury protection and considered as the primary workhorse of the CNS for such versatile
roles [13]. Microglia mediates immune regulation in brain and plays crucial role in main-
taining CNS homeostasis. In addition, recent studies support that activated microglia can
increase the expression of tight junction proteins [14].
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Figure 1. (A) Schematic representation of the neurovascular unit (NVU) comprised of neurons, vas-
cular cells (endothelial cells-EC, smooth muscle cells-SMC at arterioles, and pericytes-PC at capil-
lary), glial cells (astrocytes-Ast and microglia). EC are covered by PC and astrocyte end-feet which 
are embedded in the basement membrane (BM). Neurons communicate with adjacent mural cells 
(PC and SMC) to regulate blood flow in the brain microvasculature. Microglia lies around the open 
area of brain capillary that is not covered by astrocyte end-feet. (B-i) Transmission electron micro-
graph (TEM) of brain tissue depicting NVU (B-ii) component EC, PC, Ast, and tight junction; 
Adopted with permission from Ref. [1] (C) schematic of blood–brain barrier comprising intercon-
nected brain capillary endothelial cells via junction proteins (D) along with the other cellular com-
ponents of NVU. 
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Figure 1. (A) Schematic representation of the neurovascular unit (NVU) comprised of neurons,
vascular cells (endothelial cells-EC, smooth muscle cells-SMC at arterioles, and pericytes-PC at
capillary), glial cells (astrocytes-Ast and microglia). EC are covered by PC and astrocyte end-
feet which are embedded in the basement membrane (BM). Neurons communicate with adjacent
mural cells (PC and SMC) to regulate blood flow in the brain microvasculature. Microglia lies
around the open area of brain capillary that is not covered by astrocyte end-feet. (B-i) Transmission
electron micrograph (TEM) of brain tissue depicting NVU (B-ii) component EC, PC, Ast, and tight
junction; Adopted with permission from Ref. [1] (C) schematic of blood–brain barrier comprising
interconnected brain capillary endothelial cells via junction proteins (D) along with the other cellular
components of NVU.
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Three types of junctions, namely, tight junctions (TJ), adherens junctions (AJ), and
gap junctions play role behind the extremely tight connection among adjacent BCEC
(Figure 1C,D). Tight junctions contains both transmembrane proteins such as Junction
adhesion molecules (JAMs), claudins, occludins, etc., and cytoplasmic proteins like zonula
occludins (ZO), afadin (e.g., AF-6), cingulin, etc. [15] Claudins (~27 kDa) is the most crucial
transmembrane tight junction proteins within the BBB. Claudins extracellular segments
create TJ that tightly seal the space between neighboring BCECs, while their intracellular
domains connect with actin filaments (Figure 1D). Occludins is another transmembrane pro-
tein exclusively localized at the tight junctions and perform similar function like claudins.
JAMs are expressed in tight junction of BCEC regulate migration of leukocyte and platelet
via integrin receptor based adhesive interaction. The cytoplasmic domain of TJs inter-
acts with cytoskeletal and the basal adherens junction proteins which are also essential to
maintain barrier property of the BBB.

The Adherens junction, which is formed by homodimeric transmembrane cadherin
protein at the basal side, is important for proper assembly of tight junction proteins and
structural integrity of the BBB [16]. The extracellular domain of vascular endothelial
(VE)-cadherin of one BCEC span across the paracellular cleft to dimerize with another
extracellular domain of VE-cadherin from neighboring BCEC to provide the structural
support while the cytoplasmic domains are connected to actin filament via catenin pro-
teins. Stabilization of catenin induces expression of claudin-3 which supports assembly
of the tight junction. Platelet EC adhesion molecule 1 (PECAM-1), nectin, CD99 are other
transmembrane protein components of adherens junction, and their roles are still under
investigation. Gap junction, which structurally mimic an intercellular channel formed by
hexamer of integral proteins connexins and pannexins (e.g., Cx37, Cx40, Cx43) connecting
to adjacent endothelial cells, is located between the TJs and AJs [17]. It permits the exchange
of ions, small metabolites, and signals between adjacent BCEC and plays important role in
maintaining homeostasis of the BBB. Furthermore, it governs the permeability by engaging
with cytoplasmic proteins like ZO-1 through afadin-6 protein. In combination, the presence
of these particular endothelial junctions, especially TJ, markedly hinders the transit of
random substances across the BBB. The encapsulation of brain endothelial cell capillaries
by the astrocytes and pericytes further contributes to the tightness of the BBB which can
be estimated by a parameter known as transendothelial electrical resistance (TEER) as
1500–2000 Ω cm2 [18].

The BBB undergoes structural and functional alteration in CNS diseases which often
compromises its structural integrity. For instance, in the context of brain tumors, BBB
is referred as blood–tumor barrier (BTB) and it exhibits distinct features, including the
loss of junctional proteins in endothelial cells, aberrant distribution of pericyte, loss of
astrocytic endfeet and neuronal connections, and an increased infiltration of circulating
immune cells into glioma tissue [19,20]. Furthermore, with the progression of tumor,
vascularization greatly hampered the structural integrity of BBB. With an average-sized
tumor, approximately 10% of the BBB may display open junctions, while around 30% may
develop fenestrations that allow the passage of molecules up to 330 kDa in size [21,22].
It is important to note that, despite the disruption in the core of the tumor, the BBB
may still maintain its barrier properties intact in other areas of brain. The BTB shares
common characteristics with the BBB, including the expression of efflux transporters in
endothelial cells and tumor cells. Additionally, the BTB often exhibit higher expression
of certain receptors that promote tumor growth, such as GLUT1 and BCRP [23]. Similar
pathological breakdown of barrier property is also observed in neurological diseases [10].
For leukocytes, altered expression of ion-channel receptors, and transporters are also
observed that compromises protective function of the BBB.

3. Approaches for Drug Delivery through the Blood–Brain Barrier

Over the past few decades, diverse strategies have emerged to enhance the transporta-
tion of drugs through the BBB (Figure 2). These strategies include temporary disruption
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of BBB via physical or chemical means as well as targeting some endogenous transporter
systems over-expressed on BBB.
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Figure 2. Summary of drug delivery strategies to brain.

3.1. Temporary Disruption of BBB
3.1.1. Osmotic Blood–Brain Barrier Disruption

In this process (Figure 3), BBB permeation is achieved using a hyperosmotic agent
which causes dehydration and shrinkage in BCEC resulting tight-junction dysfunction and
transient disruption of BBB. This process of osmotic BBB disruption was first hypothesized
by Rapoport et al. in 1972 [24] following an improved BBB permeation of a dye Evan’s blue
when co-administered with hypertonic arabinose and later supported by Brightman et al.
who visualize the opening of tight junction with electron microscopy after intra-carotid
infusion of mannitol [25]. A variety of substances have been used as osmotic disruptors of
the BBB including urea, lactamide, saline but mannitol has been most used for this purpose.
Since 1980, intracarotid artery hyperosmotic mannitol (ICAHM) infusions has been used
for drug delivery to brain in several pre-clinical and clinical studies [26] many of which
have produced encouraging results of enhanced survivability with clinical safety. For
instance, a clinical study conducted in 17 patients with primary CNS lymphoma receiving
cyclophosphamide and mannitol followed by radiotherapy significantly enhances the mean
survivability (from 17.8 months to 44.5 months) compared with the control group receiving
radiotherapy alone [27]. Combination of carboplatin and etoposide delivered in this method
exhibits an effective delivery in brain and dramatic responses in inhibiting CNS tumor
in patients although unexpected high-frequency hearing loss limits the application of the
combined chemotherapy [28]. Some studies in animal models have demonstrated variable
and inconsistent results in BBB permeability like nonselective opening of BBB, CNS toxicity
and neuroinflammatory response become the major limitation of this approach [29–31].
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The success of this strategy depends on multiple factors, including injection speed, optimum
mannitol dose, cerebral hemodynamics, and vascular anatomy. Strategies to overcome
the limitation are currently under investigation, e.g., use of real time MRI guidance for
optimum and targeted delivery of therapeutics [32,33]. Overall, mannitol mediated os-
motic disruption of BBB for drug delivery to brain is safe and hold promise while further
investigation is needed to improve its reproducibility and clinical effectiveness.
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3.1.2. BBB Disruption with Focused Ultrasound

In this method (Figure 3) local BBB permeation can be achieved by using focused
ultrasound (FUS) in combination with intravenous microbubbles and can be monitored by
using MR-imaging system. This method has several advantages over other methods. It is
reproducible, non-invasive, and targeted opening of the BBB can be achieved. In addition,
the BBB opening is transient which can be restored within 6 to 24 h allowing accumulation
of therapeutics in the region of interest for a desired time window.

The FUS technology was first introduced in 1950s initially to treat psychiatric disorders
and brain tumors although those early attempts were invasive involving craniectomy to
introduce sonication into brain which has been evolved to non-invasive over time by
decades of research [34–37]. Although the minimal invasiveness to reduce surgical trauma
and recovery time are the driving force, the skull bone which varies in thickness and
density among individuals greatly attenuates and distorts ultrasound. In addition, hair,
which introduces air, significantly (up to 80%) distorts the delivery of ultrasound. The
implementation of phased array transducers along with real-time MRI-thermal monitoring
has been a breakthrough in this century to made non-invasive transcranial FUS feasible [37].

The cellular and molecular mechanism of FUS-mediated enhanced BBB permeation is
poorly understood. The sheer stress from the stable acoustic cavitation of the microbubbles
induces structural and functional modulation in the BBB like higher caveolae formation,
sonoporation, as well as opening of some tight junctions which enhance intracellular and
paracellular transport [38–40]. Although stable cavitation contributes to loosening of tight
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junction, inertial cavitation may contribute to hemorrhage and ischemia. Nonetheless,
microbubble cavitation can be controlled by tuning ultrasound pressure amplitude and
low-frequency FUS-mediated BBB opening rule out the thermal effect on the BBB. Notably,
FUS activates PI3kinase/Akt pathway in neuronal cells which may play role in modulation
of tight junction proteins ZO-1 and occludin [41]. Cerebral vessels are resilient to such
mechanical stress caused by stable microbubbles cavitation and quickly recover their
integrity after the FUS.

As indicated before, FUS can induce local and targeted opening of the BBB with a
desired time window. The extent of BBB opening can be controlled by tuning ultrasound
pressure amplitude, transducer frequency, microbubble size and dosage, exposure duration
and burst parameters [42–44]. For instance, a study by Chen et al. has demonstrated that
FUS can enable trans-BBB delivery of dextran molecule up to 2000 kDa (hydrodynamic
diameter 2.3 to 54.4 nm) at a 0.84 MPa acoustic pressure [45]. However, small opening
(70 kDa) can be achieved by stable cavitation whereas larger BBB opening (>500 kDa) is
associated with inertial cavitation. Thus, FUS has been demonstrated to markedly enhance
the trans-BBB delivery of therapeutic antibodies (~150 kDa, e.g., Herceptin) [7,44,46–48],
chemotherapeutics [49], and cells [50–52] and shows clinical promise in treating brain
tumor and other CNS diseases [37,53]. Furthermore, studies indicate that FUS can be
utilized to target therapeutics in different regions of the brain such as the hippocampus [54],
striatum [55], cortical targets [46], and brainstem [49]. The safety of FUS-mediated BBB
opening is promising. A mild and short term (<2 weeks) immune response is reported after
repeated administration [56–59]. Importantly, behavioral, morphological, and neuroimag-
ing characteristics are retained even after long-term repeated administration of FUS in
animal models (biweekly over 6 months in rats or 4 months in non-human primates) [60,61].

3.1.3. Radiation-Mediated BBB Disruption

Few studies have reported that radiation therapy, an important modality in treating
brain tumor, may play a role in disrupting the BBB and enhance drug entry to brain [62].
However, the role of radiation in increasing drug accumulation in brain and its underlying
mechanisms are still uncertain. In addition, radiation induced BBB disruption is not
temporary and the recovery time is much higher (in years) which often lead to radiation
induced toxicity including headache, neurologic deficits or nausea [63].

3.1.4. Interfering the Tight Junction of BBB with Chemicals

Disengaging the tight junctions of BBB is another strategy to improve permeability
across BBB. Bradykinin (BK), a peptide containing 9 aminoacids upon administration causes
dilation of arterioles and enhances paracellular transport by down-regulating expression
of the tight junction proteins (occluding, ZO-1, and claudin-5) and improves transcellular
transport by upregulating caveolin mediated pinocytotic vesicles [64]. The BBB opening
potential of bradykinin, and its synthetic analogs, have been explored [65–67] especially
in brain tumors due to the high expression of BK receptor at BTB [68]. However, it did
not go through Phase-II mainly because the extremely transient opening of BBB and the
adverse side effects due to the wide distribution of BK receptors at numerous additional
sites beyond the BBB [69]. BBB disruption via targeting claudin-5, a major component of
BBB tight junctions, via siRNA mediated knockdown or using anti-claudin5-antibody also
demonstrated to enhance BBB permeation transiently and reversibly [70,71]. It also suffers
similar limitations of transient effects and adverse side effects due to wider distribution
of receptor expression. To this end, targeting Angulin-1, another functional constituent of
BBB tricellular tight junctions which is majorly expressed in BBB and selectively blocks
entry of macromolecules into the brain, can address the adverse effects [72]. Angubindin-1,
a ligand of angulin-1, is demonstrated to enhance the entry of macromolecules across BBB
by removing angulin-1 and disrupting the tricellular tight junctions [73].



Pharmaceutics 2023, 15, 2658 8 of 25

3.2. Drug Transport without Disrupting BBB: Active and Passive Transport Pathways

Recent strategies of drug delivery to brain without disrupting BBB can be classified
into two types based on their energy (adenosine triphosphate (ATP)) requirements during
the process: passive and active transport (Figure 4) [74]. Passive transport is an energy-
independent process that lacks specificity. It includes the diffusion of small molecules
through paracellular and transcellular pathways. Paracellular diffusion involves solute
molecules moving between adjacent endothelial cells due to a negative concentration gradi-
ent. Only water-soluble molecules can pass through the paracellular space. In transcellular
diffusion, non-ionic solute (molecular weight < 400 Da) with a desirable lipophilicity (e.g.,
hormones and steroids) can diffuse through the endothelial cells to brain [75]. However,
in addition to the tight junction, some efflux pumps present at the luminal side of BCEC
also limit the drug transport across BBB. Efflux pumps function in two phases, it initially
inhibit cellular uptake of drug molecules in BCEC and later expel the drugs molecules (like
doxorubicin, daunorubicin etc.) into blood against a negative concentration gradient in
ATP dependent pathway [76]. P-glycoprotein (P-gp) is an example of efflux pump that
plays a role in drug resistance in tumors. Regulating efflux pumps at the BBB represents
another strategy for drug delivery to brain tumors. It is important to note that efflux pumps,
although beneficial for protecting the healthy brain from harmful neurotoxins, can also
pose challenges in drug delivery to brain tumors.
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The active transport pathway often exploits endogenous receptor or transporter pro-
teins that are expressed on the luminal side of BBB. Active transport routes include receptor
mediated transcytosis (RMT), carrier mediated transcytosis, adsorption-mediated transcyto-
sis, and cell-mediated transcytosis, all of which require ATP. In RMT, particles cross BBB via
interaction with specific receptors expressed on apical surface of BCEC. It is an important
pathway and is widely being explored for delivery of macromolecular biopharmaceuticals
(e.g., protein or recombinant peptide-based therapeutics) or nanocarrier-mediated drug
transport to the brain. The mechanism of RMT centers on endocytosis, where a ligand
selectively binds to a receptor. This binding leads to the creation of an intracellular vesicle
through membrane invagination. These vesicles are then transported and fused with the
basolateral membrane, subsequently releasing the payloads as they detach from the mem-
brane. It is worth mentioning that, like general endocytosis, in addition to the transcytosis
from blood to brain some vesicles undergo lysosomal degradation while some others are
recycled to the apical side in RMT. This process often targets specific receptors, including
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transferrin receptors, low-density lipoprotein (LDL) receptors, and insulin receptors for
drug delivery to the brain.

Carrier- or transporter- mediated transcytosis (CMT) represents another dynamic
active transport mechanism across the BBB, facilitating the transportation of essential nutri-
ents such as amino acids and glucose into the brain. Nutrient molecules bind to the specific
transporter proteins on the luminal side, causing conformational changes that enable the
transfer of these nutrients into the brain. Glucose transporter isoform (GLUT-1) and large
amino-acid transporter (LAT) are examples of such transporter. Small molecule drugs
like L-DOPA and gabapentin utilize CMT to reach the CNS. However, the high specificity
required for the interaction between transporters and ligands in this process limits its
applicability in transporting macromolecular therapeutics [77]. Charged particles such as
nanocarriers, predominantly traverse the BBB through adsorptive mediated transcytosis
(AMT), relying on the electrostatic interactions between the negatively charged cell surface
of BCEC and the particles [78]. Such interactions are non-specific, and many nanocarriers
can be delivered; however, this is not devoid of the non-specific accumulation in other
organs under systemic circulation. Cell-mediated transcytosis, which utilizes blood cells
capable of BBB crossing for delivering drug to brain, has recently emerged as biomimetic
strategy. In this method, immune cells or platelets are incorporated with drug-loaded
nanocarriers which then cross BBB and navigate towards the inflammation sites within the
brain by responding to chemotaxis signals and undergoing diapedesis [79]. More recently,
extracellular vesicles, e.g., exosomes, have attracted significant attention as biomimetic
drug carrier for CNS drug delivery. In addition, viral vectors have shown promise for
gene delivery to brain. Further nanocarrier-mediated approaches have gained significant
interest for efficient delivery to brain.

3.2.1. Nanocarriers Mediated Drug Transport across BBB

Nanoparticles (NPs) such as liposomes, polymeric NPs, inorganic NPs, etc., are being
used as drug carriers for decades [80–85]. Drug loading in NPs enhances circulation life of
hydrophobic drugs in blood, protect nucleic-acid-based therapeutics from serum nucleases,
or reduce the adverse off-target effects of drugs [86–90]. Surface of NPs can be engineered
with PEG to achieve longer circulation life or with cell-penetrating peptide to enhance
cellular uptake [91], or with targeting ligand to selectively deliver the payloads at targeted
tissue [92]. Furthermore, drug release at the targeted tissue can be externally controlled by
using stimuli-responsive nanocarriers [82]. Over the past few decades, many nanocarriers
with size range ~10–300 nm have been explored for delivering small molecules, nucleotides,
peptides, or proteins-based therapeutics to brain for combating various CNS diseases in-
cluding brain tumor, neurodegenerative disorders, neuroHIV, stroke, etc. [82,88–90,93–103].
Such nanocarriers can cross the BBB by passive diffusion or can be engineered with some
ligand at their exo-surfaces actively targeting some endogenous receptor/transporter pro-
tein on the BBB. For instance, liposomal encapsulation of cytotoxic anti-neoplastic agent
doxorubicin has significantly mitigated the adverse effect of systemic chemotherapy as
indicated by the enhanced safety index in a phase I trial involving 13 children with recur-
rent/refractory high-grade glioma (NCT02861222) [104]. Similarly, liposomal encapsulation
of irinotecan has improved the safety profile of systemic chemotherapy in another phase I
study with 34 high-grade glioma patients (NCT02022644) permitting its progression for
Phase II trial [105]. However, although such encapsulation of cytotoxic chemotherapeutics
improved the safety index of systemic chemotherapy in patients, the efficacy of nanoformu-
lations might be facilitated by their passive accumulation via compromised integrity of the
BBB around high-grade tumors. Clearly, there is a need for an active transport mechanism
across the BBB for delivering drugs to combat low-grade tumor or other CNS diseases with
intact or less compromised integrity of BBB.

Active targeting of receptor or transporter proteins expressed in brain capillary en-
dothelial cells (BCEC) is the most widely explored nanocarrier-based drug delivery strategy
across BBB. In this method, nanocarriers are surface engineered with targeting ligands
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of such receptors/transporters to deliver payload in brain via RMT or CMT which has
been reviewed elsewhere in detail [106,107]. Although Transferrin, LDL family receptors
(LDLR), insulin, and integrin receptors are widely explored receptors due to their high
receptor-ligand affinity, GLUT and LAT-1 are some transporter proteins that are explored
for drug delivery to brain.

Transferrin Receptor: Transferrin receptors (TfRs) control iron homeostasis via their
natural ligand transferrin. TfRs are highly expressed in the luminal side of BBB and in brain
tumors which makes them an attractive target for drug delivery to the brain [108]. Different
TfRs ligands such as transferrin (Tf) itself (~80 kDa) [109], antibodies or antibody frag-
ments [110], and peptides [111,112] are explored to examine their brain targeting efficacy
by grafting such ligands with the biopharmaceuticals or at the exo-surface of nanocarriers
which is reviewed in detail elsewhere [113]. For instance, Lam et al. have developed a
transferrin-functionalized PEGylated liposomes for simultaneous delivery of temozolomide
(TMZ) and bromodomain inhibitor in brain tumor. The combined chemotherapy regimen
overcome the drug resistance of TMZ, reduced the tumor size, and improved the survival
of mice with glioma compared to control groups, all while showing minimal systemic
drug toxicity [109]. To overcome the plausible inhibition of RMT by competitive binding
of endogenous Tf, nanocarriers are also surface engineered with monoclonal antibody
(mAb), or peptide fragments targeting TfR. For instance, Yue et al. has conjugated OX26
antibody, a monoclonal antibody against TfR1, with micelles to develop an immunomicelle
which shows high BBB-crossing ability [110]. A TfR specific heptapeptide T7 (HAIYPRH)
with high binding affinity (Kd = 10 nM) has also been explored to target nucleotides and
neoplastic drugs in glioma tissue in preclinical model [111,112]. Although such studies are
at the preclinical stages, some have shown initial clinical promise [95]. For instance, a fusion
of lysosomal enzyme iduronate 2- sulfatase (IDS) with anti- TfR antibody (JR-141) enabled
successful delivery of the fusion protein into the CNS of patients with Hunter Syndrome
under systemic settings (i.v.) in a phase I/II trial (NCT03128593) which shows promising
therapeutic efficacy with no significant safety issue [114]. Notably, the use of TfR-targeting
Tf-toxin conjugates has demonstrated clinical potential in anti-glioma therapy. Human Tf is
linked to a diphtheria toxin featuring a CRM107 point mutation, resulting in the creation of
Tf-CRM107. This conjugate displayed tumor growth inhibition when administered directly
into the tumor in a U251 mouse model [115]. Subsequently, a phase I study following
intra-tumoral injection revealed no adverse effects, leading to a phase II study involving
patients with recurrent high-grade brain tumors. Although 35% of the patients displayed
positive tumor responses and improved survival, the phase III was discontinued due to
probable CNS toxicity with an indication for more targeted delivery of the toxin [116].

The sub-optimal clinical efficiency of TfRs targeting may be related to the high recy-
cling rate (~90%) of endocytosed TfRs by BCEC to the luminal side as indicated by studies
in mouse brain [117] where only 10% of TfR-NPs are able to reach brain parenchyma.
Efforts to improve rate of transcytosis via varying ligand density on nanocarrier [118]
or increasing receptor-ligand affinity are being examined [119]. Bivalent TfR antibodies
with high receptor-affinity diverts the trafficking into lysosomes and subsequent degra-
dation of the therapeutics indicating requirement of optimum receptor-ligand affinity for
effective transcytosis [120,121]. Furthermore, interspecies variation of receptors, such as
2.5 times higher expression level of TfRs in mouse brain microvessels compared with that
in human also contributes to the reduced efficacy during clinical translation of such active
targeting strategies. Finally, ubiquitous expression of TfRs in other organs (liver, spleen,
and bone-marrow) and uptakes of drugs in non-peripheral tissues also contribute to the
compromised therapeutic efficacy of such targeting strategy [118].

LDL family receptors: LDL receptor (LDL-R) and receptors for LDL-R related proteins
(LRP) are the most explored among LDL family receptors for drug delivery to CNS. This
is a class of receptors that help lipid transport to the brain [122] and are expressed in
CNS cells, BBB endothelium, and upregulated in cell surface of glioma cells [123,124].
Apolipoprotein B (ApoB) and ApoE are the ligands of LDL-R. ApoE, which is prevalent in



Pharmaceutics 2023, 15, 2658 11 of 25

the brain, especially in CSF and plasma, has been widely explored for drug delivery to brain.
LDL-R mediated transcytosis of NPs are generally two types which rely on (i) avidity-based
surface attachment of ApoE to NPs or (ii) surface-functionalization of NPs via conjugation
with ApoE or its derivatives. For instance, poly-butylcyanoacrylate (PBCA) NPs coated
with surfactant polysorbate 80 (PS-80) [125] show enhanced cellular internalization of the
NPs by 20-fold in human and bovine endothelial cells compared to the uncoated NPs [126].
Later mechanistic study reveals that this surface coating with PS-80 enables adsorption of
plasma ApoE onto NPs which is then recognized LDL-R expressed in BCEC and undergoes
RMT to brain parenchymas [127]. Study indicates that such receptor–ligand interaction is
strong to exclude the size-effect of NPs in the BBB crossing when examined with NPs of
varying sizes from 87 nm to 464 nm [128]. Such PS-80 coating approach to enhance brain
delivery has also been explored for other nanoparticles (e.g., polylactic acid (PLA), solid
lipid nanoparticles (SLN), in different combination of therapeutics which has been reviewed
in detail elsewhere [129]. In the second strategy, synthetic peptides containing short binding
sequence to LDL-R has shown some pre-clinical promise. For instance, Grafals-Ruiz et al.
designed gold-liposome nanocarriers with ApoE peptides on their exo-surface for the
systemic delivery of small-nucleic acids to the brain of mice with gliomas [130].

LDL-R related proteins (LRP), especially LRP1 has also been targeted for RMT-based
drug delivery to brain due to its high expression level on human BBB which is comparable to
TfR and insulin receptors [131,132]. Particularly, Angiopep-2 peptide has gained enormous
attention as targeting ligand for LRP1 mediated drug delivery to brain tumor in pre-clinical
study [133–135]. In a phase I clinical investigation involving ANG1005 (Angiopep-2 peptide
conjugated to paclitaxel), the progression of disease was reduced among 8 out of 27 patients,
leading to its advancement into a phase II clinical trial (NCT01967810) for patients with high-
grade glioma [136]. Furthermore, ANG1005 has recently demonstrated clinical benefits in a
phase II clinical trial aimed at treating patients with recurrent brain metastasis originating
from breast cancer [137].

Insulin receptors (IR) and insulin-like growth factors receptor 1 (IGFR-1), which
are expressed in the brain and BBB, are also explored for drug delivery to brain. For
instance, intravenous infusion of enzyme laronidase fused to an IR binding antibody (AGT-
181) in a phase II trial (NCT03053089) to treat Hurler syndrome (alternatively known as
mucopolysaccharidosis type I) have shown well-tolerated safety profile with satisfactory
efficacy in pediatric patient [138].

Cell adhesion molecules (CAMs) such as integrin, selectin, and gap junction proteins
connexin have also been explored as drug delivery target to brain [139–143]. For in-
stance, the use of paclitaxel (PTX) loaded nanoparticles targeting integrin, specifically PTX-
c(RGDyK)-NP based on poly(trimethylene carbonate), extended the survival of U87MG
glioma-bearing Balb/c mice by 22 days compared to free PTX [144]. Similarly, Nukolova
et al. used nanogels conjugated with a monoclonal antibody of connexin 43 (Cx43), a
gap junction protein, to deliver cisplatin in C6 gliomas. This approach was reported to
significantly enhance the survival of animals [145].

Other Receptor and Transporter-Mediated Targeting Systems: Other than the afore-
mentioned receptors, many other endogenous receptors, or transporters on the BBB such
as acetylcholine receptor (nAChRs), glutathione (GSH) transporter, GLUT, LAT-1, etc., are
being explored for the delivery of drugs to the brain using nanocarriers. For instance,
Chaudhuri and co-workers have developed a nAChRs receptor-targeted liposomes by dec-
orating with nicotine at their exo-surface [146]. They also designed another liposome that
target LAT-1, with L-DOPA grafted onto the surface [147], to transport the STAT-3 inhibitor
WP-1066 in mouse brain tumor. Overall, such active targeting strategies hold significant
promise for macromolecular pharmaceuticals like recombinant proteins, although efficacy
of such nanocarriers mediated RMT is still in pre-clinical stages.
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3.2.2. Magnetic Field Assisted Crossing of BBB

Application of an external magnetic field is another physical method for drug delivery
to the brain which not only spatially guides the magnetic nanoparticle to the targeted region
but also significantly improves the speed and time for drug delivery. In this method, para-
magnetic nanoparticles (PMNP), especially superparamagnetic iron oxide nanoparticles
(SPIONs) with sizes ~10–100 nm, are used. Although magnetic nanoparticles (MNPs) and
liposomes in diameters of 70 nm do not cross the BBB, the application of a static magnetic
field facilitates its delivery across BBB. Particle size controls the magnetic susceptibility
under a fixed static magnetic field. Small SPIONs exhibit higher magnetic susceptibility
(highest with crystalline domain with 10–30 nm) than larger paramagnetic nanoparticles
containing many crystalline domains mutually diminish the net magnetic moment. In
addition, nanoparticles of 10–100 nm are considered optimum due to their longer systemic
circulation times. The size of the nanoparticles determines their effect on BBB. For instance,
SPION with ~117 nm under 0.39 Tesla did not disrupt BBB integrity whereas magnetic
nanoparticles with a size of 800 nm cause leakage in BBB under the same magnetic field
strength. In addition, the lower particle size with higher magnetic susceptibility requires
less field strength, although no adverse effect in cells is reported with the static magnetic
field as strong as up to 10 Tesla. Although the transcellular migration through BCEC
via uptake or nanoporation is presumed to be the major pathway, some recent studies
indicate interaction of SPIONs with junction proteins such as VE-cadherin may contribute
to additional involvement of the paracellular pathway for BBB crossing [148,149].

SPIONs are used in clinics for MRI as a contrast agent and hold potential for other
biomedical purposes including targeted drug delivery, image-guided drug delivery, hy-
perthermia, etc., for the management of CNS diseases [96,150,151]. SPIONs can be surface-
functionalized with different polymers, lipids etc. to achieve desired drug loading or
pharmacokinetic property. For instance, polystyrene-coated SPIONs (~100 nm) under 0.1 T
external magnetic field cross the BBB, accumulate in the brain parenchyma, and exhibit
25 times greater retention with minimal neurotoxicity. Similarly, transferrin-coated PE-
Gylated magneto liposomes (~130 nm) exhibit complete transmigration across an in vitro
BBB under 0.08 T magnetic field without affecting the BBB [152]. Beyond small molecule
anti-cancer drugs [150], magneto liposomes also have been used to facilitate delivery of
therapeutic peptide [153], brain-derived neurotrophic factor (BDNF) [154] or antiretroviral
agents across the BBB [155,156]. For instance, to enhance the BBB permeation of antiretrovi-
ral agent 3′Azido-3′deoxythymidine-5′-triphosphate (AZT), it is complexed with SPIONs
(~25 nm) followed by coating with liposome. This magneto liposome containing encapsu-
lated AZT (~150 nm) crosses the BBB (in vitro) under 0.3 T field and results in three times
higher accumulation of AZT across BBB compared to the only AZT [155]. Importantly, to
further gain control for on-demand drug release, MNP are modified to electromagnetic
nanoparticles (MENP) [157] which exhibit brain accumulation under low ac magnetic field
with no adverse effect in rodents [158] and non-human primates [159] and can facilitate
delivery of hydrophilic therapeutics including siRNA [160], CRISPR [161] across in vitro
BBB (Figure 5). It is worth mentioning that such MENP can also be used for non-invasive
deep brain stimulation to control neuroactivity in Parkinson’s disease [162]. Many studies
have claimed lysosomal degradation of SPIONs as histopathological evaluation of ma-
jor organs involved in systemic circulation revealed no iron-positive pigment or related
macrophage accumulation [158,163]. However, some recent studies have reported toxicity
of SPIONs as it causes an imbalance in iron homeostasis which may induce oxidative stress
and inflammation leading to genotoxicity due to its differential interaction with mitochon-
dria [164,165]. Clearly, in-depth evaluation of in vivo toxicity in long-term exposure to
SPION is needed.
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ticle (MENP) containing CoFe2O4 at the core with a shell of BaTiO3 (B) which enables controlled
drug release under alternating electric stimuli, (C) MENP (~30 nm) can be loaded with CRISPR
via hydrophilic interaction which allows their non-invasive delivery across BBB (in vitro) under
electromagnetic field, (D) TEM of brain tissue from (i) untreated mice and (ii) mice intravenously
administered with 10 mg/kg BW of MENP indicating brain accumulation of MENP (black dot in
D(ii)). (E) Schematic for potential simultaneous delivery of hydrophilic and hydrophobic payload to
the brain using MENP-liposome composed of a lipid coating embedded with hydrophobic drug onto
the hydrophilic drug-loaded MENP. Adopted with permission from Refs. [148,157,158,161].

3.2.3. Cell-Based Biomimetic Strategy of BBB Crossing

Bioinspired carriers such as blood cells, cell-membrane-coated nanocarriers, exosomes,
etc., are being explored recently for drug delivery across BBB due to their longer circu-
lation life and biocompatibility [79]. Leukocytes such as macrophages, monocytes, and
neutrophils are most explored for brain delivery due to their inherent chemotactic recruit-
ment property, especially brain diseases with inflammation. In such methods, drugs are
first loaded in nanocarriers which are then incorporated into cells to facilitate delivery
across the BBB. For instance, Xue et al. have used neutrophils to deliver paclitaxel loaded
liposomes in residual tissue post-surgery which have suppressed the recurrence of glioma
growth [166]. To treat ischemic stroke, Xu et al. have developed a ‘nanoplatelet’ by coat-
ing a neuroprotective agent loaded dextran-based nanocarrier with platelet membrane
surface-engineered with thrombin-responsive anti-ischemic drug and TAT peptide. This
‘nanoplatelet’ crosses the BBB, clears the thrombus clog at the ischemic site in the brain
and delivers neuroprotective agent to combat ischemic stroke [167]. In another study, to
combat encephalitis Yuan et al. have utilized a macrophage-derived exosome for delivering
brain-derived neurotrophic factor (BDNF) to inflamed brain [168]. Such BDNF-loaded
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exosomes crosses BBB via intercellular adhesion molecule 1 (ICAM-1) which is upregulated
under encephalitis-related inflammation. However, cell-based carriers suffer from some
common limitations such as viability of cell-based carriers arising due to leaching of drug
from nanocarriers. In addition, there are some cell-specific limitations like risk of immune
activation while using leukocytes or activation of platelets while using it as drug carrier that
may cause undesired thrombosis or bleeding. Exosomes are extracellular vesicles which
show ~0.5% passive brain accumulation and have attracted attention for drug delivery to
brain and treating neurological conditions. For instance, i.v. administration of dopamine-
loaded exosomes enhanced the dopamine levels (15 times) in mouse brain [169]. Further
understanding of the interaction between the BBB and bio-mimetic carriers are necessary for
proper engineering of such carrier to maximize therapeutic benefit. Extracellular vesicles
(EVs) derived from the cells have been explored for neuroprotective applications including
traumatic brain injury. In one example, the EVs derived from mesenchymal stromal cells
(MSCs) were examined from neuronal cell protection using in vitro models [170].

3.2.4. Viral Vector for Drug Delivery to Brain

Neurotropic viruses that can specifically infect the brain are currently being explored
as drug carriers to the brain. For instance, adeno-associated viruses (AAVs) and lentivirus
which have been widely used in gene therapy, are being explored for BBB trafficking. AAVs
can stably transduce genes to CNS cells, e.g., neurons, astrocytes, BCECs, oligodendrocytes,
and ependymal cells, and are observed to retain their expression in pre-clinical models
(longer than 6 years in monkeys) [171,172]. Despite the shortcomings of strict packaging
limit (~4.7 kb) [173] and pre-existing immunity in certain serotypes [174], the transduction
efficacy and tolerability [175,176] of some serotypes, e.g., AAV9, AAV2 have affirmed their
emerging exploration in different pre-clinical CNS disease models [177]. Importantly, the
recent FDA approval of Zolgensma which is the first AAV-based (AAV9) gene therapy for
spinal muscular atrophy type 1, has created a milestone for viral vectors mediated gene
therapy for CNS diseases with many other ongoing clinical trials.

The packaging capacity can be improved by using lentiviral vectors which possess
a bigger packaging capacity. However, the tendency to integrate with host gnome and
thereby, potential adverse effect by insertional mutagenesis in CNS target cells has greatly
limited its clinical scope [178,179]. For instance, even the non-integrating lentivirus also
have residual propensity to integrate with the host genome which may have adverse effect
due to insertional mutagenesis in CNS target cells. This effect can be minimized by using
ex vivo transduction of cells; however, the efficacy of such lentiviral-based therapy will
further depend on CNS entry efficiency of the transduced cells.

Despite the recent clinical success, application of viral vectors is greatly limited to
gene therapy and often requires invasive mode of administration. Efforts to improve
BBB permeability using different serotypes including AAV8, AAV9, and AAV10 have not
shown satisfactory outcomes yet, as such neurotropic viral vectors poorly transduced
BCECs [180,181]. In addition, a high dose of such vectors may be required for BBB crossing
which may create challenges like autoimmunity risk and reduced rate of BBB transport due
to neutralization of such serotypes by their pre-existing antibodies [182]. Finally, factors like
vector purity, self-inactivating or non-integrating vectors, transgene sequence, etc., which
influence their therapeutic efficacy, are under investigation, more studies are required for
robust safety assessment in selecting an optimal viral vector.

4. Localized Drug Delivery Strategies

To bypass the hurdle of BBB crossing and enhance therapeutic efficacy of drugs,
localized drug delivery strategies such as injections, convection enhanced delivery (CED),
and administration of implants are developed. Although these strategies are invasive,
site-specific delivery of the therapeutics with high bioavailability and minimal drug loss
can be achieved.
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4.1. Injection

In this method drugs are directly injected or infused into the disease site or remaining
cavity after the resection of the tumor which is less toxic and much effective than systemic
administration. However, this method is not a breakthrough for treating CNS disease due
to their high risk of side effects such as edema, infections, and backflow of drugs into the
catheter, narrow drug distribution in the injection site [183].

4.2. Convection Enhanced Delivery (CED)

To prevent the backflow of drugs and improve the drug distribution in the brain
tissue, CED is developed [184]. In this method, an implantable pump is connected to the
catheter to maintain a convective flow. Usually, the catheter is introduced stereotactically
while the constant pressure from the pump maintains a convection flow (independent of
drug diffusivity) of the drug solution into the delivery site. In addition, the convective
flow allows the drug solution to cover longer distance in the brain compared to direct
injection/infusion [185]. CED can be further connected to a real time magnetic resonance
imaging method to monitor the drug distribution [186]. CED has been widely tested for the
delivery of a broad spectrum of therapeutic agents, including small molecules [185,187,188],
macromolecules [189,190], nanocarriers [191,192], and immunotoxins [193]. CED for de-
livering drug from liposomal and polymeric nanocarrier is of importance which can offer
many advantages like less systemic side effects, sustained drug release, and larger dis-
tribution with targeted delivery. CED is a real progress in the field of infusion mediated
drug delivery to the brain; however, despite its significant promise, invasiveness, and
the common side effects of infusion methods, such as infection and edema, are common
limitations. The safety and efficacy of this method is yet to clearly determined as it fails to
meet clinical end points in many Phase III trials [194].

4.3. Implants

Polymeric implants including wafers, gels, microspheres, and nanospheres have been
tested for localized delivery of therapeutics in brain in different shape and sizes [183].
Among these, wafers attracted attention since FDA-approval of Gliadel in 1996 [195,196].
Wafers are drug loaded polymeric implants that look like coins in shape and size. Wafers are
implanted in the remaining cavity post-surgical resection of a tumor where they act as plat-
forms for sustained drug release. The safety and effectiveness of Giladel, a wafer made of co-
polymer of phosphino carboxylic acid and sebacic acid and loaded with chemotherapeutics
BCNU (1,3-Bis(2-chloroethyl)-1-nitrosourea) alone and in combination with radiotherapy
led to its FDA-approval in treating recurrent and newly diagnosed glioma [196,197]. Since
then, various other polymers like poly(lactide-co-glycolide), poly(vinyl acetate) extrudates,
etc., in combination with different chemotherapeutics are tested in various trials, though
only Gliadel® is legally approved so far for the treatment of malignant gliomas. However,
the major drawbacks of wafers as standard delivery platform in treating glioma are lack
of deep tissue penetration of therapeutics which is crucial for invasive tumor like glioma.
The low diffusivity of the therapeutics allows drug distribution only over a few millimeters
from the delivery site. In addition, leakage of the drug into the CSF, adverse neurological
complication arising from mechanical mismatch of the patch, control over the spatial and
temporal drug release, biodegradability, and tissue adhesiveness of the patch, etc., need
attention to improve therapeutic efficacy. Efforts are being made to overcome such limi-
tations. For instance, Lee et al. [198] have developed an adhesive, flexible, bioresorbable
device covering a drug-loaded patch integrated with wireless electronics for intracranial
drug release via mild-thermic actuation (Figure 6B,C). The thermic actuation in presence
of an alternative magnetic field allows deep tissue penetration while preventing leakage
towards CSF (Figure 6C(iii)). The softness and optimum hydrophobicity/hydrophilicity in
the bioresorbable device material containing PLA layer (on top) and oxidized starch (OST)
at bottom layer (Figure 6B) allow conformal adhesion and assimilation to the host target
brain tissue over time (Figure 6C(iv,v)) while minimizing the neurological complication
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of rigid implant. Other than wafers or large implants, gels and micro/nanosphere-based
or polymeric microchips have been tested as alternate drug delivery implants; however,
none of these are clinically approved and share common limitation of lack of deep tissue
penetration of therapeutics [183].
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v). Sustained drug delivery from this wireless patch under thermic actuation (OST + heating group) 
enhances the survivability of glioma-bearing mice compared to control groups including OST (de-
vice without actual), control wafer (custom Giladel), and heating (actuation with the empty patch). 
(D) Kaplan–Meier survival rate plots of the indicated treatment group in the mouse model, * p < 
0.05, *** p < 0.001 by log-rank test with Bonferroni correction. Adopted with permission from refs. 
[183,198] under the CC-BY license, version 4.0. 

Figure 6. Localized drug delivery in the brain: (A) Schematic for conventional injection and
convection-enhanced stereotactic drug delivery method; (B) a biodegradable wireless electronic
patch (1 cm) made of tissue adhesive bifacial soft polymeric material PLA and OST and containing
a temperature sensor, heater, and drug reservoir for intra-cranial local drug delivery via thermic
actuation, Stereotactic implantation of the patch into brain (C, i,ii) allows local drug delivery and
prevention of drug diffusion to CSF (C, iii), tissue assimilation (C, iv) and resorption with host tissue
(C, v). Sustained drug delivery from this wireless patch under thermic actuation (OST + heating
group) enhances the survivability of glioma-bearing mice compared to control groups including
OST (device without actual), control wafer (custom Giladel), and heating (actuation with the empty
patch). (D) Kaplan–Meier survival rate plots of the indicated treatment group in the mouse model,
* p < 0.05, *** p < 0.001 by log-rank test with Bonferroni correction. Adopted with permission from
refs. [183,198] under the CC-BY license, version 4.0.

4.4. Intranasal Delivery (IN)

Delivery of therapeutics to the brain through nasal route is another non-invasive
approach to circumvent the BBB. Although the mechanism of intranasal drug delivery
to brain is not well understood, the olfactory/trigeminal pathway is presumed to be the
significant route for nose-to-brain drug delivery [199]. The drug molecules into the nasal
cavity first experience the mucociliary clearance in the vestibular region and afterwards
move to the posterior regions of the nasal cavity respiratory region and the olfactory
region from where drug molecules are transported to mid-brain and brainstem along
the trigeminal and olfactory neurons, respectively. Then, drug molecules are distributed
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in other regions of the brain via convection flow or perivascular routes. Some clinical
trials of IN for the management of neurological disorders including Alzheimer’s diseases,
Parkinson’s disease, etc., are ongoing [200,201]. Mucosal clearance, limited dosing volume
(100–150 µL or 20–50 mg powders), and metabolic stability of drugs against nasal cavity
enzymes are the limiting factors. Mucoadhesive polymeric nanoparticles and non-irritant
drug formulations may hold promises to overcome such limitations; however, further
research may be needed.

5. Conclusions and Future Perspective

With the growing number of neurological disorders in the aged population and brain
tumors, there is an urgent need for safe and efficacious targeted drug delivery to brain.
Despite years of efforts in CNS drug development, recent FDA approval of Zolgensma,
viral-based gene therapy, is the first approved BBB-crossing biologics. However, the in-
vasive mode of administration of such therapy induces vulnerability towards infection
by neurotoxins or other pathogens. In addition, viral vectors are limited to gene therapy
which is only effective for diseases with single gene mutation. In an era of biopharma-
ceuticals such as recombinant proteins being the most approved drugs for other diseases,
its scope is greatly limited by poor delivery of such macromolecules across BBB which
reflect the poor rate of clinical translation (~8%) of CNS drugs. With the vast spectrum of
CNS drug delivery strategies, each having distinct pros and cons, it may be challenging to
establish a universal platform technology for CNS drug delivery. In addition, with recent
advances in tissue engineering efforts are also being made to overcome the gap in inter-
species tissue homogeneity. Nanotechnologies have demonstrated enhancements in BBB
permeability, region-specific targeting, drug stability, and delivery. Nevertheless, RMT and
CMT have shown initial promises in delivery of macromolecular biopharmaceuticals and
small molecules, respectively, across the BBB. However post-discovery, challenges include
navigating regulatory hurdles, managing costs, and ensuring accessibility of these new
technologies. Overall, more efforts should be invested in CNS drug delivery technologies
in parallel to drug development, and fostering concentrated efforts through industry–
academia collaboration may lead to safe and effective drug delivery to the brain in the
near future.
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